# RENESAS

# Description

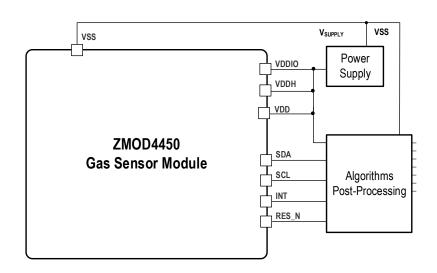
The ZMOD4450 Gas Sensor Module is designed for detecting gases associated with food ripening or rotting and is targeted for use in refrigeration air quality (RAQ) applications; for example, food storage and shipping. The sensor is a 12-pin LGA assembly ( $3.0 \times 3.0 \times 0.7$  mm) that consists of a gas sense element and a CMOS signal conditioning IC. The module's sense element consists of a heater element on a silicon-based MEMS structure and a metal temperature sensor. It measures the MOx conductivity, which is a function of the gas concentration.

The measurement results can be read via an I2C interface with the user's microprocessor, which processes the data to determine the levels of gases present and to indicate the likelihood of food spoilage. With the ZMOD4450's low operating current consumption, the sensor is an excellent choice for low-voltage and low-power battery applications. Built-in nonvolatile memory (NVM) stores the configuration and provides space for arbitrary user data.

# **Typical Applications**

- Refrigerator systems control
- Measurement of fruit and vegetable quality
- Monitors for fruit and vegetable shipping and storage conditions for fruit and vegetable quality

# **Physical Characteristics**


- Target operation temperature: 0°C to 25°C
- Supply voltage: 1.7V to 3.6V
- Package: 12-LGA
- Assembly size: 3.0 × 3.0 × 0.7 mm

# **Available Support**

- ZMOD4450 Evaluation Kit
- Manuals, application notes, and white papers
- Instructional videos
- Programming libraries, example codes, and algorithm support to optimize performance

### Features

- Measurement of gases associated with food ripening and storage: ethylene, amines, volatile sulfur compounds
- Configurable methods of operation based on application and use case
- Heater driver and regulation loop for constant heater voltage or constant heater resistance
- Internal auto-compensated temperature sensor; not stress sensitive
- I2C interface: up to 400kHz
- Configurable alarm/interrupt output with static and adaptive levels
- Adjustable ADC resolution for optimal speed versus resolution: 16-bit maximum
- Built-in nonvolatile memory (NVM) for user data
- Low average power consumption in the mW range
- Firmware upgradable platform for application optimizations, such as ultra-low-power battery applications
- No external trimming components required
- External reset pin (active-LOW)
- Customization for mobile and consumer applications
- Siloxane resistant

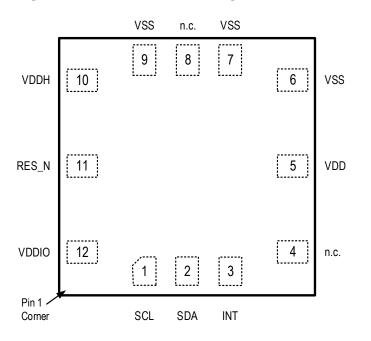


# RENESAS

# Contents

| Pin Assignments                                         | 4                                          |
|---------------------------------------------------------|--------------------------------------------|
| Pin Descriptions                                        | 4                                          |
|                                                         |                                            |
|                                                         |                                            |
|                                                         |                                            |
|                                                         |                                            |
|                                                         |                                            |
|                                                         |                                            |
|                                                         |                                            |
| 8.1 Characteristics for Typical Gas Stimulation         | 9                                          |
| 8.2 Environmental Temperature and Humidity              | 10                                         |
| 8.3 Accuracy and Conditioning                           | 10                                         |
|                                                         |                                            |
| Assembly Restrictions, Operation, and Integration Notes | 11                                         |
|                                                         |                                            |
| I2C Interface and Data Transmission Protocol            | 12                                         |
|                                                         |                                            |
| Ordering Information                                    | 15                                         |
| Revision History                                        | 15                                         |
|                                                         | 8.2 Environmental Temperature and Humidity |

