Delay On Break (Release)
 TSDB Series
 Timing Module

- Delay on Break Timing with AC \& DC Voltage
- Totally Solid State \& Encapsulated
- Fast Reset to Zero During Timing
- Excellent Accuracy \& Reliability
- Polarity Protected

Ordering Table

TSDB	X	X
Series	Input	Adjustment
	-1-12 V DC	-1-Fixed
	-2-24V AC	-2-External
	-3-24V DC	Adjust
	-4-120 V AC	
	-5-120 V DC	
	-6-230 V AC	

Example P/N: TSDB420 Fixed - TSDB110.1SP

Description

The TSDB Series digital circuit provides long or short delays with accuracy and stability over a wide voltage and temperature range. Suitable for industrial and commercial equipment.

Operation

Input voltage must be applied before and during timing. Upon closure of the initiate switch, the output is energized. The time delay begins when the initiate switch is opened. The output remains energized during timing. At the end of the time delay, the output is de-energized. The output will energize if the initiate switch is closed when input voltage is applied.
Reset: Reclosing the initiate switch during timing resets the time delay. Loss of input voltage resets the time delay and output.

Approvals: 民 (1) C

X
Switching Mode (V DC Only)
- Positive
-N - Negative
(120 V DC -- Positive
switching only)

*If Fixed Delay is selected, insert delay [0.1 ... 1000] followed by (S) sec. or (M) min.

Technical Data

R_{T} is used when external adjustment is ordered.

$\mathrm{V}=$ Voltage $\quad \mathrm{L}=$ Load $\quad \mathrm{S} 1=$ Initiate Switch TD = Time Delay $R=$ Reset \longrightarrow - = Undefined time

$\mathbf{R}_{\mathbf{T}}$ Selection Chart						
Desired Time Delay*						R_{T}
Seconds			Minutes			
0	1	2	3	4	5	Megohm
0.1	1	10	0.1	1	10	0.0
1	10	100	1	10	100	0.5
2	20	200	2	20	200	1.0
3	30	300	3	30	300	1.5
4	40	400	4	40	400	2.0
5	50	500	5	50	500	2.5
6	60	600	6	60	600	3.0
7	70	700	7	70	700	3.5
8	80	800	8	80	800	4.0
9	90	900	9	90	900	4.5
10	100	1000	10	100	1000	5.0

* When selecting an external R_{T} add at least 11% for tolerance of unit and the R_{T}.

See accessory pages at the end of this section.

