AUTOMOTIVE

RoHS

COMPLIANT HALOGEN

FREE

GREEN (5-2008)

Vishay Semiconductors

Silicon PIN Photodiode

DESCRIPTION

VEMD10940FX01 is a high speed and high sensitive PIN photodiode in a miniature side looking, surface mount package (SMD) with daylight blocking filter. Filter is matched with IR emitters operating at wavelength of 830 nm to 950 nm. The photo sensitive area of the chip is 0.23 mm².

FEATURES

- Package type: surface mount
- · Package form: Side view
- Dimensions (L x W x H in mm): 3 x 2 x 1
- AEC-Q101 qualified
- High radiant sensitivity
- · Daylight blocking filter matched with 830 nm to 950 nm IR emitters
- Fast response times
- Angle of half sensitivity: $\varphi = \pm 75^{\circ}$
- Package matched with IR emitter VSMB10940X01
- Floor life: 168 h, MSL 3, according to J-STD-020
- · Lead (Pb)-free reflow soldering
- · Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

APPLICATIONS

- · High speed photo detector
- · Infrared remote control
- Infrared data transmission
- Photo interrupters
- IR touch panels
- Automotive applications

PRODUCT SUMMARY				
COMPONENT	I _{ra} (μΑ)	φ (deg)	λ _{0.5} (nm)	
VEMD10940FX01	3	± 75	780 to 1050	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
VEMD10940FX01	Tape and reel	MOQ: 3000 pcs, 3000 pcs/reel	Side view		

Note

MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V_{R}	60	V	
Power dissipation	T _{amb} ≤ 25 °C	P_V	104	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	-40 to +100	°C	
Storage temperature range		T _{stg}	-40 to +100	°C	
Soldering temperature	According to reflow solder profile fig. 8	T _{sd}	260	°C	
Thermal resistance junction / ambient	According to J-STD-051	R_{thJA}	450	K/W	

Vishay Semiconductors

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 50 \text{ mA}$	V_{F}	-	1.56	-	V
Breakdown voltage	$I_R = 100 \mu A, E = 0$	V _(BR)	32	-	-	V
Reverse dark current	V _R = 10 V, E = 0	I _{ro}	1	1	10	nA
Diode capacitance	$V_R = 0 V, f = 1 MHz, E = 0$	C_D	1	3.3	Ī	pF
	$V_R = 3 \text{ V, f} = 1 \text{ MHz, E} = 0$	C_D	-	1.5	ı	pF
Open circuit voltage	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	Vo	-	350	-	mV
Temperature coefficient of Vo	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK_Vo	1	-2.7	Ī	mV/K
Short circuit current	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	l _k	-	2.8	ı	μΑ
Temperature coefficient of Ik	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{lk}	-	0.4	-	%/K
Reverse light current	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $V_R = 5 \text{ V}$	I _{ra}	2	3	4	μΑ
Angle of half sensitivity		φ	-	± 75	ı	deg
Wavelength of peak sensitivity		λ_{p}	-	950	-	nm
Range of spectral bandwidth		λ _{0.5}	-	780 to 1050	Ī	nm
Rise time	$V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega, \lambda = 820 \text{ nm}$	t _r	-	100	-	ns
Fall time	$V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega, \lambda = 820 \text{ nm}$	t _f	-	100	-	ns

