T-1 (3mm) SOLID STATE LAMP White Part Number: WP7104QWC/D **ATTENTION** OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE **DEVICES** ### **Features** - Low power consumption. - Popular T-1 diameter package. - General purpose leads. - Reliable and rugged. - Long life solid state reliability. - Available on tape and reel. - RoHS compliant. ### Description The source color devices are made with InGaN Light Emitting Diode. Static electricity and surge damage the LEDS. It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs. All devices, equipment and machinery must be electrically grounded. ## **Package Dimensions** - 1. All dimensions are in millimeters (inches). - 2. Tolerance is ±0.25(0.01") unless otherwise noted. - 3. Lead spacing is measured where the leads emerge from the package.4. The specifications, characteristics and technical data described in the datasheet are subject to change without prior notice. SPEC NO: DSAE9924 **REV NO: V.5** DATE: AUG/09/2010 PAGE: 1 OF 7 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: Y.H.Wu ERP: 1101022551 ## **Selection Guide** | Part No. | Dice | Lens Type | lv (mcd) [2]
@ 20mA | | Viewing
Angle [1] | |---------------------------|------|-------------|------------------------|------|----------------------| | | | 21 | Min. | Тур. | 201/2 | | WP7104QWC/D White (InGaN) | | WATER CLEAR | 1000 | 1600 | 34° | - 1. θ 1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value. 2. Luminous intensity/ luminous Flux: +/-15%. ## Electrical / Optical Characteristics at TA=25°C | Symbol | Parameter | Device | Тур. | Max. | Units | Test Conditions | | |--------|--------------------------|--------|------|------|-------|---------------------|--| | VF [1] | Forward Voltage | White | 3.3 | 4.0 | V | IF=20mA | | | lR | Reverse Current | White | | 50 | uA | V _R = 5V | | | x [2] | Chramaticity Coordinates | White | 0.31 | | | | | | y [2] | Chromaticity Coordinates | | 0.31 | | | | | | С | Capacitance | White | 100 | | pF | VF=0V;f=1MHz | | - 1. Forward Voltage: +/-0.1V. - 2: Measurement Tolerance Of The Chromaticity Coordinates Is ±0.02. ## Absolute Maximum Ratings at TA=25°C | Parameter | White | Units | | | | |-------------------------------|----------------------|---------------------|--|--|--| | Power dissipation | ower dissipation 120 | | | | | | DC Forward Current | 30 | mA | | | | | Peak Forward Current [1] | 150 | mA | | | | | Reverse Voltage | 5 | V | | | | | Operating/Storage Temperature | -40°C To +85°C | | | | | | Lead Solder Temperature [2] | 260°C For 3 Seconds | | | | | | Lead Solder Temperature [3] | 260°C For 5 Seconds | 260°C For 5 Seconds | | | | - 1. 1/10 Duty Cycle, 0.1ms Pulse Width. 2. 2mm below package base. 5mm below package base. SPEC NO: DSAE9924 **REV NO: V.5** DATE: AUG/09/2010 PAGE: 2 OF 7 APPROVED: WYNEC **CHECKED: Allen Liu** DRAWN: Y.H.Wu ERP: 1101022551 ## White WP7104QWC/D 50 Forward Current(mA) Luminous Intensity Relative Value at IF O C C 20 10 2.0 2.4 2.8 3.2 3.6 4.0 30 40 Forward Voltage(V) FORWARD CURRENT Vs. FORWARD VOLTAGE IF-Forward Current (mA) LUMINOUS INTENSITY Vs. FORWARD CURRENT Relative Luminous Intensity 2.5 50 Forward Current(mA) 2.0 30 1.5 20 10 0.5 0 40 -20 0 20 40 60 80 100 20 40 