Tel/tronix[®]

Spectrum Analyzer

RSA500A Series Portable Spectrum Analyzer Datasheet

The RSA500A Series USB spectrum analyzers offer high performance portable spectrum analysis in a rugged battery-powered package.

Features and benefits

- 9 kHz to 3.0/7.5 GHz frequency range covers a broad range of analysis
- 40 MHz acquisition bandwidth enables real time analysis for transient capture and vector analysis
- Standard GPS/GLONASS/Beidou receiver for mapping
- Optional tracking generator for gain/loss, antenna and cable measurements
- Streaming capture can be used to record and play back long term
- Mil-Std 28800 Class 2 environmental, shock and vibration specifications for use in harsh conditions
- Internal battery for extended field operations
- SignalVu-PC software offers real time signal processing with DPX Spectrum/Spectrogram to minimize time spent on transient and interference hunting
- 100 µsec minimum signal duration with 100% probability of intercept ensure you see problems first time, every time
- Application programming interface included for development of custom programs
- Accessories including tablet PC, calibration kits, adapters and phasestable cables offer a complete field solution for interference hunting and transmitter maintenance

Applications

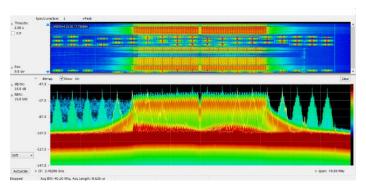
- Spectrum management
- Interference hunting
- Maintenance, installation and repair of radio networks

The RSA500 Series saves you time and helps you succeed

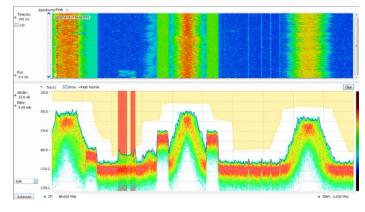
The RSA500 series was built to bring real-time spectrum analysis to solving the problems of spectrum managers, interference hunters and network maintenance personnel who need to track down hard to find interferers, maintain RF networks and keep records of their efforts. The heart of the system is the USB-based RF spectrum analyzer that captures 40 MHz bandwidths with great fidelity in harsh environments. With 70 dB dynamic range and frequency coverage to 7.5 GHz, all signals of interest can be examined with high confidence in your measurement results. The USB form factor moves the weight of the instrument off of your hands, and replaces it with a lightweight Windows tablet or laptop. Holding a light PC instead of a heavy spectrum analyzer means you can move faster, for longer, and get your work done faster.

The optional tracking generator enables gain/loss measurements for quick tests of filters, duplexers and other network elements, and you can add cable and antenna measurements of VSWR, return loss, distance to fault and cable loss as needed.

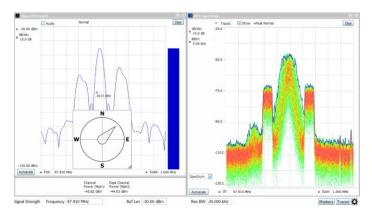
SignalVu-PC software offers rich analysis capability in the field

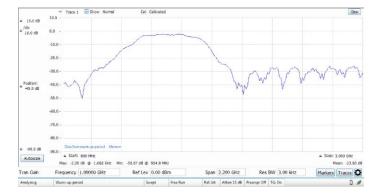

The RSA500 series operates with SignalVu-PC, a powerful program used as the basis of Tek's traditional spectrum analyzers, offering a deep analysis capability previously unavailable in high performance batteryoperated solutions. Real-time processing of the DPX spectrum/spectrogram is enabled in your PC, further reducing the cost of hardware. Customers who need programmatic access to the instrument can choose either the SignalVu-PC programmatic interface or use the included application programming interface (API) that provides a rich set of commands and measurements directly. Basic functionality of the free SignalVu-PC program is far from basic. Base version measurements are shown below.

Measurements and functions included in SignalVu-PC base version


General signal analysis	Description
Spectrum analyzer	Spans from 100 Hz to 7.5 GHz, 3 traces + math and spectrogram trace, 5 markers with power, relative power, integrated power, power density and dBc/Hz functions
DPX spectrum/spectrogram	Real time display of spectrum with 100% probability of intercept of 100 usec signals in up to 40 MHz span
Amplitude, frequency, phase vs. time, RF I and Q vs. time	Basic vector analysis functions
Time overview/navigator	Enables easy setting of acquisition and analysis times for deep analysis in multiple domains
Spectrogram	Analyze and re-analyze your signal in 2-D or 3-D waterfall display
AM/FM listening	Hear and record to file FM and AM signals
Signal recording	Record 40 MHz bandwidth for re- analysis in all domains including real time spectrum analysis (requires application SV56 for Playback)
Analog modulation analysis	Description
AM, FM, PM analysis	Measures key AM, FM, PM parameters
RF measurements	Description
Spurious measurement	User-defined limit lines and regions provide automatic spectrum violation testing across the entire range of the instrument.
Spectrum emission mask	User-set or standards-specific masks.
Occupied bandwidth	Measures 99% power, -xdB down points.
Channel power and ACLR	Variable channel and adjacent/alternate channel parameters.
MCPR	Sophisticated, flexible multi-channel power measurements.
CCDF	Complementary Cumulative Distribution Function plots the statistical variations in signal level.
Signal strength with audio tone	Measures signal strength and displays a spectrum and signal strength bar for interference hunting and signal quality evaluations.

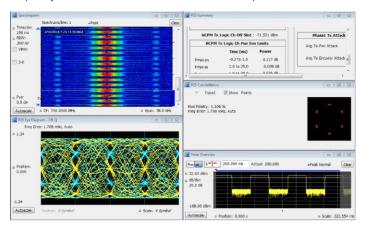
The RSA500A combined with SignalVu-PC offers advanced field measurements


With 40 MHz of real-time bandwidth, the unique DPX spectrum/ spectrogram shows you every instance of an interfering or unknown signal, even down to 100 μs in duration. The following image shows a WLAN transmission (green and orange), and the narrow signals that repeat across the screen are a Bluetooth access probe. The spectrogram (upper part of the screen) clearly separates these signals in time to show any signal collisions.


Finding unexpected signals is easy with unattended mask monitoring. A mask can be created on the DPX spectrum display, and actions taken upon every violation, including stop, save a picture, save acquisition, or send an audible alert. In the illustration below, a mask violation has occurred in red on the mask, and a picture of the screen was saved as a result. Mask testing can be used for unattended monitoring and when playing back recorded signals, enabling testing for different violations on the same signals.

Direction finding and signal strength measurements are quick and easy with the standard SignalVu-PC software. In the illustration below, using the available Alaris smart antenna, a compass continuously monitors antenna direction while the signal strength monitor performs measurements and provide audio indication of signal strength. When combined with the MAP option for SignalVu-PC, signal strength and azimuth are automatically placed on the map of your choice.

The tracking generator (Option 04 on the RSA500) is controlled via SignalVu-PC. Here you can enter start-stop frequencies, set number of steps in the span, adjust reference level, and normalize the tracking generator with a calibrate function. A bandpass filter response from 800 MHz to 3 GHz is shown below.

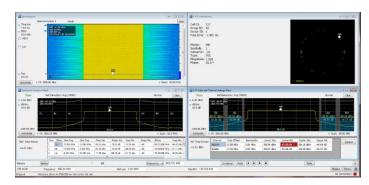

SignalVu-PC application-specific licenses

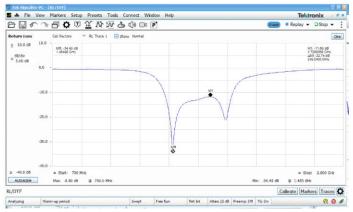
SignalVu-PC offers a wealth of application-oriented options including:

- General-purpose modulation analysis (27 modulation types including 16/32/64/256 QAM, QPSK, O-QPSK, GMSK, FSK, APSK)
- Buetooth® analysis of Low Energy, Basic Rate and Enhanced Data Rate
- P25 analysis of phase I and phase 2 signals
- WLAN analysis of 802.11a/b/g/j/p, 802.11n, 802.11ac
- LTE[™] FDD and TDD Base Station (eNB) Cell ID & RF measurements
- Mapping
- Pulse analysis
- AM/FM/PM/Direct Audio Measurement including SINAD, THD
- Playback of recorded files, including complete analysis in all domains
- Signal classification and survey

See the separate SignalVu-PC data sheet for complete details and ordering information. Selected applications are illustrated below.

APCO 25 - SignalVu-PC application SV26 enables quick, standardsbased transmitter health checks on APCO P25 signals. The following image shows a Phase II HCPM signal being monitored for anomalies with the spectrogram while performing transmitter power, modulation and frequency measurements to the TIA-102 standards specification.


LTE - Application SV28 enables the following LTE base station transmitter measurements:


- Cell ID
- Channel power
- Occupied bandwidth
- Adjacent channel leakage ratio (ACLR)
- Spectrum emission mask (SEM)
- Transmitter off power for TDD

The measurements follow the definition in 3GPP TS Version 12.5 and support all base station categories, including picocells and femtocells. Pass/Fail information is reported and all channel bandwidths are supported.

The Cell ID preset displays the Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS) in a Constellation diagram. It also provides Frequency Error.

