

4dBi 2.4GHz Omni-Directional Heavy Duty Screw Mount Antenna

Part No:

WS.02.B.205111

Features:

Wi-Fi/ISM Bands/ZigBee/WLAN/ Bluetooth

UV and Vandal Resistant ABS Housing

Cable length and connector customizable

2M CFD-200 SMA(M) - Standard

IP65 Rated Enclosure

RoHS Compliant

1.	Introduction	3
2.	Specifications	4
3.	Antenna Characteristics	5
4.	Radiation Patterns	7
5.	Mechanical Drawing	14
6.	Installation Guide	15
7.	Packaging	16
	Changelog	17

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

1. Introduction

WS.02 Hercules is a high efficiency, high gain thread mount 2.4GHz wireless antenna for external use on vehicles and outdoor assets worldwide. Omni-directional gain across the frequency bands ensures constant reception and transmission making the WS.02 an ideal solution for a Zigbee Wireless Mesh for remote applications e.g. – remote metering.

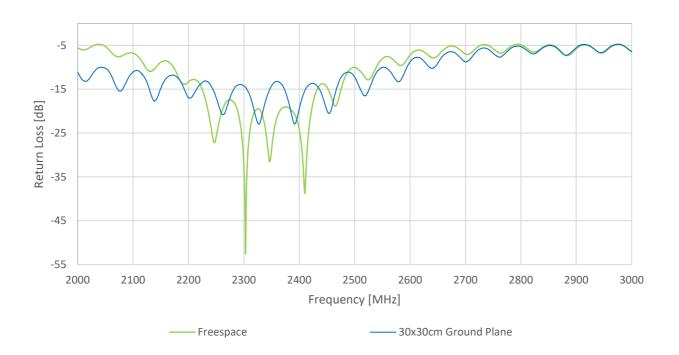
It has been designed for heavy duty work with extra thick threads; with durable UV-resistant IP65 rated PC housing, it is resistant to vandalism and direct attack. At only 29 mm high it complies with the latest EU height restrictions directives for roof-mounted objects, whilst also enabling covert operation with a diameter of 49mm.

Many module manufacturers specify peak gain limits for any antennas that are to be connected to that module. Those peak gain limits are based on free-space conditions. In practice, the peak gain of an antenna tested in free-space can degrade by at least 1 or 2dBi when put inside a device. So ideally you should go for a slightly higher peak gain antenna than mentioned on the module specification to compensate for this effect, giving you better performance.

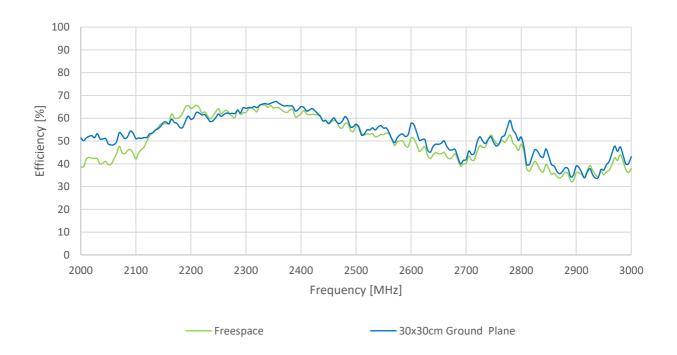
Upon testing of any of our antennas with your device and a selection of appropriate layout, integration technique, or cable, Taoglas can make sure any of our antennas' peak gain will be below the peak gain limits. Taoglas can then issue a specification and/or report for the selected antenna in your device that will clearly show it complying with the peak gain limits, so you can be assured you are meeting regulatory requirements for that module.

For example, a module manufacturer may state that the antenna must have less than 2dBi peak gain, but you don't need to select an embedded antenna that has a peak gain of less than 2dBi in free-space. This will give you a less optimized solution. It is better to go for a slightly higher free-space peak gain of 3dBi or more if available. Once that antenna gets integrated into your device, performance will degrade below this 2dBi peak gain due to the effects of GND plane, surrounding components, and device housing. If you want to be absolutely sure, contact Taoglas and we will test. Choosing a Taoglas antenna with a higher peak gain than what is specified by the module manufacturer and enlisting our help will ensure you are getting the best performance possible without exceeding the peak gain limits.