# **List of Figures**


| ZMOD4450 Pin Assignments for 12-LGA Module – Top View                    | 4                                                                                                                                                                                          |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gas Response to Typical Gases and Levels of Expected Refrigeration Gases | 9                                                                                                                                                                                          |
| Humidity Influence at 4°C for Ethylene Stimulation                       | 10                                                                                                                                                                                         |
| Typical Solder Profile                                                   | 11                                                                                                                                                                                         |
| I2C Data Transmission Protocol                                           | 12                                                                                                                                                                                         |
| Bus Timing                                                               | 13                                                                                                                                                                                         |
|                                                                          | Gas Response to Typical Gases and Levels of Expected Refrigeration Gases<br>Humidity Influence at 4°C for Ethylene Stimulation<br>Typical Solder Profile<br>I2C Data Transmission Protocol |



# **List of Tables**

| ZMOD4450 Pin Descriptions                                           | 4                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute Maximum Ratings                                            | 5                                                                                                                                                                                                                                                                                                                                                            |
| Operating Conditions                                                | 5                                                                                                                                                                                                                                                                                                                                                            |
| ZMOD4450 Electrical Characteristics                                 | 6                                                                                                                                                                                                                                                                                                                                                            |
| Gas Sensor Module Specifications                                    | 8                                                                                                                                                                                                                                                                                                                                                            |
| Default Parameters for Control Signal based on Air Quality Changes  | 9                                                                                                                                                                                                                                                                                                                                                            |
| Typical ZMOD4450 Sensor Module Accuracy Achievable with Calibration | .10                                                                                                                                                                                                                                                                                                                                                          |
| Final Test Parameters                                               | .12                                                                                                                                                                                                                                                                                                                                                          |
| Bus Timing Characteristics                                          | .13                                                                                                                                                                                                                                                                                                                                                          |
|                                                                     | ZMOD4450 Pin Descriptions<br>Absolute Maximum Ratings<br>Operating Conditions<br>ZMOD4450 Electrical Characteristics<br>Gas Sensor Module Specifications<br>Default Parameters for Control Signal based on Air Quality Changes<br>Typical ZMOD4450 Sensor Module Accuracy Achievable with Calibration<br>Final Test Parameters<br>Bus Timing Characteristics |

# 1. Pin Assignments



### Figure 1. ZMOD4450 Pin Assignments for 12-LGA Module – Top View

# 2. Pin Descriptions

| Pin Number | Name  | Туре         | Description                                                                         |  |  |
|------------|-------|--------------|-------------------------------------------------------------------------------------|--|--|
| 1          | SCL   | Input        | Serial clock for the I2C interface.                                                 |  |  |
| 2          | SDA   | Input/Output | Serial data for the I2C interface. Default 7-bit slave address: 32 <sub>HEX</sub> . |  |  |
| 3          | INT   | Output       | Interrupt signal (push-pull).                                                       |  |  |
| 4          | n.c.  | -            | Do not connect.                                                                     |  |  |
| 5          | VDD   | Supply       | Voltage supply for the ZMOD4450.                                                    |  |  |
| 6          | VSS   | Ground       | Ground reference for the ZMOD4450.                                                  |  |  |
| 7          | VSS   | Ground       | Ground reference for the ZMOD4450.                                                  |  |  |
| 8          | n.c.  | -            | Do not connect.                                                                     |  |  |
| 9          | VSS   | Ground       | Ground reference for the ZMOD4450.                                                  |  |  |
| 10         | VDDH  | Supply       | Voltage supply for the integrated heater in the ZMOD4450.                           |  |  |
| 11         | RES_N | Input        | ZMOD4450 reset; active low.                                                         |  |  |
| 12         | VDDIO | Supply       | Voltage supply for I/O-interface in ZMOD4450.                                       |  |  |

## 3. Absolute Maximum Ratings

Note: The absolute maximum ratings are stress ratings only. The ZMOD4450 might not function or be operable below and above the recommended operating conditions given in Table 3. Stresses exceeding the absolute maximum ratings will change the sensor accuracy; lead to imprecision, and eventually cause irreversible damage to the device. In addition, extended exposure to stresses above the recommended operating conditions might affect device reliability. IDT does not recommend designing to the "Absolute Maximum Ratings."