The illustration below shows spectral monitoring with the spectrogram display combined with a Cell ID/Constellation, Spectrum Emission Mask and ACLR measurements.

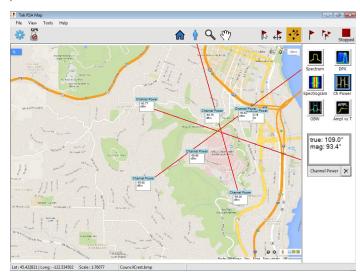

Return Loss/VSWR, distance to fault and cable loss – Perform component characterization tasks easily and cost-effectively. When equipped with the option 04 tracking generator, the RSA500A series with application license SV60xx-SVPC makes one-port measurements on cables, devices and antennas.

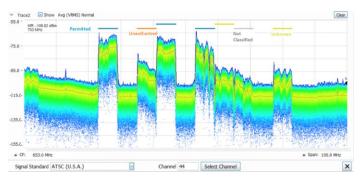
Return loss of a bandpass filter measured from 700 MHz to 2.6 GHz. Markers have been placed a 1.48 GHz (-34.4 dB return loss) and at 1.73 GHz (-11.68 dB return loss), indicating the best and worse match in the passband of the filter

Playback – Application SV56, Playback of recorded signals, can reduce hours of watching and waiting for a spectral violation to minutes at your desk reviewing recorded data.

Recording length is limited only by storage media size, and recording is a basic feature included in SignalVu-PC. SignalVu-PC application SV56 (Playback) allows for complete analysis by all SignalVu-PC measurements, including DPX Spectrogram. Minimum signal duration specifications are maintained during playback. AM/FM audio demodulation can be performed. Variable span, resolution bandwidth, analysis length, and bandwidth are all available. Frequency mask testing can be performed on recorded signals, with actions on mask violation including beep, stop, save trace, save picture, and save data. Portions of the playback can be selected and looped for repeat examination of signals of interest. Playback can be skipfree, or time gaps can be inserted to reduce review time.

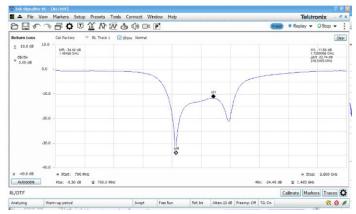
Clock time of the recording is displayed in the spectrogram markers for correlation to real world events. In the illustration below, the FM band is being replayed, with a mask applied to detect spectral violations, simultaneous with listening to the FM signal at the center frequency of 92.3 MHz.




Rackmount for 1 or 2 RSA600s


Mapping – The SignalVu-PC MAP application enables interference hunting and location analysis. Locate interference with an azimuth function that lets you draw a line or an arrow on a mapped measurement to indicate direction, or use the available Alaris smart antenna with automated azimuth placement.

Signal survey/classification — Application SV54 enables expert systems guidance to aid the user in classifying signals. You can quickly create a spectral region of interest, enabling users to identify and sort signals efficiently. The spectral profile mask, when overlaid on top of a trace, provides signal shape guidance while frequency, bandwidth, and channel number are displayed allowing for fast classification. WLAN, GSM, W-CDMA, CDMA, Bluetooth standard and enhanced data rate, LTE FDD and TDD, ATSC and other signals can be quickly and simply identified. Databases can be imported from your H500/RSA2500 signal database library for easy transition to the new software base.


A typical signal survey is show below. The survey is of a portion of the TV broadcast band, and 7 regions have been declared as either Permitted, Unknown, or Unauthorized, as indicated by the color bars for each region. In the detail illustration, a single region has been selected, and since we've declared this to be an ATSC video signal, the spectrum mask for the ATSC signal is shown overlaid in the region. The signal is a close match to the spectrum mask, including the vestigial carrier at the lower side of the signal, characteristic of ATSC broadcasts.

Return Loss/VSWR, distance to fault and cable loss - Perform maintenance and troubleshooting tasks with ease. When equipped with the option 04 tracking generator, the RSA500A series with application license SV60xx-SVPC makes one-port measurements on cables, devices and antennas.

Return loss vs distance for a cable with an inserted barrel and an extension cable. The point at M2 (17.638 m, MR) is the barrel connector, and the point marked by M1 at 19.725 m is the end of the cable.

Return loss of a bandpass filter measured from 700 MHz to 2.6 GHz. Markers have been placed a 1.48 GHz (-34.4 dB return loss) and at 1.73 GHz (-11.68 dB return loss), indicating the best and worse match in the passband of the filter.

Instrument controller for USB spectrum analyzers

For field operations, a complete solution requires a Windows Tablet or laptop for instrument operation, record keeping and communication. Tektronix offers the Panasonic FZ-G1 tablet computer as an option to the RSA500 series and as a standalone unit.

When purchased from Tektronix, the FZ-G1 includes pre-loaded SignalVu-PC software, with custom-programmed display settings and front-panel buttons to optimize the SignalVu-PC experience. In addition, Tektronix has tested the FZ-G1 to ensure that the specified real time performance of all USB spectrum analyzers is met with this configuration. Accessories including battery packs, cases and automotive power adapters are also available from Tektronix.

Key specifications, instrument controller

- Windows 7 operating system (Win8 Pro COA)
- Intel® Core i5-5300U 2.30GHz Processor (i5-4310U 2.00GHz in China)
- 8GB RAM
- 256 GB Solid State Drive
- 10.1" (25.6 cm) Daylight-readable screen
- 10-point Multi Touch+ Digitizer screen plus included pen interface
- USB 3.0 + HDMI Ports, 2nd USB Port
- Wi-Fi, Bluetooth® and 4G LTE Multi Carrier Mobile Broadband with Satellite GPS
- MIL-STD-810G certified (4' drop, shock, vibration, rain, dust, sand, altitude, freeze/thaw, high/low temperature, temperature shock, humidity, explosive atmosphere)
- IP65 certified sealed all-weather design

- Integrated microphone
- Integrated speaker
- On-screen and button volume and mute controls •
- Integrated battery backup for hot-swap of battery packs
- 3-year Warranty with Business Class Support (provided by Panasonic in your region)

Smart antenna for interference hunting

Tektronix offers the Alaris DFA-0047 ¹ smart antenna with built-in USB compass for direction finding and interference hunting applications. Full details on the antenna are available in the Alaris data sheet available on Tek.com by searching on Alaris. A summary of features and specifications is shown below.

- Frequency Range: 20 MHz 8.5 GHz
 - 9 kHz-20 MHz extension available(0.3m loop antenna), order DF-A0047-01 ¹
- Trigger control for one-hand operation with functions for:
 - Preamp on/off
 - Band switch
 - Push to measure with SignalVu-PC with MAP option
- Standard armrest extension for ease in long interference hunting sessions
- Transit case available

Alaris direction-finding smart antenna.

Calibration kits, phase-stabilized cables, adapters, antennas and other accessories


Tektronix offers a variety of accessories to simplify your shopping for the complete solution for field test. See the ordering information section for further details.

Calibration Kits for one-port measurements

Phase-stabilized cables from Tekronix for cable and antenna measurements

Antennas for interference hunting

¹ Alaris antenna and Panasonic tablet are available in limited geographies. See ordering information for details.

The RSA56RACK holds one RSA500A for rackmount applications

The RSA500TRANSIT case has room for the instrument in its soft case, a tablet PC, power supply and accessories.

The soft case PN 016-2109-01 is standard with every RSA500A and has room for the unit, a tablet PC and accessories

Specifications

All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.

Frequency

Frequency range

RSA503A 9 kHz to 3 GHz RSA507A 9 kHz to 7.5 GHz

Frequency marker readout

accuracy

 \pm (RE × MF + 0.001 × Span) Hz RE: Reference Frequency Error

MF: Marker Frequency [Hz]

Reference frequency accuracy

Initial accuracy at Cal (30 min

warm-up)

±1 x 10⁻⁶

First year aging, typical **Cumulative error (Initial**

accuracy + temperature +

±1 x 10⁻⁶ (1 year) 3 x 10⁻⁶ (1 year)

aging), typical

Temperature drift

 $\pm 0.9 \times 10^{-6}$ (-10 to 60 °C)

External reference input BNC connector, 50 Ω nominal

External reference input frequency

Every 1 MHz from 1 to 20 MHz plus the following: 1.2288 MHz, 2.048 MHz, 2.4576 MHz, 4.8 MHz, 4.9152 MHz, 9.8304 MHz,

13 MHz, and 19.6608 MHz.

The spurious level on the input signal must be less than -80 dBc within 100 kHz offset to avoid on-screen spurious.