2. Specifications

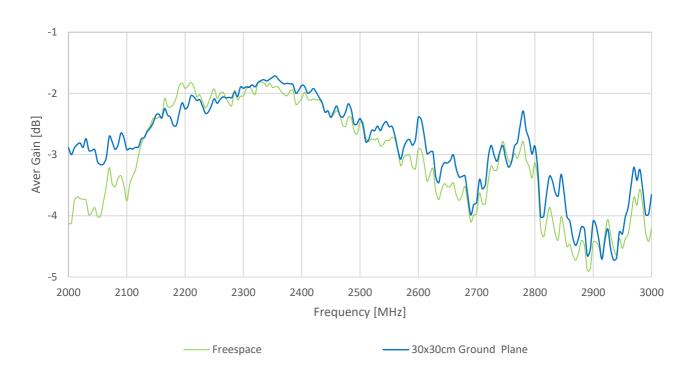

	Wi-Fi MI	мо	
Frequency (MHz)	2400	2450	2500
	Efficiency (%)	
Freespace	62	58	57
30x30cm Groundplane	65	58	57
	Average Gain	(dB)	
Freespace	-2.1	-2.4	-2.5
30x30cm Groundplane	-1.9	-2.4	-2.4
	Peak Gain (dBi)	
Freespace	6.7	6.5	6.8
30x30cm Groundplane	3.7	3.3	2.6
Impedance		50Ω	
Polarization		Linear	
Radiation Pattern		Omni-directional	

	Mechanical		
Dimensions	Height 28.5mm x Diameter 47.8mm		
Casing	UV resistant PC		
Base and thread	Nickel plated Steel/Zinc		
Thread diameter	18mm		
Weather proof gasket	CR4305 foam with 3M9448B double-side adhesive		
Antenna Weight	130g		
Environmental			
Corrosion	5% NaCl for 48hrs - Nickel plated steel base and thread		
Temperature Range	-40°C to +85°C		
Thermal Shock	100 cycles -40°C to +80°C		
Humidity	Non-condensing 65°C 95% RH		
Shock (drop test)	1m drop on concrete 6 axes		
Cable pull	8 KGf		
Ingress Protection	IP65		