| Symbol            | Parameter                                                                            | Minimum | Typical | Maximum                 | Units |
|-------------------|--------------------------------------------------------------------------------------|---------|---------|-------------------------|-------|
| Vdd, Vddh, Vddio  | Maximum Analog and I/O Supply Voltage                                                | -0.4    |         | 3.63                    | V     |
| Va_io, Vd_io      | Maximum Voltage at all Analog and Digital I/O Pins                                   | -0.5    |         | V <sub>DDIO</sub> + 0.5 | V     |
|                   | Maximum Difference in Voltage between VDD and VDDH Pins                              | _       |         | 0.4                     | V     |
| lin               | Input Current into any Pin Except Supply Pins (Latch-Up Immunity)                    | -100    |         | 100                     | mA    |
| V <sub>HBM1</sub> | Electrostatic Discharge Tolerance – Human Body Model (HBM)                           | 2000    |         | -                       | V     |
| Vcdm              | Electrostatic Discharge Tolerance – Charged Device Model<br>(CDM) on Packaged Module | 750     |         | -                       | V     |
| TOPERATION        | Operation Temperature of Sense Element                                               |         | 300     |                         | °C    |
| T <sub>STOR</sub> | Storage Temperature                                                                  | -50     |         | 125                     | °C    |

Table 2. Absolute Maximum Ratings

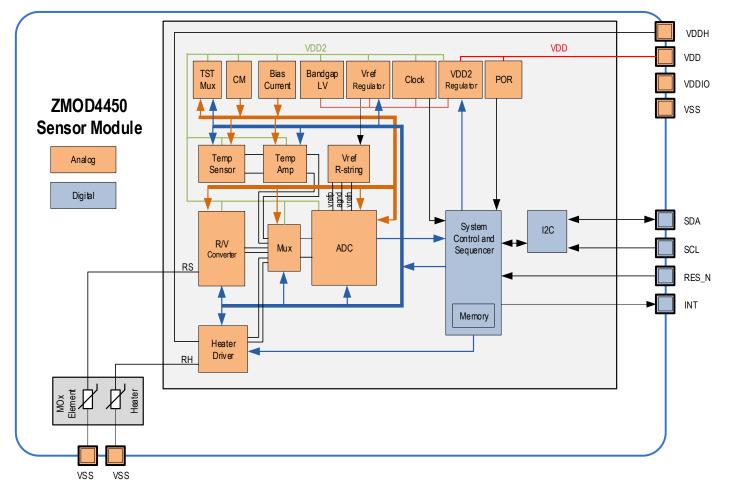
# 4. Operating Conditions

Note: The reference for all voltages is V<sub>SS</sub>.

#### Table 3. Operating Conditions

| Symbol | Parameter                                      | Min | Тур | Max | Unit |
|--------|------------------------------------------------|-----|-----|-----|------|
| Vdd    | Supply Voltage for ZMOD4450 Sensor Module      | 1.7 | -   | 3.6 | V    |
| Тамв   | Ambient Temperature Range for Sensor Operation | 0   | -   | 25  | °C   |

# **5. Electrical Characteristics**


Values below are valid at operating conditions unless noted otherwise.