External reference input range ±5 ppm

External reference input level

-10 to +10 dBm

RF input

RF input

RF Input Impedance 50 O

RF VSWR (RF Attn = 20 dB),

< 1.2 (10 MHz to 3 GHz)

typical

< 1.5 (>3 GHz to 7.5 GHz)

RF VSWR preamp ON, typical

< 1.5 (10 MHz to 6 GHz, RF ATT=10 dB, preamp on)

< 1.7 (> 6 GHz to 7.5 GHz, RF ATT=10 dB, preamp on)

Maximum RF input level

Maximum DC voltage ±40 V (RF input)

Maximum safe input power +33 dBm (RF input, 10 MHz to 7.5 GHz, RF Attn ≥ 20 dB)

> +13 dBm (RF input, 9 kHz to 10 MHz) +20 dBm (RF input, RF Attn < 20 dB)

RF input

Maximum safe input power

(Preamp On)

+33 dBm (RF input, 10 MHz to 7.5 GHz, RF Attn \geq 20 dB)

+13 dBm (RF input, 9 kHz to 10 MHz)

+20 dBm (RF input, RF Attn < 20 dB)

Maximum measurable input

power

+30 dBm (RF input, ≥10 MHz to Fmax, RF ATT Auto)

+20 dBm (RF input, <10 MHz, RF ATT Auto)

Input RF attenuator 0 dB to 51 dB (1 dB step)

Amplitude and RF

Amplitude and RF flatness

Reference level setting range

Frequency response at 18 ℃ to 28 ℃ (At 10 dB RF **Attenuator Setting)**

-170 dBm to +40 dBm, 0.1 dB step, (Standard RF input)

Amplitude accuracy at all center frequencies

	18 °C to 28 °C	18 °C to 28 °C, typical (95% confidence)	-10 °C to 55 °C, typical
9 kHz ≤ 3.0 GHz	±0.8 dB	±0.2 dB	±1.0 dB
> 3 to 7.5 GHz	±1.5 dB	±0.6 dB	±2.0 dB

Amplitude Accuracy at All Center Frequencies - Preamp ON (18 ℃ to 28 ℃, 10 dB RF Attenuator)

18 °C to 28 °C 18 °C to 28 °C, typical (95% 18 °C to 28 °C, typical Center frequency range confidence) 100 kHz to ≤3.0 GHz ±1.0 dB ±0.5 dB ±1.0 dB > 3 to 7.5 GHz ±1.75 dB ±0.75 dB ±3.0 dB

Preamp gain

27 dB at 2 GHz

21 dB at 6 GHz (RSA507A)

Channel response (amplitude and phase deviation), typical

For these specifications, use a flat top window for maximum CW amplitude verification accuracy with the RF attenuator setting at

Characteristic		Description		
Measurement center frequency	Span	Amplitude flatness, typical	Amplitude flatness, RMS, typical	Phase linearity, RMS, typical
9 kHz to 40 MHz	≤40 MHz ²	±1.0 dB	0.60 dB	
>40 MHz to 4.0 GHz	≤20 MHz	±0.10 dB	0.08 dB	0.3°
>4 GHz to 7.5 GHz	≤20 MHz	±0.35 dB	0.20 dB	0.7°
>40 MHz to 4 GHz	≤40 MHz	±0.15 dB	0.08 dB	0.6°
>4 GHz to 7.5 GHz	≤40 MHz	±0.40 dB	0.20 dB	1.0°

Span extents cannot exceed lower frequency limit of the instrument

Datasheet

Trigger

Trigger/Sync input, typical Voltage range: TTL, 0.0 V to 5.0 V

Trigger level (Schmitt trigger):

Positive-going threshold voltage: 1.6 V min, 2.1 V max Negative-going threshold voltage: 1.0 V min., 1.35 V max Impedance: 10 k ohms with schottky clamps to 0 V, +3.4 V

External trigger timing uncertainty >20 MHz to 40 MHz acquisition bandwidth: ±250 ns

Uncertainty increases as acquisition bandwidth is decreased.

Power trigger

Power trigger, typical Range: 0 dB to -50 dB from reference level, for trigger levels > 30 dB above the noise floor.

Type: Rising or falling edge

Trigger re-arm time: ≤ 100 µsec

Power trigger position timing uncertainty

ing >20 MHz to 40 MHz acquisition bandwidth: ±250 ns

Uncertainty increases as acquisition bandwidth is decreased.

Power trigger level accuracy ±1.5 dB for CW signal at tuned center frequency for trigger levels > 30 dB above the noise floor.

This specification is in addition to the overall amplitude accuracy uncertainty for SA mode.

Noise and distortion

3rd Order IM intercept (TOI) +12 dBm at 2.130 GHz

3rd Order IM intercept (TOI),

Preamp off, typical +10 dBm (9 kHz to 25 MHz)

+15 dBm (25 MHz to 3 GHz)

+15 dBm (3 GHz to 4 GHz, RSA507A) +10 dBm (4 GHz to 7.5 GHz, RSA507A)

Preamp on, typical -20 dBm (9 kHz to 25 MHz)

-15 dBm (25 MHz to 3 GHz)

-15 dBm (3 GHz to 4 GHz, RSA507A) -20 dBm (4 GHz to 7.5 GHz, RSA507A)

3rd Order Inter-modulation

distortion

-74 dBc at 2.130 GHz

Each signal level -25 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -20 dBm.

Noise and distortion

3rd Order inter-modulation distortion

> Preamp off, typical < -70 dBc (10 kHz to 25 MHz)

> > < -80 dBc (25 MHz to 3 GHz) < -80 dBc (3 GHz to 4 GHz)

< -70 dBc (4 GHz to 6 GHz, RSA507A) < -70 dBc (6 GHz to 7.5 GHz, RSA507A)

Each signal level -25 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -20 dBm.

< -70 dBc (9 kHz to 25 MHz) Preamp on, typical

> < -80 dBc (25 MHz to 3 GHz) < -80 dBc (3 GHz to 4 GHz)

< -70 dBc (4 GHz to 6 GHz, RSA507A) < -70 dBc (6 GHz to 7.5 GHz, RSA507A)

Each signal level -55 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -50 dBm.

2nd Harmonic distortion, typical

2nd Harmonic distortion < -75 dBc (40 MHz to 1.5 GHz)

< -75 dBc (1.5 GHz to 3.75 GHz, RSA507A)

2nd Harmonic distortion,

Preamp on

< - 60 dBc, 40 MHz to 13.5 GHz, input frequency

2nd Harmonic distortion intercept

(SHI)

+35 dBm, 40 MHz to 1.5 GHz, input frequency

+35 dBm, 1.5 GHz to 3.75 GHz, input frequency

2nd Harmonic distortion intercept

(SHI), Preamp on

+15 dBm, 40 MHz to 3.75 GHz, input frequency

Displayed average noise level (DANL)

(Normalized to 1 Hz RBW, with log-average detector)

Frequency range	Preamp on	Preamp on, typical	Preamp off, typical
500 kHz to 1 MHz	-138 dBm/Hz	-145 dBm/Hz	-130 dBm/Hz
1 MHz to 25 MHz	-153 dBm/Hz	-158 dBm/Hz	-130 dBm/Hz
>25 MHz to 1 GHz	-161 dBm/Hz	-164 dBm/Hz	-141 dBm/Hz
>1 GHz to 2 GHz	-159 dBm/Hz	-162 dBm/Hz	-141 dBm/Hz
>2 GHz to 3 GHz	-156 dBm/Hz	-159 dBm/Hz	-138 dBm/Hz
>3 GHz to 4.2 GHz, RSA507A	-153 dBm/Hz	-156 dBm/Hz	-138 dBm/Hz
>4.2 GHz to 6 GHz, RSA507A	-159 dBm/Hz	-162 dBm/Hz	-147 dBm/Hz
>6 GHz to 7.5 GHz, RSA507A	-155 dBm/Hz	-158 dBm/Hz	-145 dBm/Hz

Datasheet

Phase noise

u	h၁	se	n	0	n

Offset	1 GHz CF	1 GHz CF (typical)	2 GHz CF (typical)	6 GHz CF, (RSA507A) (typical)	10 MHz (typical)
10 kHz	-94 dBc/Hz	-97 dBc/Hz	-96 dBc/Hz	-94 dBc/Hz	-120 dBc/Hz
100 kHz	-94 dBc/Hz	-98 dBc/Hz	-97 dBc/Hz	-96 dBc/Hz	-124 dBc/Hz
1 MHz	-116 dBc/Hz	-121 dBc/Hz	-120 dBc/Hz	-120 dBc/Hz	-124 dBc/Hz

Spurious response

Residual spurious response (Reference = -30 dBm, RBW = 1 kHz) <-75 dBm (500 kHz to 60 MHz), typical

< -85 dBm (>60 MHz to 80 MHz), typical

<-100 dBm (>80 MHz to 7.5 GHz), typical

Spurious response with Signal (Image suppression)

< -65 dBc (10 kHz to < 3 GHz, Ref= -30 dBm, Atten = 10 dB, RF input Level = -30 dBm, RBW = 10 Hz)

< -65 dBc (3 GHz to 7.5 GHz, Ref= -30dBm, Atten = 10 dB, RF input Level = -30 dBm, RBW = 10 Hz)

Spurious response with signal at CF

Offset ≥ 1 MHz

Frequency	Span ≤40 MHz, swept spans >40 MHz	
		Typical
1 MHz - 100 MHz		-75 dBc
100 MHz - 3 GHz	-72 dBc	-75 dBc
3 GHz - 7.5 GHz (RSA507A)	-72 dBc	-75 dBc

Spurious response with signal at CF

(100 kHz \leq offset <1 MHz, Span=2 MHz):

Frequency P-TYP(PRI)	Typical
1 MHz - 100 MHz	-76 dBc
100 MHz - 3 GHz	-76 dBc
3 GHz - 7.5 GHz (RSA507A)	-74 dBc ³

Spurious response with signal at other than CF, typical

Frequency	Span ≤40 MHz, swept spans >40 MHz
1 MHz – 25 MHz (LF Band)	-73 dBc
25 MHz – 3 GHz	-73 dBc
3 GHz – 7.5 GHz (RSA507A)	-73 dBc

³ Power supply sidebands, 620-660 kHz: -67 dBc, typical

Spurious response

Spurious response with signal at

RSA503A, RSA507A < 75 dBc, (CF: 30 MHz to 3 GHz, Ref = -30 dBm, Atten = 10 dB, RBW = 10 Hz, Span = 10 kHz)

Signal frequency = 2310 MHz, RF input level = -30 dBm

RSA507A < 77 dBc, (CF 3 G Hz to 7.5 GHz, Ref= -30 dBm, Atten = 10 dB, RBW=10 Hz, Span=10 kHz)

RF input Level = -30 dBm

Local oscillator feed-through to

input connector, typical

< -70 dBm, preamp off.