Ambient Temperature TA (°C) LUMINOUS INTENSITY Vs. AMBIENT TEMPERATURE Ambient Temperature TA (°C) FORWARD CURRENT DERATING CURVE 30° 40° 50° 60° 70° 80° SPEC NO: DSAE9924 REV NO: V.5 DATE: AUG/09/2010 PAGE: 3 OF 7 APPROVED: WYNEC CHECKED: Allen Liu DRAWN: Y.H.Wu ERP: 1101022551 90° SPATIAL DISTRIBUTION | | x | у | | x | у | | x | у | |----|-------|-------|----|-------|-------|----|-------|-------| | | 0.263 | 0.213 | a0 | 0.282 | 0.245 | | 0.298 | 0.271 | | a2 | 0.282 | 0.245 | | 0.298 | 0.271 | b2 | 0.313 | 0.296 | | αz | 0.265 | 0.265 | | 0.286 | 0.299 | UZ | 0.306 | 0.332 | | | 0.242 | 0.226 | | 0.265 | 0.265 | | 0.286 | 0.299 | | b1 | 0.313 | 0.296 | c0 | 0.329 | 0.325 | | | | | | 0.329 | 0.325 | | 0.358 | 0.372 | | | | | | 0.329 | 0.371 | | 0.363 | 0.400 | | | | | | 0.306 | 0.332 | | 0.329 | 0.371 | | | | 0.30 Χ 0.35 0.40 0.25 ### Notes Shipment may contain more than one chromaticity regions. Orders for single chromaticity region are generally not accepted. Measurement tolerance of the chromaticity coordinates is ±0.02. 0.20 SPEC NO: DSAE9924 REV NO: V.5 DATE: AUG/09/2010 PAGE: 4 OF 7 APPROVED: WYNEC CHECKED: Allen Liu DRAWN: Y.H.Wu ERP: 1101022551 SPEC NO: DSAE9924 APPROVED: WYNEC REV NO: V.5 CHECKED: Allen Liu DATE: AUG/09/2010 DRAWN: Y.H.Wu PAGE: 5 OF 7 ERP: 1101022551 ### LED MOUNTING METHOD 1. The lead pitch of the LED must match the pitch of the mounting holes on the PCB during component placement. Lead—forming may be required to insure the lead pitch matches the hole pitch. Refer to the figure below for proper lead forming procedures. " \bigcirc " Correct mounting method " \times " Incorrect mounting method Note 1-2: Do not route PCB trace in the contact area between the leadframe and the PCB to prevent short-circuits. 2. When soldering wire to the LED, use individual heat—shrink tubing to insulate the exposed leads to prevent accidental contact short—circuit. (Fig. 2) 3. Use stand—offs (Fig. 3) or spacers (Fig. 4) to securely position the LED above the PCB. SPEC NO: DSAE9924 APPROVED: WYNEC REV NO: V.5 CHECKED: Allen Liu DATE: AUG/09/2010 DRAWN: Y.H.Wu PAGE: 6 OF 7 ERP: 1101022551 ### LEAD FORMING PROCEDURES 1. Maintain a minimum of 2mm clearance between the base of the LED lens and the first lead bend. (Fig. 5 and 6) - 2. Lead forming or bending must be performed before soldering, never during or after Soldering. - 3. Do not stress the LED lens during lead—forming in order to fractures in the lens epoxy and damage the internal structures. - 4. During lead forming, use tools or jigs to hold the leads securely so that the bending force will not be transmitted to the LED lens and its internal structures. Do not perform lead forming once the component has been mounted onto the PCB. (Fig. 7) - 5. Do not bend the leads more than twice. (Fig. 8) 6. After soldering or other high—temperature assembly, allow the LED to cool down to 50°C before applying outside force (Fig. 9). In general, avoid placing excess force on the LED to avoid damage. For any questions please consult with Kingbright representative for proper handling procedures. SPEC NO: DSAE9924 REV NO: V.5 DATE: AUG/09/2010 PAGE: 7 OF 7 APPROVED: WYNEC CHECKED: Allen Liu DRAWN: Y.H.Wu ERP: 1101022551