#### Table 4. ZMOD4450 Electrical Characteristics

| Symbol                | Parameter                                                            | Conditions                                                          | Minimum | Typical           | Maximum | Unit   |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|---------|-------------------|---------|--------|
|                       | Average Power ZMOD4450                                               | Continuous Operation                                                | _       | 23                | _       | mW     |
|                       | Supply Current, Active Mode including                                | At VDD = 1.8V                                                       |         | 13                |         | mA     |
| <b>I</b> ACTIVE       | Heater Current.                                                      | At VDD = 3.3V                                                       |         | 7                 |         | mA     |
| SLEEP_Timer           | Supply Current, Sleep Mode ASIC with Wake-up Timer Active            | Does not include heater current                                     | -       | _                 | 500     | μA     |
| I <sub>SLEEP</sub>    | Supply Current, Sleep Mode ASIC,<br>No Wake-up Timer Active          | Does not include sensor heater<br>current                           | _       | 450               | _       | nA     |
| PSRR                  | Power Supply Rejection Ratio                                         | V <sub>DD</sub> ≥ 2.0V                                              | -       | 30                | -       | dB     |
|                       | Timing Accuracy                                                      | At room temperature; for timings derived from the internal clock    | -2      | _                 | 2       | %      |
|                       | (Valid for Measurements Only)<br>(Sleep Timer is ±20%)               | Over-temperature range; for timings derived from the internal clock | -0.1    | _                 | 0.1     | %/K    |
| <b>f</b> adc          | ADC Resolution                                                       |                                                                     | 10      | _                 | 16      | Bit    |
|                       |                                                                      | 10-bit, no auto-zero                                                | _       | 0.238             | -       | ms     |
| t <sub>meas</sub>     | ADC Conversion Time                                                  | 10-bit, auto-zero                                                   | _       | 0.476             | -       | ms     |
|                       |                                                                      | 16-bit, auto-zero                                                   | _       | 3.36              | -       | ms     |
| V <sub>ref</sub>      | Reference Voltage                                                    |                                                                     | _       | 1.5               | -       | V      |
|                       |                                                                      | HTR_range = 0                                                       | -       | 0.4               | -       | mA     |
| I <sub>HTR_meas</sub> | Heater Resistance Measurement<br>Current                             | HTR_range = 1                                                       | -       | 0.6               | -       | mA     |
|                       |                                                                      | HTR_range = 2                                                       | -       | 1.0               | -       | mA     |
| t <sub>STA1</sub>     | Start-up Time: V <sub>DD</sub> Ramp up to<br>Interface Communication |                                                                     | -       | _                 | 1       | ms     |
| tsta2                 | Start-up Time: V <sub>DD</sub> Ramp up to Analog<br>Operation        |                                                                     | -       | _                 | 2.5     | ms     |
| twup1                 | Wake-up Time for Sleep to Active<br>Mode: Interface Communication    |                                                                     | -       | -                 | 0.5     | ms     |
| twup2                 | Wake-up Time for Sleep to Active<br>Mode: Analog Operation           |                                                                     | -       | _                 | 2       | ms     |
| fc,I2C                | I2C Clock Frequency                                                  |                                                                     | _       | -                 | 400     | kHz    |
| tvpp                  | NVM Programming Time                                                 |                                                                     | _       | 6                 | 16      | ms     |
| t <sub>RET_FTP</sub>  | Data Retention                                                       | 85°C junction temperature                                           | 10      | -                 | -       | years  |
|                       | NVM Programming Cycles                                               |                                                                     | 1000    | -                 | -       | cycles |
|                       | Default Communication Address                                        | 7-bit slave address                                                 | _       | 32 <sub>HEX</sub> | -       | -      |
|                       | Blocking Capacitor for Power Supply                                  | Recommended; ceramic type                                           | 100     | _                 | _       | nF     |

# 6. Block Diagram

Note: See section 12 for definitions of abbreviations.



## 7. Sensor Module Characteristics

### 7.1 Gas Sensor Module

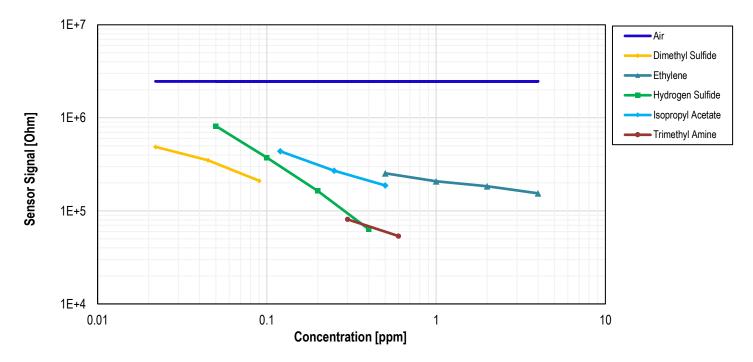
The ZMOD4450 Gas Sensor Module is designed to detect typical gases inside refrigeration applications associated with food ripening or rotting. Specifications for sensor operation are shown in Table 5. The response time for a gas stimulation is always within a few seconds, depending on the gas and its concentration. An active or direct airflow onto the sensor module is not necessary since diffusion of ambient gas does not limit the sensor response time.

The ZMOD4450 is also able to detect some safety-relevant toxic gases; however, the sensor is not designed to detect these interferants reliably, and it therefore is not approved for use in any safety-critical or life-protecting applications. It must not be used in such applications, and IDT disclaims all liability for any such use.

| Symbol | Parameter         | Conditions                                                | Minimum | Typical | Maximum | Unit <sup>[a]</sup> |
|--------|-------------------|-----------------------------------------------------------|---------|---------|---------|---------------------|
|        | Measurement Range | Ethylene (C <sub>2</sub> H <sub>4</sub> ) in air          | 0       |         | 10      | ppm                 |
|        | Measurement Range | Trimethylamine (C₃H₃N) in air                             | 0       |         | 600     | ppb                 |
|        | Measurement Range | Dimethyl sulfide (C <sub>2</sub> H <sub>6</sub> S) in air | 0       |         | 180     | ppb                 |
|        | Humidity Range    | Non-condensing                                            | 0       |         | 95      | % RH                |
|        | Temperature Range |                                                           | 0       |         | 25      | °C                  |
|        | Repeatability     | Variation in sensor signal                                |         | ±10     |         | %                   |
| T-90   | Response Time     | Time to change to 90% of end value                        |         | 10      |         | sec                 |

 Table 5.
 Gas Sensor Module Specifications

[a] The abbreviation ppm stands for "parts per million," and ppb is an abbreviation for "parts per billion." For example, 1 ppm equals 1000 ppb.