< -90 dBm, preamp on.

Attenuator = 10 dB.

Acquisition

IF bandwidth 40 MHz.

A/D converter 14 bits, 112 Ms/s.

Real-Time IF Acquisition Data 112 Ms/s, 16-bit integer samples.

ACLR

ACLR for 3GPP Down Link,

1 DPCH (2130 MHz)

-57 dB (Adjacent Channel)

-68 dB w/Noise Correction (Adjacent Channel)

-57 dB (First Alternate Channel)

-69 dB w/Noise Correction (First Adjacent Channel)

ACLR LTE -58 dB (Adjacent Channel)

-61 dB w/Noise Correction (Adjacent Channel)

-61 dB (First Alternate Channel)

GPS/GLONASS/BeiDou

-63 dB w/Noise Correction (First Adjacent Channel)

Test conditions: 24 hr. static, -130 dBm, full power

GPS location

Format

GPS antenna power	3 V, 100 mA maximum		
Time to first fix, maximum	Lock time ranges from 2 sec (hot) to 40 sec (cold start)130 dBm input signal power.		
Horizontal position accuracy	GPS: 2.6 m		
	Glonass: 2.6 m		
	BeiDou: 10.2 m		
	GPS + Glonass: 2.6 m		
	GPS + BeiDou: 2.6 m		

This is an input signal at half of the IF frequency.

Tracking generator (Option 04)

Tracking Generator (Option 04)

Frequency range 9 kHz to 3 GHz

9 kHz to 7.5 GHz

Sweep speed 6700 MHz/second, 101 points, 50 kHz RBW (11 mS per point)

Measured using a Panasonic Toughpad FZ-G1, Intel[®] Core™ i5-5300U 2.3 GHz Processor, 8 GB RAM, 256 GB SSD,

Windows®7 Pro.

Frequency resolution 100 Hz
TG output connector N type

VSWR < 1.8:1, 10 MHz to 7.5 GHz, -20 dBm output level

Maximum output power -3 dBr
Output power level setting 40 dB

range

Output power level step size 1 dBOutput power level step size $\pm 0.5 \text{ dB}$

accuracy

Output level accuracy ± 1.5 dB, 10 MHz to 7.5 GHz, -20 dBm output level

Harmonics < -22 dBc

Non-harmonic spurious < -30 dBc; spurious < 2 GHz from TG output frequency

< -25 dBc; spurious ≥ 2 GHz from TG output frequency

Reverse power without

damage

40 Vdc, +20 dBm RF

Transmission gain measurement error

Gain of +20 to -40 dB: ±1 dB

Transmission gain

70 dB

measurement dynamic range

Return Loss, Distance-to-Fault, and Cable Loss measurements

Return Loss, Distance-to-Fault, and Cable Loss measurements

Measurements Return Loss, Cable Loss, Distance-to-Fault

Frequency range 10 MHz to 3 GHz (RSA503A)

10 MHz to 7.5 GHz (RSA507A)

Sweep speed ⁵ 5 ms/point, Return Loss measurement

5 ms/point, Distance-to-Fault measurement

5 ms/point, Cable Loss measurement

Frequency resolution 500 Hz

Return Loss measurement

error

Return Loss of 0 to 15 dB: ± 0.5 dB

Return Loss of 15 to 25 dB: ± 1.5 dB Return Loss of 25 to 35 dB: ± 4.0 dB

Return Loss measurement error at 14 dB Return Loss

±1.5 dB from 10 MHz to 6.8 GHz ±3.0 dB from 6.8 GHz to 7.5 GHz

±1.0 dB from 10 MHz to 6.8 GHz ±2.5 dB from 6.8 GHz to 7.5 GHz

^{5 201} point sweep Measured using a Panasonic Toughpad FZ-G1.

Return Loss, Distance-to-Fault, and Cable Loss measurements 50 dB

Return Loss measurement

Interference immunity

range

Return Loss Measurement Error within specifications for the following conditions:

+5 dBm interferer power within 800 kHz of measurement point

+5 dBm interferer power more than 800 kHz away from measurement point

Distance-to-Fault range

1500 m or 15 dB one-way cable loss capable, user defined.

Maximum range is a function of the cable velocity factor and the frequency step size as follows:

Range =
$$\left(\frac{Vp \times c}{2}\right) \times \left(\frac{N-1}{F_{stop} - F_{start}}\right)$$

Where:

 V_p = Cable velocity factor relative to the speed of light

c = Speed of light (m/s)

F_{start} = Sweep start frequency (Hz)

F_{stop} = Sweep stop frequency (Hz)

N = number of sweep points

Distance-to-Fault resolution

0.03m (RSA503A, RG-58 (Vp=0.66)), User Definable 0.01m (RSA507A, RG-58 (Vp=0.66)), User Definable

Minimum resolution is a function of the cable velocity factor and the frequency step size as follows:

Resolution =
$$\left(\frac{Vp \times c}{2}\right) \times \left(\frac{1}{F_{stop} - F_{start}}\right)$$

Resolution =
$$(\frac{\text{Range}}{N-1})$$

SignalVu-PC standard measurements and performance

Measurements included

General signal analysis	
Spectrum analyzer	Spans from 1 kHz to 7.5 GHz Three traces plus math and spectrogram trace Five markers with power, relative power, integrated power, power density and dBc/Hz functions
DPX Spectrum/Spectrogram	Real time display of spectrum with 100% probability of intercept of 100 µsec signals in up to 40 MHz span
Amplitude, frequency, phase vs. time, RF I and Q vs. time	Basic vector analysis functions
Time Overview/Navigator	Enables easy setting of acquisition and analysis times for deep analysis in multiple domains
Spectrogram	Analyze and re-analyze your signal with a 2-D or 3-D waterfall display
AM/FM listening	Hear, and record to file, FM and AM signals
Analog modulation analysis	
AM, FM, PM analysis	Measures key AM, FM, PM parameters
RF measurements	
Spurious measurement	User-defined limit lines and regions provide automatic spectrum violation testing across the entire range of the instrument
Spectrum emission mask	User-defined or standards-specific masks
Occupied Bandwidth	Measures 99% power, -xdB down points
Channel Power and ACLR	Variable channel and adjacent/alternate channel parameters
MCPR	Sophisticated, flexible multi-channel power measurements
CCDF	Complementary Cumulative Distribution Function plots the statistical variations in signal level

SignalVu-PC/RSA507A key characteristics

> Maximum span 40 MHz real-time

> > 9 kHz - 3 GHz swept

9 kHz - 7.5 GHz swept

Maximum acquisition time 1.0 s

Minimum IQ resolution 17.9 ns (acquisition BW = 40 MHz)

Tuning Tables Tables that present frequency selection in the form of standards-based channels are available for the following.

Cellular standards families: AMPS, NADC, NMT-450, PDC, GSM, CDMA, CDMA-2000, 1xEV-DO WCDMA, TD-SCDMA, LTE,

WiMax

Unlicensed short range: 802.11a/b/j/g/p/n/ac, Bluetooth

Cordless phone: DECT, PHS

Broadcast: AM, FM, ATSC, DVBT/H, NTSC

Mobile radio, pagers, other: GMRS/FRS, iDEN, FLEX, P25, PWT, SMR, WiMax

DPX spectrum display

Spectrum processing rate (RBW = auto, trace length 801) ≤10,000/s

DPX bitmap resolution 201x801

Marker information Amplitude, frequency, signal density

SignalVu-PC standard measurements and performance

Minimum signal duration for

100% probability of detection

 $100 \, \mu s$

Span: 40 MHz, RBW = 300 kHz (Auto)

Due to the non-deterministic execution time of programs running under the Microsoft Windows OS, this specification may not be

met when the host PC is heavily loaded with other processing tasks

Span range (continuous

processing)

1 kHz to 40 MHz

Span range (swept)

Up to maximum frequency range of instrument

Dwell time per step

50 ms to 100 s

Trace processing

Color-graded bitmap, +Peak, -Peak, average

Trace length **RBW** range

801, 2401, 4001, 10401 1 kHz to 4.99 MHz

DPX spectrogram display

Trace detection

+Peak, -Peak, Average(V_{RMS})