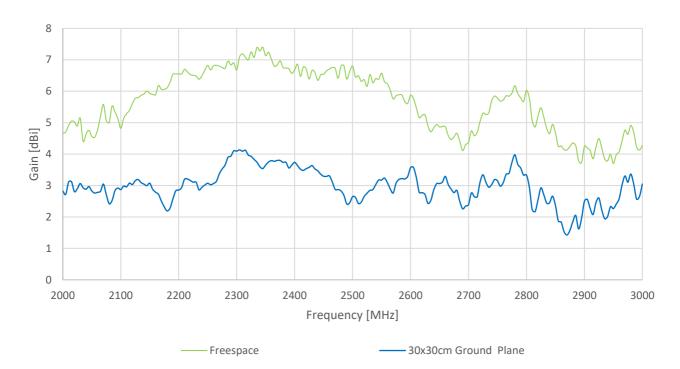


3. Antenna Characteristics

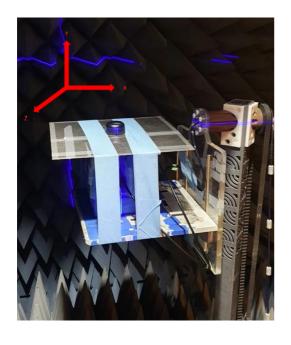
3.1 Return Loss



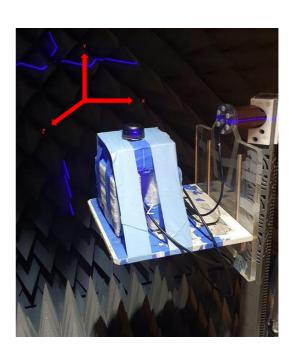
3.2 Efficiency

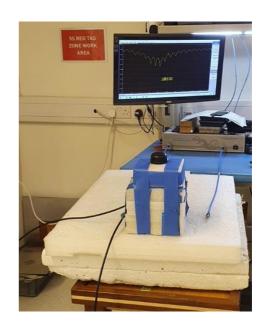


3.3 Average Gain

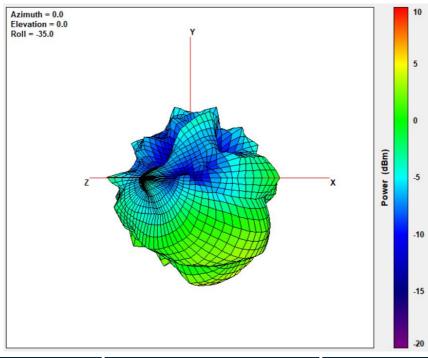

3.4 Peak Gain

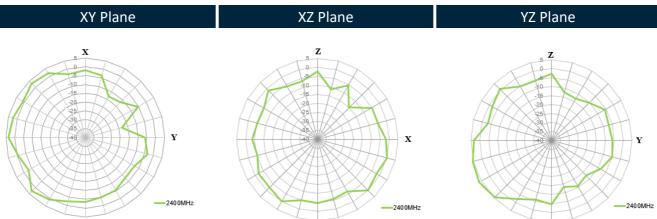
4. Radiation Patterns


4.1 Test Setups

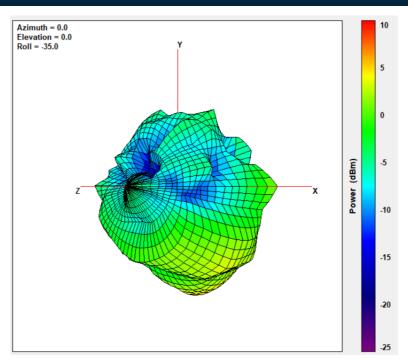

Chamber setup on 30x30cm groundplane

VNA setup on 30x30cm groundplane


Chamber setup in freespace



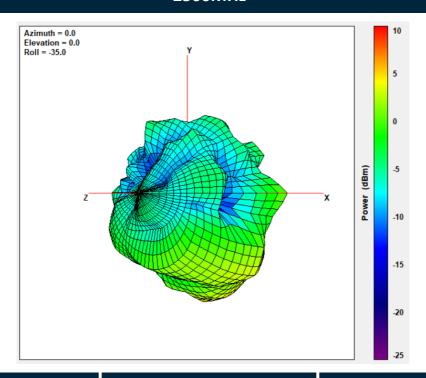
VNA setup in freespace


4.2 2400MHz_Freespace 2D & 3D Radiation Patterns

2450MHz

XY Plane

XZ Plane


YZ Plane

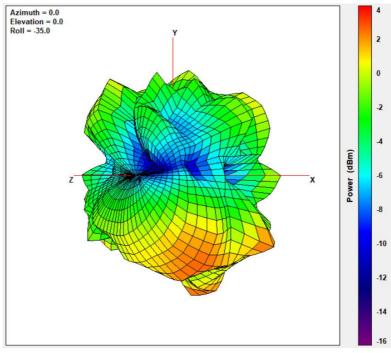
YZ Plane

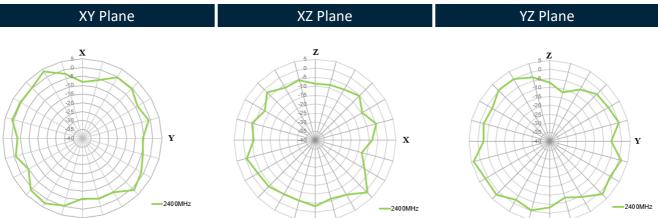
YZ Plane

2500MHz

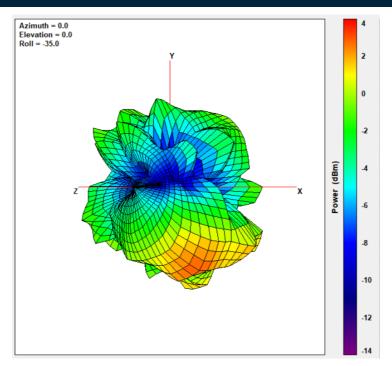
XY Plane

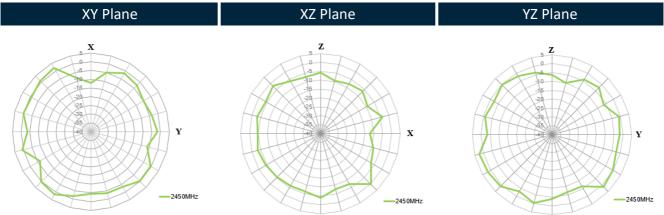
XZ Plane

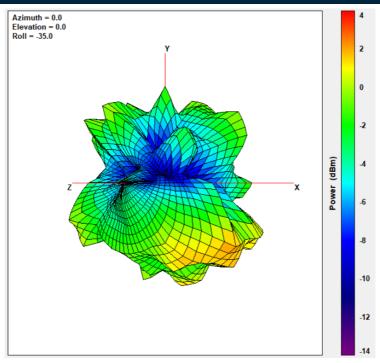

YZ Plane

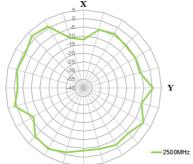

YZ Plane

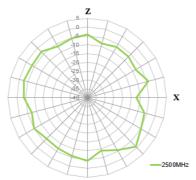
YZ Plane

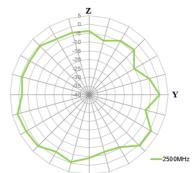

4.3 2400MHz_30x30cm Groundplane 2D & 3D Radiation Patterns



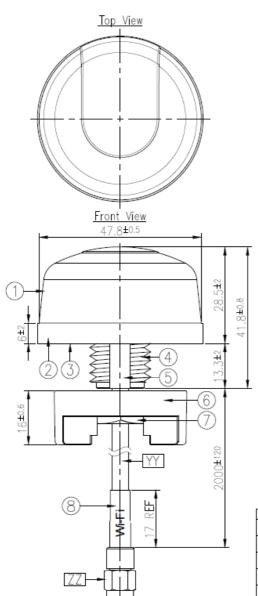

2450MHz





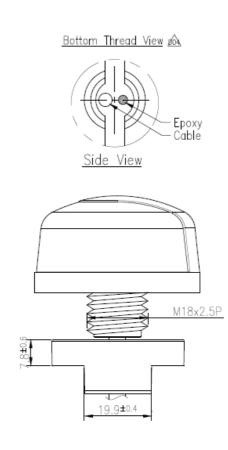

2500MHz

XY Plane XZ Plane YZ Plane



13

Mechanical Drawing (Units: mm)



- Notes:

 1. The connector position has special orientation to the PCB as per drawing.