## 8. Gas Sensor Module Characteristics

Further details for sensitivity and sensor influences are explained in detail in the following sections. All graphs and information show the typical responses that are to be expected from the ZMOD4450 Gas Sensor Module upon exposure to a variety of test conditions. For additional information, including application notes, white papers, blog, and manuals, visit <u>www.idt.com/ZMOD4450</u>.

### 8.1 Characteristics for Typical Gas Stimulation

The ZMOD4450 also allows controlling an external device, such as an active air filter or ozone generator, based on the air quality changes. Although the sensor is not selective to an individual gas, it detects a variety of volatile organic and sulfur compounds.

Figure 2. Gas Response to Typical Gases and Levels of Expected Refrigeration Gases



IDT provides firmware and algorithms, which allow the ZMOD4450 to learn the refrigeration environment. The gas sensor module will immediately respond to changes in the refrigeration air by detecting changes in the relative gas concentrations. When a user-defined threshold is exceeded, an I/O control signal (trigger) based on the algorithm output can be used to control an external device.

| Parameter                 | Conditions                                                      | Typical Value | Unit |
|---------------------------|-----------------------------------------------------------------|---------------|------|
| Learning Time Environment | Typical value valid for sample rate of 10 seconds               | 60            | min  |
| Sensor Response Time      | Sample rate dependent, typically 1 sample                       | 10            | S    |
| Threshold Trigger         | Change of raw sensor signal; recommended difference: 30%        | 1.3           | -    |
| Stop Delay                | Stop delay for external device; defines minimum activation time | 2             | min  |

When using the ZMOD4450 Evaluation Kit, the AD5 pin (GPIO) on connector K3 on the HiCom Communication Board is the trigger control signal output that is set to HIGH/LOW. For more details, refer to the ZMOD4450 Evaluation Kit User Manual.

### 8.2 Environmental Temperature and Humidity

The sensor module is tested, qualified, and functional in the operation range of 0°C to +25°C. Figure 3 shows the module's response during operation to variations in relative humidity with and without ethylene stimulation.

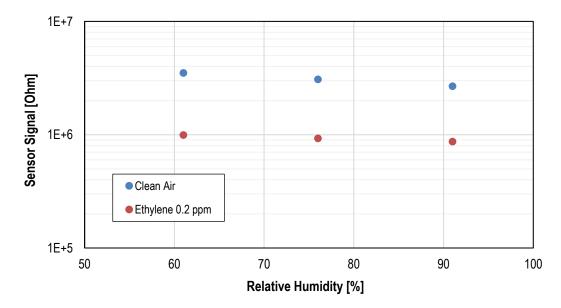



Figure 3. Humidity Influence at 4°C for Ethylene Stimulation

### 8.3 Accuracy and Conditioning

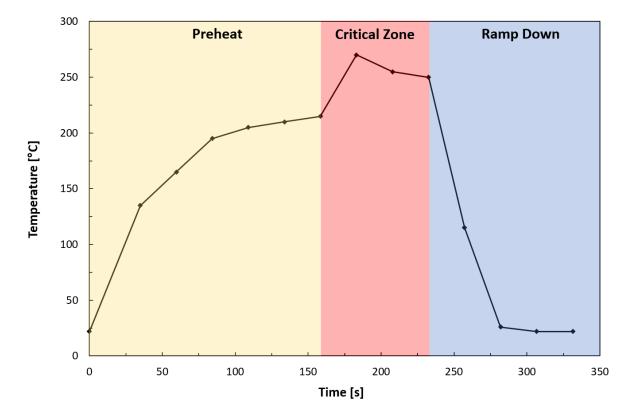
All IDT gas sensor modules come with electrical and chemical factory calibration with data stored in the module's nonvolatile memory (NVM). Using the software provided by IDT and the calibration coefficients in the NVM will lead to stable measurements. The ZMOD4450 will respond to typical refrigeration gases immediate upon start-up; however, a conditioning period of 48 hours in a refrigeration environment is recommended to improve stability and get maximum performance, as the module algorithm is able to learn about the refrigeration environment over time.