Trace length, memory depth

801 (60,000 traces)

2401 (20,000 traces)

4001 (12,000 traces)

Time resolution per line

1 ms to 6400 s, user selectable

Spectrum display

Traces

Detector

Three traces + 1 math trace + 1 trace from spectrogram for spectrum display

Trace functions

Normal, Average (VRMS), Max Hold, Min Hold, Average of Logs Average (VRMS), Average, CISPR peak, +Peak, -Peak, Sample

Spectrum trace length

801, 2401, 4001, 8001,10401, 16001, 32001, and 64001 points

RBW range

10 Hz to 8 MHz

Analog modulation analysis

(standard)

AM demodulation accuracy,

typical

±2%

0 dBm input at center, carrier frequency 1 GHz, 1 kHz/5 kHz input/modulated frequency, 10% to 60% modulation depth

0 dBm input power level, reference level = 10 dBm, Atten=Auto

FM demodulation accuracy,

typical

±1% of span

0 dBm input at center, carrier frequency 1 GHz, 400 Hz/1 kHz input/modulated frequency

0 dBm input power level, reference level = 10 dBm, Atten=Auto

PM demodulation accuracy,

typical

±3% of measurement bandwidth

0 dBm input at center, carrier frequency 1 GHz, 1 kHz/5 kHz input/modulated frequency

0 dBm input power level, reference level = 10 dBm, Atten=Auto

SignalVu-PC standard measurements and performance

Spectrum sweep rates vs. resolution bandwidth

> Full-Span sweep speed 5500 MHz/sec (RBW = 1 MHz)

> > 5300 MHz/sec (RBW = 100 kHz) 3700 MHz/sec (RBW = 10 kHz) 950 MHz/sec (RBW = 1 kHz)

Measured using a Panasonic Toughpad FZ-G1, Intel[®] Core[™] i5-5300U 2.3 GHz Processor, 8 GB RAM, 256 GB SSD,

Windows®7 Pro.

Spectrum display is only measurement on screen.

SignalVu-PC applications performance summary

AM/FM/PM and direct audio measurement (SVAxx-SVPC)

measurements)

Carrier frequency range (for modulation and audio

Maximum audio frequency

10 MHz

>0.1)

FM measurements (Mod. index Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation

Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Carrier Power, Audio Frequency, Modulation Depth (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total **AM** measurements

Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

(1/2 × audio analysis bandwidth) to maximum input frequency

PM measurements

Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation

Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Audio filters

Low pass, kHz: 0.3, 3, 15, 30, 80, 300, and user-entered up to 0.9 × audio bandwidth

High pass, Hz: 20, 50, 300, 400, and user-entered up to $0.9 \times audio bandwidth$

Standard: CCITT, C-Message

De-emphasis (µs): 25, 50, 75, 750, and user-entered

File: User-supplied .TXT or .CSV file of amplitude/frequency pairs. Maximum 1000 pairs

Performance characteristics, typical	Conditions: Unless otherwise stated, performance is given for: Modulation rate = 5 kHz AM depth: 50% PM deviation 0.628 Radians			
	FM	AM	PM	Conditions
Carrier Power accuracy	Refer to instrument ampl	itude accuracy		
Carrier Frequency accuracy	± 0.5 Hz + (transmitter frequency × ref. freq. error)	Refer to instrument frequency accuracy	± 0.2 Hz + (transmitter frequency × ref. freq. error)	FM deviation: 5 kHz / 100 kHz
Depth of Modulation accuracy	NA	± 0.2%+(0.01 * measured value)	NA	Rate: 5 kHz Depth: 50%
Deviation accuracy	± (1% × (rate + deviation)+50 Hz)	NA	± 100% * (0.01 + (measured rate/1 MHz))	FM deviation: 100 kHz
Rate accuracy	± 0.2 Hz	± 0.2 Hz	± 0.2 Hz	FM deviation: 5 kHz / 100 kHz
Residual THD	0.10%	0.16%	0.1%	FM Deviation: 5 kHz / 100 kHz Rate: 1 kHz
Residual SINAD	43 dB	56 dB	40 dB	FM deviation 5 kHz FM deviation 100 kHz Rate: 1 kHz

APCO P25 Measurements (SV26xx-SVPC)

Measurements

RF output power, operating frequency accuracy, modulation emission spectrum, unwanted emissions spurious, adjacent channel power ratio, frequency deviation, modulation fidelity, frequency error, eye diagram, symbol table, symbol rate accuracy, transmitter power and encoder attack time, transmitter throughput delay, frequency deviation vs. time, power vs. time, transient frequency behavior, HCPM transmitter logical channel peak adjacent channel power ratio, HCPM transmitter logical channel off slot power, HCPM transmitter logical channel power envelope, HCPM transmitter logical channel time alignment, cross-correlated markers

Modulation fidelity, typical

C4FM ≤ 1.0% HCPM ≤ 0.5%

HDQPSK ≤ 0.25%

Input signal level is optimized for best modulation fidelity.

Bluetooth Measurements (SV27xx-

SVPC)

Modulation formats Basic Rate, Bluetooth Low Energy, Enhanced Data Rate - Revision 4.1.1

Packet types: DH1, DH3, DH5 (BR), Reference (LE)

Peak Power, Average Power, Adjacent Channel Power or InBand Emission mask, -20 dB Bandwidth, Frequency Error, Modulation Measurements

> Characteristics including ΔF1avg (11110000), ΔF2avg (10101010), ΔF2 > 115 kHz, ΔF2/ΔF1 ratio, frequency deviation vs. time with packet and octet level measurement information, Carrier Frequency f0, Frequency Offset (Preamble and Payload), Max Frequency Offset, Frequency Drift f₁-f₀, Max Drift Rate f_n-f₀ and f_n-f_{n-5}, Center Frequency Offset Table and Frequency Drift table,

color-coded Symbol table, Packet header decoding information, eye diagram, constellation diagram

Output power, In-band emissions and ACP

Level uncertainty: refer to instrument amplitude and flatness specification

Measurement range: signal level > -70 dBm

Modulation characteristics Deviation range: ±280 kHz

Deviation uncertainty (at 0 dBm)

<2 kHz ⁶ + instrument frequency uncertainty (basic rate) <3 kHz⁶ + instrument frequency uncertainty (low energy) Measurement range: Nominal channel frequency ±100 kHz

Initial Carrier Frequency Tolerance (ICFT)

Measurement uncertainty (at 0 dBm): <1 kHz + instrument frequency uncertainty

Measurement range: Nominal channel frequency ±100 kHz

Carrier Frequency Drift Measurement uncertainty: <1 kHz + instrument frequency uncertainty

Measurement range: Nominal channel frequency ±100 kHz

General purpose digital modulation analysis (SVMxx-SVPC)

Modulation formats

BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 256QAM, PI/2DBPSK, DQPSK, PI/4DQPSK, D8PSK, D16PSK, SBPSK, OQPSK,

SOQPSK, MSK, GFSK, CPM, 2FSK, 4FSK, 8FSK, 16FSK, C4FM

Analysis period

Up to 81,000 samples

Measurement filter

Root Raised Cosine, Raised Cosine, Gaussian, Rectangular, IS-95 TX_MEA, IS-95 Base TXEQ_MEA, None

Reference Filter

Gaussian, Raised Cosine, Rectangular, IS-95 REF, None

Filter rolloff factor

 α : 0.001 to 1, in 0.001 steps

Measurements

Constellation, Demod I&Q vs. Time, Error Vector Magnitude (EVM) vs. Time, Eye Diagram, Frequency Deviation vs. Time,

Magnitude Error vs. Time, Phase Error vs. Time, Signal Quality, Symbol Table, Trellis Diagram

Symbol rate range

1 k symbols/s to 40 M symbols/s

Modulated signal must be contained entirely within the acquisition bandwidth

Adaptive equalizer

Linear, Decision-Directed, Feed-Forward (FIR) equalizer with coefficient adaptation and adjustable convergence rate. Supports modulation types BPSK, QPSK, QPSK, π/2-DBPSK, π/4-DQPSK, 8-PSK, 8-DSPK, 16-DPSK, 16/32/64/128/256-QAM

At nominal power level of 0 dBm

QPSK Residual EVM (center frequency = 2 GHz), typical

0.6 % (100 kHz symbol rate)

0.8 % (1 MHz symbol rate)

0.8 % (10 MHz symbol rate) 0.8 % (30 MHz symbol rate)

400 symbols measurement length, 20 Averages, normalization reference = maximum symbol magnitude

256 QAM Residual EVM (center frequency = 2 GHz), typical

0.6 % (10 MHz symbol rate)

0.7 % (30 MHz symbol rate)

400 symbols measurement length, 20 Averages, normalization reference = maximum symbol magnitude

LTE Downlink RF measurements (SV28xx-SVPC)

> Standard Supported 3GPP TS 36.141 Version 12.5

Frame Format supported FDD and TDD

Measurements and Displays

Supported

Adjacent Channel Leakage Ratio (ACLR), Spectrum Emission Mask (SEM), Channel Power, Occupied Bandwidth, Power vs. Time showing Transmitter OFF power for TDD signals and LTE constellation diagram for Primary Synchronization Signal, Secondary

Synchronization Signal with Cell ID, Group ID, Sector ID and Frequency Error.