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

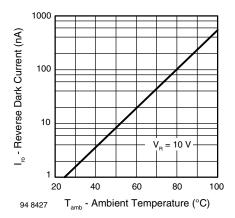


Fig. 1 - Reverse Dark Current vs. Ambient Temperature

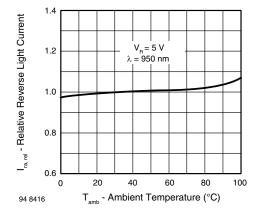


Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature

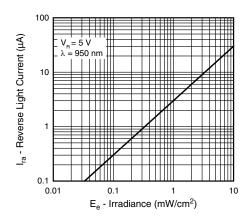


Fig. 3 - Reverse Light Current vs. Irradiance

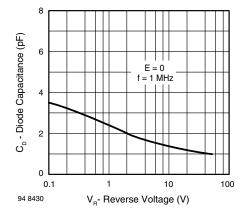


Fig. 4 - Diode Capacitance vs. Reverse Voltage

Vishay Semiconductors



Fig. 5 - Relative Spectral Sensitivity vs. Wavelength

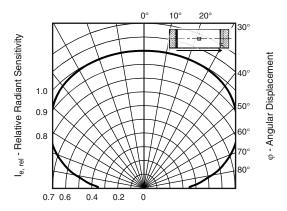


Fig. 6 - Relative Radiant Sensitivity vs. Angular Displacement-Horizontal

REFLOW SOLDER PROFILE

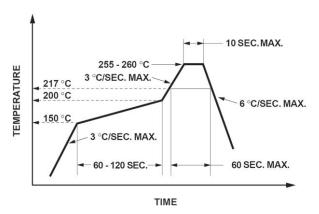


Fig. 8 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020D

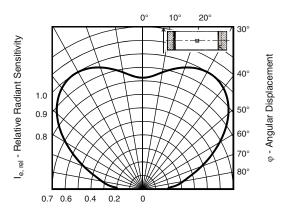


Fig. 7 - Relative Radiant Sensitivity vs. Angular Displacement - Vertical

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

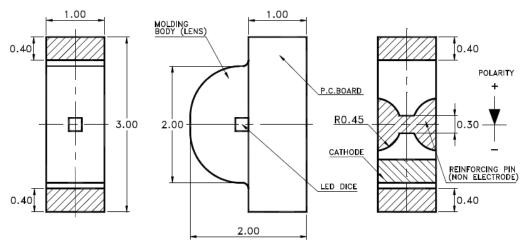
FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

Floor life: 168 h

Conditions: T_{amb} < 30 °C, RH < 60 %

Moisture sensitivity level 3, acc. to J-STD-020.

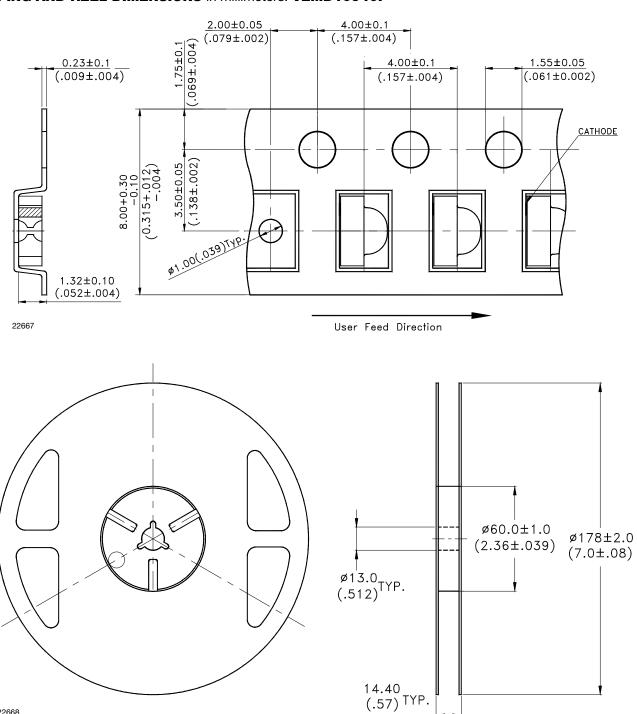

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+5 $^{\circ}$ C), RH < 5 $^{\circ}$ C.

22701

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters: **VEMD10940F**


Recommended Solder Pad Footprint

22668

Vishay Semiconductors

TAPING AND REEL DIMENSIONS in millimeters: VEMD10940F

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000