Users who require an absolute measurement with the maximum achievable accuracy are advised to re-calibrate the sensor with a known organic compound. This enables an absolute accuracy of  $\pm 15\%$ ; see Table 7. For some environments, an interference response to siloxanes is of concern; however, IDT's ZMOD4450 gas sensors have been proven to be resistant against siloxanes. A maximum potential life-time exposure has been simulated in all ZMOD4450 operation modes by applying the chemicals D4 (octamethylcyclotetrasiloxane) and D5 (decamethylcyclopentasiloxane) in high concentration for several hundred hours.

| Symbol | Parameter               | Conditions                  | Minimum | Typical | Maximum | Unit |
|--------|-------------------------|-----------------------------|---------|---------|---------|------|
|        | Accuracy                | With additional calibration |         | ±15     |         | %    |
|        | Durability to Siloxanes | Change in sensitivity       |         | ±5      |         | %    |

 Table 7.
 Typical ZMOD4450 Sensor Module Accuracy Achievable with Calibration

## 9. Package Outline Drawings


The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

https://www.idt.com/document/psc/12-lga-package-outline-drawing-30-x-30-x-07-mm-body-05-x-10-mm-pitch-lgg12d1

## **10. Assembly Restrictions, Operation, and Integration Notes**

When implementing the ZMOD4450 in electrical circuit boards, it should be understood that a gas sensor module might react to chemicals during the assembly process and to outgassing components, such as resins from the printed circuit board (PCB) assembly. A standard soldering profile can be used to assemble the ZMOD4450 on the user's PCB and should fulfill the IPC/JEDEC J-STD-020C Standard ("Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices"). A typical lead-free reflow solder profile is shown in Figure 4. After assembly, an outgassing of the PCB and electronic components must be considered, especially when operating the sensor module at elevated temperatures. This will ultimately influence the sensor signal and may dominate the air quality reading. A PCB heat treatment before assembling the ZMOD4450 is recommended. After the gas sensor module assembly, no coating, cleaning, or ultrasonic bath should be applied to the PCB. Also, after assembly, IDT recommends cleaning the sensor module by operating it at 450°C for 10 min to remove any contamination of solder vapor.

To operate the ZMOD4450, the software and libraries provided by IDT can be used. For implementing the sensor module in a customer-specific application, detailed information on the programming is available. The ZMOD4450 Programming Manual - Read Me explains documentation, libraries, and code examples for an easy integration.



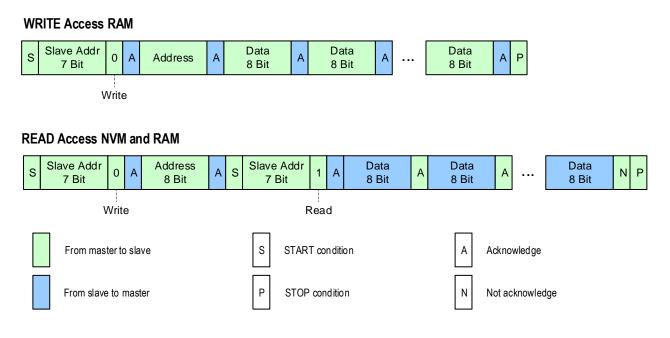
### Figure 4. Typical Solder Profile

# **11. Test and Calibration**

As a unique feature, all sampled gas sensor modules are fully tested during IDT's final test. The final test parameters in Table 8 are applied for each ZMOD4450. All sensor modules are additionally pre-stabilized in the final test; although the user might see a small change in the module's raw signal during an initial warm-up phase during the first operation. The gas sensor module qualification is based on JEDEC (JESD47) and its subsequent standard (JESD22, JESD78, etc.).

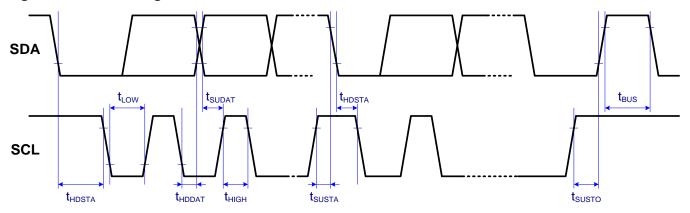
| Test       | Test Object              | Parameters                                                                                    | Test Results Saved in NVM? |
|------------|--------------------------|-----------------------------------------------------------------------------------------------|----------------------------|
| Electrical | ASIC                     | Voltages, current consumption, frequencies, scan pattern                                      | No                         |
| Electrical | Module                   | Calibration conditions, tracking ID, resistances                                              |                            |
| Gas        | Module                   | Sensitivity parameters (slope and intercept) at stimulation with different gas concentrations | Yes                        |
| Gas        | Module Pre-stabilization |                                                                                               | No                         |

#### Table 8. Final Test Parameters


## **12. I2C Interface and Data Transmission Protocol**

The I2C slave device interface supports various bus speeds: Standard Mode (≤100kHz) and Fast Mode (≤400kHz).