ACLR with E-UTRA bands (typical, with noise correction)

1st Adjacent Channel 60 dB (RSA507A) 2nd Adjacent Channel 62 dB (RSA507A)

Mapping (MAPxx-SVPC)

Supported map types Pitney Bowes MapInfo (*.mif), Bitmap (*.bmp), Open Street Maps (.osm)

Saved measurement results Measurement data files (exported results)

Map file used for the measurements

Google Earth KMZ file

Recallable results files (trace and setup files)

MapInfo-compatible MIF/MID files

Pulse measurements (SVPxx-SVPC)

> Measurements (nominal) Pulse-Ogram™ waterfall display of multiple segmented captures, with amplitude vs time and spectrum of each pulse. Pulse

frequency, Delta Frequency, Average on power, Peak power, Average transmitted power, Pulse width, Rise time, Fall time, Repetition interval (seconds), Repetition interval (Hz), Duty factor (%), Duty factor (ratio), Ripple (dB), Ripple (%), Droop (dB), Droop (%), Overshoot (dB), Overshoot (%), Pulse- Ref Pulse frequency difference, Pulse- Ref Pulsephase difference, Pulse- Pulse frequency difference, Pulse- Pulse phase difference, RMS frequency error, Max frequency error, RMS phase error, Max phase

error, Frequency deviation, Phase deviation, Impulse response (dB), Impulse response (time), Time stamp.

Minimum pulse width for

detection

150 ns

Average ON power at 18 °C to

28 °C, typical

±0.3 dB + absolute amplitude accuracy

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

±0.2% of reading **Duty factor, typical**

For pulses of 450 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

Average transmitted power,

typical

±0.5 dB + absolute amplitude accuracy

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

Peak pulse power, typical ±1.2 dB + absolute amplitude accuracy

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

Pulse width, typical ±0.25% of reading

For pulses of 450 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

WLAN Measurements, 802.11a/b/g/

j/p (SV23xx-SVPC)

Measurements WLAN power vs. time; WLAN symbol table; WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs.

symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol (or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

Residual EVM - 802.11a/g/j /p

(OFDM), 64-QAM, typical

2.4 GHz, 20 MHz BW: -39 dB 5.8 GHz, 20 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

Residual EVM - 802.11b.

CCK-11, typical

2.4 GHz, 11 Mbps: 1.3 %

Input signal level optimized for best EVM, average of 1,000 chips, BT = .61

WLAN Measurements 802.11n (SV24xx-SVPC)

Measurements

WLAN power vs. time; WLAN symbol table; WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs.

symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol (or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

EVM performance - 802.11n, 64-QAM, typical

2.4 GHz. 40 MHz BW: -38 dB 5.8 GHz, 40 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

WLAN Measurements 802.11ac (SV25xx-SVPC)

Measurements

WLAN power vs. time; WLAN symbol table; WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs. symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol

(or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

EVM performance - 802.11ac,

256-QAM, typical

5.8 GHz, 40 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

Input and output ports

Inputs, outputs, and inferfaces

RF input External frequency reference

input

N type, female

BNC, female

Trigger/Sync input **Tracking Generator Source**

Output

BNC, female N type, female

GPS Antenna USB Device Port

SMA, female USB 3.0 - Type A

Input and output ports

USB Status LED LED, dual color red/green

LED states:

Steady Red: USB power applied, or resetting Steady Green: Initialized, ready for use Blinking Green: Transferring data to host

Battery Status LED LED, green

LED states:

Blinking Green: External power connected, charging battery Off - no external power connected or battery fully charged

Installation requirements

Maximum power dissipation (fully

15 W maximum. Maximum line current is 0.2 A at 90 V line.

loaded)

Surge current 2 A peak maximum, at 25 °C (77 °F) for ≤ 5 line cycles, after the product has been turned off for at least 30 seconds.

Cooling clearance Bottom, top

25.4 mm (1.0 in.)

Sides

25.4 mm (1.0 in.) Rear: 25.4 mm (1.0 in.)

External DC input

Voltage 18 V

Operation: +12.0 V to +19.95 V Voltage range limits

Battery Charging: +17.5 V to +19.95 V

Connector type 2.5mm male

> Center conductor: positive Outer conductor: negative

AC Adapter Output $18 \text{ V} \pm 5\%$, 5 A (90 W max)

> Center conductor: positive Outer conductor: negative

Battery

Nominal voltage 14.4 V **Nominal capacity** 6140 mAh

Battery technology Li-Ion, Smart Battery compatible with SMBus interface.

Battery operational life 4 hours of continuous operation per battery

Battery operating temperature Operating (discharge) 7: -10 °C to +45 °C (14 °F to 113 °F) 8 Charging: 0 °C to 45 °C (32 °F to 113 °F) Battery storage life 2 years at +20 °C (68 °F) nominal Max storage duration between recharge: 10 months @ +20 °C (68 °F)

Operation at -10 °C may require turning on the unit at room temperature first.

Varies per discharge current and heat dissipation characteristics; actual limit may be lower.

Datasheet

Physical characteristics

Physical characteristics

Width 299.1 mm (11.78 in) 67.3 mm (2.65 in) Height 271.3 mm (10.68 in) Length

Net weight 2.54 kg (5.6 pounds) without battery 2.99 kg (6.6 pounds) with battery

Environmental and safety

Temperature

Without battery installed Operating: -10 °C to +55 °C (+14 °F to +131 °F)

Non-operating: -51 °C to +71 °C (-60 °F to +160 °F)

Operating (discharge) 7: -10 °C to +45 °C (+14 °F to +113 °F)8 With battery installed

Charging: 0 °C to 45 °C (32 °F to +113 °F)

Humidity

Without battery Installed MIL-PRF-28800F Class 2

Operating:

5% to 95 \pm 5%RH (relative humidity) in the temperature range of +10 °C to 30 °C (+50 °F to 86 °F)

5% to 75±5% RH above +30 °C to 40 °C (+86 °F to 104 °F) 5% to 45±5% RH above +40 °C up to +55 °C (+86 °F to +131 °F)

<10 °C (+50 °F) humidity is uncontrolled; non-condensing

With battery Installed Operating:

5% to 95% RH (relative humidity) in the temperature range of +10 °C to 30 °C (+14 °F to +86 °F)

5% to 45% RH above +30 °C to 50 °C (+86 °F to 122 °F) <10 °C (+50 °F) humidity is uncontrolled; non-condensing

Altitude

Operating Up to 5000 m (16,404 ft.) Non-operating Up to 15240 m (50,000 ft.)

Exposure

Splash-Proof test, operating

and non-operating

No potential of shock hazard after exposure to non-operating Splash Proof Test per IEC529, level IP52

Dust resistance test, operating

and non-operating

Test method per IEC529, level IP52, test conditions 13.4 and 13.5.

Salt exposure test, structural

parts

Standard MIL-STD-810, Method 509.1, Procedure 1

Dynamics

Vibration

Operating Tektronix Class 2 Random Vibration Test at 2.66 GRMS: 5-500 Hz, 3 Axes at 10 min/axis

Non-Operating MIL-PRF-28800F Class 2

 $0.030~g^2$ /Hz., 10~500~Hz, 30~minutes~per~axis, 3~axes~(90~minutes~total)

Shock

Operating Test method per Military Standard MIL-PRF-28800F 1-4 Exceeds the requirements of Military Standard MIL-PRF-28800F Non-Operating

Handling and transit

Bench handling, operating MIL-PRF-28800F Class 2 MIL-PRF-28800F Class 2 Transit drop, non-operating

Free-Fall drop, non-operating 32 inches

Return Loss, Distance-to-Fault, and Cable Loss measurements

Return Loss, Distance-to-Fault, and Cable Loss measurements

> Measurements Return Loss, Cable Loss, Distance-to-Fault

Frequency range 10 MHz to 3 GHz (RSA503A)

10 MHz to 7.5 GHz (RSA507A)

Sweep speed 9 5 ms/point, Return Loss measurement

5 ms/point, Distance-to-Fault measurement

5 ms/point, Cable Loss measurement

Frequency resolution

500 Hz

Return Loss measurement

error

Return Loss of 0 to 15 dB: ±0.5 dB

Return Loss of 15 to 25 dB: ±1.5 dB Return Loss of 25 to 35 dB: ±4.0 dB

±1.5 dB from 10 MHz to 6.8 GHz

Return Loss measurement error at 14 dB Return Loss

±3.0 dB from 6.8 GHz to 7.5 GHz ±1.0 dB from 10 MHz to 6.8 GHz

±2.5 dB from 6.8 GHz to 7.5 GHz

Return Loss measurement

range

50 dB

Interference immunity Return Loss Measurement Error within specifications for the following conditions:

+5 dBm interferer power within 800 kHz of measurement point

+5 dBm interferer power more than 800 kHz away from measurement point

²⁰¹ point sweep Measured using a Panasonic Toughpad FZ-G1.

Return Loss, Distance-to-Fault, and Cable Loss measurements

Distance-to-Fault range

1500 m or 15 dB one-way cable loss capable, user defined.