 2. All Material Must Be RoHS Compliant.

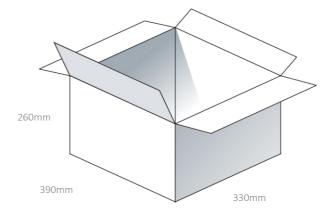
 3. Open/short QC, VSWR required.

	Name	P/N	Material	Finish	QTY
1	Housing	000113 F 010008A	PC	Black	1
2	Closed Cell Foam	001012G010039A	CR 4305	Black	1
3	3M Double Adhesive	001012G010039A	3M 9448 HK	White Liner	1
4	Matel Base	000311 F 010069A	Zinc Alloy	Ni Plated	1
5	Rubber Stopper	000711F040064A	Silicone Rubber	Black	1
6	Outer Nut Cover	000111F020008A	ASA	Black	1
7	M18 Inner Nut Cut	000413F010061A	Steel Carbon	Zn Plated	1
8	Heat Shrink Tube(Wi-Fi)	001316L050000A	PE	Yellow Tube/Black Text	1
	Name	P/N	Spec	Finish	QTY
ΥΥ	Cable Type	301415C010000A	CFD-200	Black	1
ZZ	Connector Type	200212G020002A	SMA(M)ST	Au Plated	1

www.taoglas.com SPE-14-8-055-F

6. Installation

Hand Tighten Only



7. Packaging

1pc WS.02.B.205111 per PE Bag Weight - 130g

Changelog for the datasheet

SPE-14-8-055- WS.02.B.205111

Revision: F (Current	Version)
Date:	2022-06-01
Changes:	Full datasheet template update
Changes Made by:	Gary West

Previous Revisions

Date:		Revision: A (Origina	
Date:	2021-11-21	Date:	2014-05-2
Changes:	Added IP rating	Notes:	
Changes Made by:	Erik Landi	Author:	Technical Writ
evision: D			
Date:	Unknown		
Changes:			
Changes Made by:	Technical Writer		
Revision: C			
Date:	Unknown		
Changes:			
Changes Made by:	Technical Writer		
evision: B			
Date: Changes:	Unknown		
Changes.			

www.taoglas.com