By default, the 7-bit slave address for the serial I2C data interface is set to  $32_{HEX}$ . The implemented data transmission protocol is similar to the one used for conventional EEPROM devices. The register to read/write is selected by a register address pointer. This address pointer must be set during an I2C WRITE operation. After transmission of a register, the address pointer is automatically incremented. An increment from the address FF<sub>HEX</sub> rolls over to  $00_{HEX}$ . See Figure 5 for an illustration of the data transmission protocol and Figure 5 for a diagram of the bus timing. Table 9 gives the I2C bus characteristics.


Recommendation: To validate the READ/WRITE access, write random values to registers 88<sub>HEX</sub> to 8B<sub>HEX</sub> and then read these addresses to confirm new values. After this register test, reset the device by disconnecting the power support; otherwise the device might not operate properly.

#### Figure 5. I2C Data Transmission Protocol



# RENESAS

Figure 6. Bus Timing



### Table 9. Bus Timing Characteristics

| Parameter                                                        | Symbol           | Standard Mode | Fast Mode | Units |
|------------------------------------------------------------------|------------------|---------------|-----------|-------|
| Maximum SCL clock frequency                                      | f <sub>SCL</sub> | 100           | 400       | kHz   |
| Minimum START condition hold time relative to SCL edge           |                  | 4             |           | μs    |
| Minimum SCL clock LOW width                                      | t∟ow             | 4.7           |           | μs    |
| Minimum SCL clock HIGH width                                     | tнigн            | 4             |           | μs    |
| Minimum START condition setup time relative to SCL edge          | <b>t</b> susta   | 4.7           |           | μs    |
| Minimum data hold time on SDA relative to SCL edge               | <b>t</b> hddat   | 0             |           | μs    |
| Minimum data setup time on SDA relative to SCL edge              | <b>t</b> sudat   | 0.1           | 0.1       | μs    |
| Minimum STOP condition setup time on SCL                         | <b>t</b> susto   | 4             |           | μs    |
| Minimum bus free time between stop condition and start condition | t <sub>BUS</sub> | 4.7           |           | μs    |