Maximum range is a function of the cable velocity factor and the frequency step size as follows:

Range =
$$\left(\frac{Vp \times c}{2}\right) \times \left(\frac{N-1}{F_{stop} - F_{start}}\right)$$

Where:

 V_p = Cable velocity factor relative to the speed of light

c = Speed of light (m/s)

 F_{start} = Sweep start frequency (Hz)

 F_{stop} = Sweep stop frequency (Hz)

N = number of sweep points

Distance-to-Fault resolution

0.03m (RSA503A, RG-58 (Vp=0.66)), User Definable 0.01m (RSA507A, RG-58 (Vp=0.66)), User Definable

Minimum resolution is a function of the cable velocity factor and the frequency step size as follows:

Resolution =
$$\left(\frac{Vp \times c}{2}\right) \times \left(\frac{1}{F_{stop} - F_{start}}\right)$$

Resolution =
$$(\frac{\text{Range}}{N-1})$$

Ordering information

Models

RSA500A Series

RSA500A Series

USB Real-Time Spectrum Analyzer, 40 MHz acquisition bandwidth

The RSA500 requires a PC with Windows 7, Windows 8/8.1, or Windows 10, 64-bit operating system. A USB 3.0 connection is required for operation of the RSA500. 8 GB RAM and 20 GB free drive space is required for installation of SignalVu-PC. For full performance of the real time features of the RSA500, an Intel Core i7 4th generation processor is required. Processors of lower performance can be used, with reduced real-time performance. Storage of streaming data requires that the PC be equipped with a drive capable of streaming storage rates of 300 MB/sec.

Includes: USB 3.0 cable (2 M), A-A connection, screw lock, shoulder strap, carrying case (with room for unit, tablet, accessories), quick-start manual (printed), connector covers, WFM200BA Li-Ion rechargeable battery pack, WFM200BA Li-Ion battery pack instructions (printed), AC power adapter, power cord (see power plug options), USB memory device with SignalVu-PC, API and documentation files.

Item	Description
RSA503A	USB real time spectrum analyzer, 9 kHz – 3.0 GHz, 40 MHz acquisition bandwidth
Option 04	Tracking generator, 10 MHz – 3.0 GHz
Option CTRL-G1-B	Portable controller, Brazil power, see country list for availability
Option FZ-G1	Portable controller, China power, see country list for availability
Option CTRL-G1-E	Portable controller, Europe power, see country list for availability
Option CTRL-G1-I	Portable controller, India power, see country list for availability
Option CTRL-G1-N	Portable controller, North America power, see country list for availability
Option CTRL-G1-U	Portable controller, UK power, see country list for availability
RSA507A	USB real time spectrum analyzer, 9 kHz – 7.5 GHz, 40 MHz acquisition bandwidth
Option 04	Tracking generator, 10 MHz – 7.5 GHz
Option CTRL-G1-B	Portable controller, Brazil power, see country list for availability
Option FZ-G1	Portable controller, China power, see country list for availability
Option CTRL-G1-E	Portable controller, Europe power, see country list for availability
Option CTRL-G1-I	Portable controller, India power, see country list for availability
Option CTRL-G1-N	Portable controller, North America power, see country list for availability
Option CTRL-G1-U	Portable controller, UK power, see country list for availability
RSA500TRANSIT	Hard-sided transit case, RSA500 series real time spectrum analyzer with room for tablet and accessories

Options

RSA500A power plug options

Opt. A0 North America power plug (115 V, 60 Hz) Opt. A1 Universal Euro power plug (220 V, 50 Hz) Opt. A2 United Kingdom power plug (240 V, 50 Hz) Opt. A3 Australia power plug (240 V, 50 Hz) Opt. A4 North America power plug (240 V, 50 Hz) Opt. A5 Switzerland power plug (220 V, 50 Hz) Opt. A6 Japan power plug (100 V, 50/60 Hz) Opt. A10 China power plug (50 Hz) Opt. A11 India power plug (50 Hz) Opt. A12 Brazil power plug (60 Hz) Opt. A99 No power cord

Language options for the RSA500

Opt. L0 English manual Opt. L1 French manual Opt. L2 Italian manual Opt. L3 German manual Opt. L4 Spanish manual Opt. L5 Japanese manual Opt. L6 Portuguese manual Opt. L7 Simplified Chinese manual Opt. L8 Traditional Chinese manual Opt. L9 Korean manual Opt. L10 Russian manual

RSA500A service options 10

Opt. C3 Calibration Service 3 Years Opt. C5 Calibration Service 5 Years Opt. D1 Calibration Data Report Opt. D3 Calibration Data Report 3 Years (with Opt. C3) Opt. D5 Calibration Data Report 5 Years (with Opt. C5) Opt. R5 Repair Service 5 Years (including warranty)

Not available on tablet options.

Warranty

- RSA500 series warranty: 3 years.
- FZ-G1 tablet: 3-year warranty with Business Class Support (provided by Panasonic in region of purchase).
- Alaris DF-A0047 antenna: 1-year warranty, provided by Alaris in South Africa. Service and calibration provided by Alaris.

Tablet

Tablets ordered as standalone

When ordered standalone, the Panasonic FZ-G1 has the nomenclature below. See the RSA500 option list if you'd like to order the controller as an option to the RSA500. The FZ-G1 is available in limited geographies from Tektronix as shown in the ordering information below.

Item	Description	Regional availability
FZ-G1-N	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord.	Canada, Columbia, Ecuador, Mexico, Philippines, Singapore, United States
FZ-G1F	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, digitizer pen and tether, battery charger with power cord	China
FZ-G1-I	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord	India
FZ-G1-E	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord.	Austria, Baltic States, Belgium, Bosnia, Bulgaria, Chile, Croatia, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Indonesia, Ireland, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey
FZ-G1-U	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord.	Egypt, Kenya, Malaysia, United Kingdom
FZ-G1-B	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord	Brazil
FZ-G1-J	Controller for USB Spectrum Analyzers, Panasonic ToughPad FZ-G1. Includes tablet, battery, digitizer pen and tether, battery charger with power cord	Japan

Panasonic FZ-G1 accessories

Item	Description
FZ-VZSU84U 11	Li-ion battery, standard capacity
FZ-VZSU88U 11	Long-life battery pack for Panasonic ToughPad FZ-G1
FZ-BNDLG1BATCHRG9	Single battery charger bundle for FZ-G1. 1 charger and 1 adapter
CF-LNDDC120 ⁹	Lind 120 W 12-32 Volt input vehicle adapter for Tough Pad and RSA500A
TBCG1AONL-P	Panasonic Toughmate always on case for FZ-G1
TBCG1XSTP-P	Infocase Toughmate X-strap for Panasonic FZ-G1

¹¹ Not available in China, Hong Kong, Macau or Mongolia

Licenses

SignalVu-PC application-specific modules

Application license	Description	
SVANL-SVPC	AM/FM/PM/Direct Audio Analysis - Node Locked License	
SVAFL-SVPC	AM/FM/PM/Direct Audio Analysis - Floating License	
SVTNL-SVPC	Settling Time (frequency and phase) measurements - Node Locked License	
SVTFL-SVPC	Settling Time (frequency and phase) measurements - Floating License	
SVMNL-SVPC	General Purpose Modulation Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License	
SVMFL-SVPC	General Purpose Modulation Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License	
SVPNL-SVPC	Pulse Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License	
SVPFL-SVPC	Pulse Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License	
SVONL-SVPC	Flexible OFDM Analysis - Node Locked License	
SVOFL-SVPC	Flexible OFDM Analysis - Floating License	
SV23NL-SVPC	WLAN 802.11a/b/g/j/p measurement - Node Locked License	
SV23FL-SVPC	WLAN 802.11a/b/g/j/p measurement - Floating License	
SV24NL-SVPC	WLAN 802.11n measurement (requires SV23) - Node Locked License	
SV24FL-SVPC	WLAN 802.11n measurement (requires SV23) - Floating License	
SV25NL-SVPC	WLAN 802.11ac measurement to work with analyzer of acquisition bandwidth <= 40 MHz (requires SV23 and SV24) or MDO - Node Locked License	
SV25FL-SVPC	WLAN 802.11ac measurement to work with analyzer of acquisition bandwidth <= 40 MHz (requires SV23 and SV24) or MDO - Floating License	
SV26NL-SVPC	APCO P25 measurement - Node Locked License	
SV26FL-SVPC	APCO P25 measurement - Floating License	
SV27NL-SVPC	Bluetooth measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License	
SV27FL-SVPC	Bluetooth measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License	
MAPNL-SVPC	Mapping - Node Locked License	
MAPFL-SVPC	Mapping - Floating License	
SV56NL-SVPC	Playback of recorded files - Node Locked License	
SV56FL-SVPC	Playback of recorded files - Floating License	
SV60NL-SVPC	Return loss, VSWR, cable loss, and distance to fault - Node Locked License	
SV60FL-SVPC	Return loss, VSWR, cable loss, and distance to fault - Floating License	
CONNL-SVPC	SignalVu-PC live link to the MDO4000B series mixed-domain oscilloscopes - Node Locked License	
CONFL-SVPC	SignalVu-PC live link to the MDO4000B series mixed-domain oscilloscopes - Floating License	
SV2CNL-SVPC	WLAN 802.11a/b/g/j/p/n/ac and live link to MDO4000B to work with analyzer of acquisition bandwidth <= 40 MHz - Node Locked License	
SV2CFL-SVPC	WLAN 802.11a/b/g/j/p/n/ac and live link to MDO4000B to work with analyzer of acquisition bandwidth <= 40 MHz - Floating License	
SV28NL-SVPC	LTE Downlink RF measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License	
SV28FL-SVPC	LTE Downlink RF measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Floating License	
SV54NL-SVPC	Signal survey and classification - Node Locked License	
SV54FL-SVPC	Signal survey and classification - Floating License	
SV60NL-SVPC	Return loss, distance to fault, VSWR, cable loss - Node Locked License (requires Option 04 on RSA500A/600A)	
SV60FL-SVPC	Return loss, distance to fault, VSWR, cable loss - Floating License (requires Option 04 on RSA500A/600A)	
SV30NL-SVPC	WiGig 802.11ad measurements - Node Locked License	

Application license	Description
SV30FL-SVPC	WiGig 802.11ad measurements - Floating License
EDUFL-SVPC	Education-only version of all modules for SignalVu-PC - Floating License

Recommended accessories

Tektronix offers a wide variety of adapters, attenuators, cables, impedance converters, antennas and other accessories for the RSA500 series.

