Teccor® brand Thyristors 1.5 Amp Sensitive SCRs

RoHS

TCR22-x Series

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Sensitive gate SCRs are easily triggered with microAmps of current as furnished by sense coils, proximity switches, and microprocessors.

Features & Benefits

• RoHS compliant

Applications

- Glass passivated junctions
- Voltage capability up to 600 V
- Surge capability up to 20 Å

200 μA I_{GT}

Additional Information							
Datasheet	Resources	Samples					

Absolute Maximum Ratings – Sensitive SCRs

Symbol Parameter **Test Conditions** Value Unit RMS on-state current $T_c = 40^{\circ}C$ 1.5 А I_{T(RMS)} $T_c = 40^{\circ}C$ $I_{T(AV)}$ Average on-state current 0.95 А single half cycle; f = 50Hz; 16 T_{i} (initial) = 25°C Peak non-repetitive surge current А I_{TSM} single half cycle; f = 60Hz; 20 T_{J} (initial) = 25°C l²t A^2s I²t Value for fusing $t_{n} = 8.3 \text{ ms}$ 1.6 50 di/dt Critical rate of rise of on-state current f = 60 Hz ; T = 110°C A/µs I _{GM} Peak gate current T₁ = 110°C 1 А P_{G(AV)} T₁ = 110°C Average gate power dissipation 0.1 W °C Storage temperature range -40 to 150 T_{stg} °C T, Operating junction temperature range -40 to 110

Typical applications are capacitive discharge systems for strobe lights and gas engine ignition. Also controls for power tools, home/brown goods and white goods appliances.

Schematic Symbol

Main Features							
Symbol	Value	Unit					
I _{T(RMS)}	1.5	А					
V _{drm} /V _{rrm}	400 to 600	V					
	000						

Information							

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit			
I _{gt}	$V_{_{D}} = 6V; R_{_{L}} = 100 \Omega$		MAX.	200	μA	
V _{gt}	$V_{\rm D} = 6V; R_{\rm L} = 100 \ \Omega$		MAX.	0.8	V	
dv/dt		400V	ΝΑΙΝΙ	40)//	
	$V_{\rm D} = V_{\rm DRM}, \ H_{\rm GK} = 1 \mathrm{K} \Omega$	600V		30	v/µs	
V _{gd}	$V_{\rm D} = V_{\rm DRM}; R_{\rm L} = 3.3 \text{ k}\Omega; T_{\rm J} = 110^{\circ}\text{C}$		MIN.	0.25	V	
V _{grm}	$I_{gR} = 10 \mu A$		MIN.	6	V	
I _H	$I_{T} = 200 \text{mA} \text{ (initial)}$		MAX.	5	mA	
t _q	(1)		MAX.	50	μs	
t _{gt}	$I_{g} = 2 \times I_{gT}$; PW = 15µs; $I_{T} = 3A$		TYP.	20	μs	

(1) I₁=1A; t_n=50µs; dv/dt=5V/µs; di/dt=-10A/µs

Static Characteristics								
Symbol Test Conditions Value Unit								
V _{TM}	I _T = 3	3A; t _p = 380 μs		1.5	V			
		T 25%C	400V		1			
I _{drm} / I _{rrm}	$V_{DRM} = V_{RRM}$	$I_{\rm J} = 25 {\rm C}$	600V	MAX.	2	μA		
		T _J = 11	0°C		100			

Thermal Resistances

Symbol	Parameter	Value	Unit
$R_{_{\theta(J\text{-}C)}}$	Junction to case (AC)	50	°C/W
R _{θ(J-A)}	Junction to ambient	160	°C/W

Teccor[®] brand Thyristors 1.5 Amp Sensitive SCRs

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

Figure 3: Normalized DC Holding Current vs. Junction Temperature

Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

Figure 4: Normalized DC Latching Current vs. Junction Temperature

Figure 6: Power Dissipation (Typical) vs. RMS On-State Current

© 2016 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 05/02/16

Figure 9: Maximum Allowable Ambient Temperature vs. RMS On-State Current

Figure 11: Peak Repetitive Capacitor Discharge Current

Figure 8: Maximum Allowable Case Temperature vs. Average On-State Current

Figure 10: Maximum Allowable Ambient Temperature vs. Average On-State Current

Figure 12: Peak Repetitive Sinusoidal Pulse Current

© 2016 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 05/02/16

Teccor[®] brand Thyristors 1.5 Amp Sensitive SCRs

Figure 13: Surge Peak On-State Current vs. Number of Cycles

Figure 14: Simple Test Circuit for Gate Trigger Voltage and Current

Note: V1 — 0 V to 10 V dc meter V_{GT} — 0 V to 1 V dc meter I_{G} — 0 mA to 1 mA dc milliammeter R1 — 1 k potentiometer

To measure gate trigger voltage and current, raise gate voltage (V_{GT}) until meter reading V1 drops from 6 V to 1 V. Gate trigger voltage is the reading on V_{GT} just prior to V1 dropping. Gate trigger current I_{GT} Can be computed from the relationship

$$I_{GT} = I_{G} - \frac{V_{GT}}{1000} \text{Amps}$$

where ${\rm I}_{\rm G}$ is reading (in amperes) on meter just prior to V1 dropping

Note: $I_{\rm GT}$ may turn out to be a negative quantity (trigger current flows out from gate lead). If negative current occurs, $I_{\rm GT}$ value is not a valid reading. Remove 1 k resistor and use $I_{\rm G}$ as the more correct $I_{\rm GT}$ value. This will occur on 12 μA gate products.

Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ramp up rate (LiquidusTemp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Poflow	- Temperature (T _L) (Liquidus)	217°C	
nellow	- Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exc	eed	280°C	

Physical Specifications					
Terminal Finish	100% Matt Tin-plated/Pb-free Solder Dipped				
Body Material	UL recognized epoxy meeting flammability classification 94V-0				
Lead Material	Copper Alloy				

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Teccor[®] brand Thyristors

1.5 Amp Sensitive SCRs

Dimensions – TO-92 (E Package)

Dimension	Inches		Millimeters	
Dimension	Min	Max	Min	Max
A	0.176	0.196	4.47	4.98
В	0.500		12.70	
D	0.095	0.105	2.41	2.67
E	0.150		3.81	
F	0.046	0.054	1.16	1.37
G	0.135	0.145	3.43	3.68
Н	0.088	0.096	2.23	2.44
J	0.176	0.186	4.47	4.73
K	0.088	0.096	2.23	2.44
L	0.013	0.019	0.33	0.48
M	0.013	0.017	0.33	0.43

All leads insulated from case. Case is electrically nonconductive.

Product Selector

Dout Number	Voltage				Cata Canaitivity	Tura	Daalaana
Part Number	400V	600V	800V	1000V	Gate Sensitivity	туре	гаскаде
TCR22-6	Х				200µA	Sensitive SCR	TO-92
TCR22-8		Х			200µA	Sensitive SCR	TO-92

Note: x = Voltage

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
TCR22-x	TCR22-x	0.19 g	Bulk	2000
TCR22-xRP	TCR22-x	0.19 g	Reel Pack	2000
TCR22-xAP	TCR22-x	0.19 g	Ammo Pack	2000

Note: x = Voltage

Part Numbering System

Part Marking System

Line1 = Littelfuse Part Number Line2 = continuation...Littelfuse Part Number Y = Last Digit of Calendar Year M = Letter Month Code (A-L for Jan-Dec) L = Location Code DD = Calendar Date

TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-C Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-C Standards