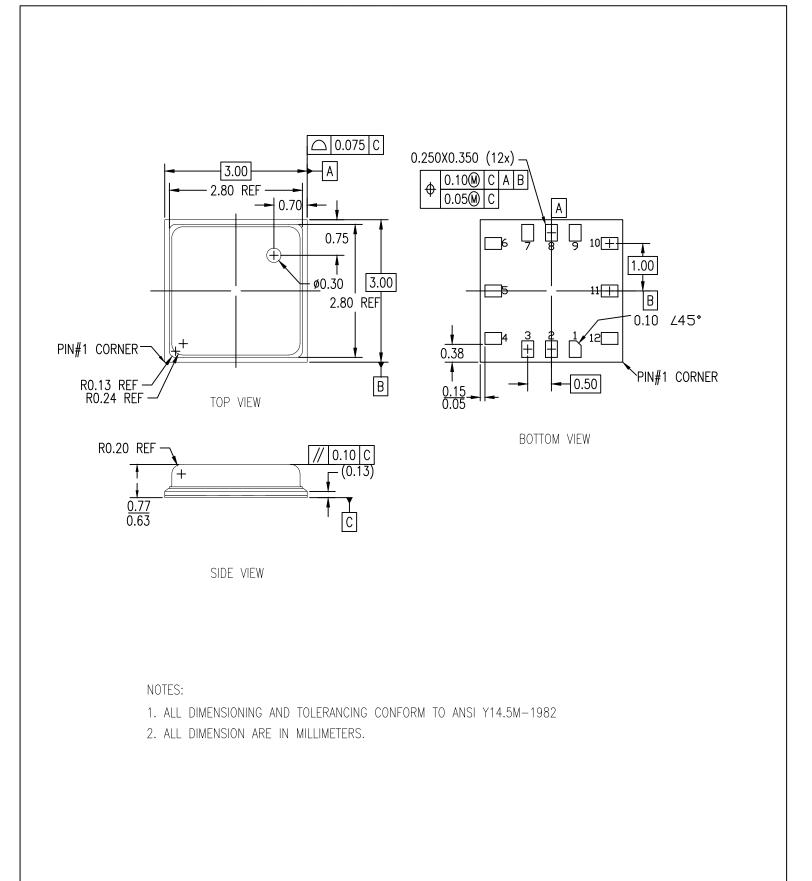


# 13. Glossary

| Term | Description                 |  |
|------|-----------------------------|--|
| ADC  | Analog-to-Digital Converter |  |
| CDM  | Charged Device Model        |  |
| СМ   | Common Mode Generator       |  |
| НВМ  | Human Body Model            |  |
| LGA  | Land Grid Array             |  |
| LV   | Low Voltage                 |  |
| MOx  | Metal Oxide                 |  |
| MSL  | Moisture Sensitivity Level  |  |
| Mux  | Multiplexer                 |  |
| n.a. | Not Applicable              |  |
| NVM  | Nonvolatile Memory          |  |
| POR  | Power-On Reset              |  |
| SDA  | Serial Data                 |  |
| SCL  | Serial Clock                |  |
| RAQ  | Refrigeration Air Quality   |  |
| SSC  | Sensor Signal Conditioner   |  |
| TST  | Test                        |  |

# **14. Ordering Information**

| Orderable Part Number | Description and Package                                                                                                                                                                                                                      | MSL Rating | Carrier Type | Temperature  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------|
| ZMOD4450AI1V          | ZMOD4450 Sensor Module, $3.0 \times 3.0 \times 0.7$ mm 12-LGA                                                                                                                                                                                | 3          | Tray         | 0°C to +25°C |
| ZMOD4450AI1R          | ZMOD4450 Sensor Module, $3.0 \times 3.0 \times 0.7$ mm 12-LGA                                                                                                                                                                                | 3          | Reel         | 0°C to +25°C |
| ZMOD4450-EVK-HC       | ZMOD4450 Evaluation Kit, including the ZMOD4450 Sensor Board, HiCom Communication Board (USB Inter-<br>face), and Micro-USB Cable. The ZMOD4450 Evaluation Software is available for download free of charge on<br>www.IDT.com/ZMOD4450-EVK. |            |              |              |

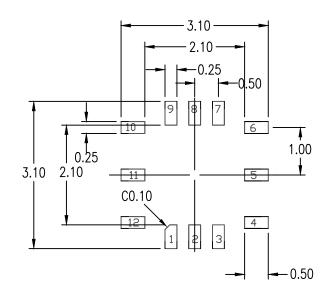

# **15. Revision History**

| Revision Date     | Description of Change                                           |  |
|-------------------|-----------------------------------------------------------------|--|
| October 30, 2019  | <ul> <li>MSL rating corrected in the Ordering table.</li> </ul> |  |
|                   | <ul> <li>Product name corrected.</li> </ul>                     |  |
| March 7, 2019     | <ul> <li>Addition of I2C specification.</li> </ul>              |  |
|                   | <ul> <li>Revision for URL for software.</li> </ul>              |  |
| December 12, 2018 | Initial release.                                                |  |



# **12-LGA, Package Outline Drawing**

3.0 x 3.0 x 0.7 mm Body, 0.5 x 1.0 mm Pitch LGG12D1, PSC-4685-01, Rev 02, Page 1




© Integrated Device Technology, Inc.



# **12-LGA, Package Outline Drawing**

3.0 x 3.0 x 0.7 mm Body, 0.5 x 1.0 mm Pitch LGG12D1, PSC-4685-01, Rev 02, Page 2



#### RECOMMENDED LAND PATTERN DIMENSION

#### NOTES:

- 1. ALL DIMENSION ARE IN MM. ANGLES IN DEGREES.
- 2. TOP DOWN VIEW. AS VIEWED ON PCB.
- 3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

| Package Revision History |         |                                  |
|--------------------------|---------|----------------------------------|
| Date Created             | Rev No. | Description                      |
| Sept 12, 2019            | Rev 01. | Add Dimension on Gal Inlet Hole  |
| Dec 17, 2019             | Rev 02  | Add Location Dimension Gal Inlet |

© Integrated Device Technology, Inc.

#### Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
   Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

### **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

### **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

### Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.