General	nurr	220	RF	cables
General	pull	JUSE	ПΠ	Capies

012-1738-00	Cable,50 Ω , 40 inch,type-N(m) to type-N(M)
012-0482-00	Cable, 50 Ω, BNC (m) 3 foot (91 cm)
174-4977-00	Cable, 50 $\Omega,$ straight type-N (m) and angled type-N (m) connector, 1.6 foot (50 cm)
174-5002-00	Cable, 50 $\Omega,$ type-N (m) to type-N (m) connector, 3 foot (91 cm)
Adapters	
103-0045-00	Adapter, coaxial, 50 Ω type-N(m) to type-BNC(f)
013-0410-00	Adapter, coaxial, 50 Ω type-N (f) to type-N (f)
013-0411-00	Adapter, coaxial, 50 Ω type-N (m) to type-N (f)
013-0412-00	Adapter, coaxial, 50 $\Omega,$ type-N(m) to type-N(m)
013-0402-00	Adapter, coaxial, 50 Ω type-N (m) to type-N 7/16(m)
013-0404-00	Adapter, coaxial, 50 Ω type-N(m) to type-7/16 (f)
013-0403-00	Adapter, coaxial, 50 Ω type-N(m) to type DIN 9.5(m)
013-0405-00	Adapter, coaxial, 50 Ω type-N(m) to type-DIN 9.5(f)
013-0406-00	Adapter, coaxial, 50 Ω type-N(m) to type-SMA(f)
013-0407-00	Adapter, coaxial, 50 Ω type-N(m) to type-SMA(m)
013-0408-00	Adapter, coaxial, 50 Ω type-N(m) to type-TNC(f)
013-0409-00	Adapter, coaxial, 50 Ω type-N(m) to type-TNC(m)
Attenuators and 50/75 Ω pads	
013-0422-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-BNC(f) 75 Ω
013-0413-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-BNC(m) 75 Ω
013-0415-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-F(m) 75 Ω
015-0787-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-F(f) 75 Ω
015-0788-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-N(f) 75 Ω
011-0222-00	Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(f) to type-N(f)
011-0223-00	Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(m) to type-N(f)
011-0224-00	Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(m) to type-N(m)
011-0228-00	Attenuator, fixed, 3 dB, 2 W, DC-18 GHz, type-N(m) to type-N(f)
011-0225-00	Attenuator, fixed, 40 dB, 100 W, DC-3 GHz, type-N(m) to type-N(f)
011-0226-00	Attenuator, fixed, 40 dB, 50 W, DC-8.5 GHz, type-N(m) to type-N(f)

Datasheet

Antennas

119-8733-00 GPS & GLONASS

Antenna, Active

Whip antenna, BNC, wideband untuned, with center of sensitivity approximately 136 MHz, passband 5-1080 MHz. 9 inches length.

DF-A0047 Directional antenna, 20-8500 MHz, with electronic compass and preamp 12

DF-A0047-01 Frequency range extension for DF-A0047 directional antenna, 9 kHz-20 MHz ¹²

DF-A0047-C1 DF-A0047 antenna and DF-A0047-01 extension 12

Transit case for DF-A0047 and DF-A0047-01 $^{\rm 12}$ 016-2107-00

119-6594-00 Yagi antenna, 825-896 MHz forward gain (over half-wave dipole): 10 dB

119-6595-00 Yagi antenna, 895-960 MHz forward gain (over half-wave dipole): 10 dB

119-6596-00 Yagi antenna, 1850-1990 MHz forward gain (over half-wave dipole): 9.3 dB

119-6597-00 Beam antenna, 1850 to 1990 MHz

119-6970-00 Magnetic mount antenna, 824 MHz to 2170 MHz (requires adapter 103-0449-00)

Filters, probes, demonstration

board

119-7246-00 Pre-filter, general purpose, 824 MHz to 2500 MHz, type-N (f) connector

119-7426 Pre-filter, general purpose, 2400 MHz to 6200 MHz, type-N (f) connector

119-4146-00 EMCO E/H-field probes

E/H field probes, lower cost

alternative

Available from Beehive http://beehive-electronics.com/

RSA-DKIT RSA Version 3 demo board with N-BNC adapter, case, antenna, instructions

011-0227-00 Bias-T, type N(m) RF, type N(f) RF+DC, BNC(f) Bias, 1 W, 0.5 A, 2.5 MHz-6 GHz

Chargers, Additional batteries,

Cables, Cases

WFMBA200 Replacement battery pack for RSA500A series

WFMBC200 External battery charger for WFMBA200, charges two batteries

CF-LNDDC120 Lind 120 W 12-32 Volt input vehicle adapter for RSA500A series and Panasonic Tough Pad (not available in China)

016-2109-01 Additional soft carry-case with shoulder strap

174-6810-00 Additional USB 3.0 cable (2 M), A-A connection, screw lock

¹² Not available in China, Japan, New Zealand, Australia, Korea, Russia, Belarus, Kazakhstan

Tracking generator accessories

A variety of calibration kits and phase-stabilized cables are available for the RSA500 tracking generator when used with the optional cable and antenna measurements

CALOSLNM	Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, Type-N(m), 50 ohm
CALOSLNF	Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, Type-N(f), 50 ohm
CALOSLNF	Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, 7/16 DIN(m)
CALOSL716F	Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, 7/16 DIN(f)
CALSOLT35F	Calibration kit, 4-in-1 3.5 mm (f) short, open, load, through, 13 GHz
CALSOLT35M	Calibration kit, 4-in-1 3.5 mm (m) short, open, load, through, 13 GHz
CALSOLTNF	Calibration kit, 4-in-1 type-N (f) short, open, load, through, 9 GHz
CALSOLTNM	Calibration kit, 4-in-1 type-N (m) short, open, load, through, 9 GHz
CALSOLT716F	Calibration kit, 4-in-1 7/16 (f) short, open, load, through, 6 GHz
CALSOLT716M	Calibration kit, 4-in-1 7/16 (m) short, open, load, through, 6 GHz
012-1745-00	Cable, rugged, phase-stable, type-N (m) to type-N (f), 5 ft or 1.5 m $$
012-1746-00	Cable, rugged, phase-stable, type-N(m) to type-N(f), 3.28 ft or 1 m $$
012-1747-00	Cable, rugged, phase-stable, type-N(m) to 7/16(f), 60 cm (23.6 in.)
012-1748-00	Cable, rugged, phase-stable, type-N(m) to 7/16(f), 3.28 ft or 1 m $$
012-1749-00	Cable, rugged, phase-stable, type-N(m) to 7/16(f), 5 ft or 1.5 m $$
012-1750-00	Cable, rugged, phase-stable, type-N(m) to 7/16(m), 3.28 ft or 1 m $$
012-1751-00	Cable, rugged, phase-stable, type-N(m) to 7/16(m), 5 ft or 1.5 m $$
012-1752-00	Cable, rugged, phase-stable, type-N(m) to 7/16(m), 60 cm (23.6 in.)
012-1753-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(f), 60 cm (23.6 in.)
012-1754-00	Cable, rugged, Phase-stable, type-N(m) to DIN 9.5(f), 3.28 ft or 1 m $$
012-1755-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(f), 5 ft or 1.5 m $$
012-1756-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(m), 3.28 ft or 1 m $$
012-1757-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(m), 5 ft or 1.5 m $$
012-1758-00	Cable, rugged, phase-stable, type-N(m) to DIN 9.5(m), 60 cm (23.6 in.)
012-1759-00	Cable, rugged, phase-stable, type-N(m) to TNC(f), 3.28 ft or 1 m
012-1760-00	Cable, rugged, phase-stable, type-N(m) to TNC(f), 5 ft or 1.5 m
012-1761-00	Cable, rugged, phase-stable, type-N(m) to TNC(f), 60 cm (23.6 in.)
012-1762-00	Cable, rugged, phase-stable, type-N(m) to TNC(m), 60 cm (23.6 in.)
012-1763-00	Cable, rugged, phase-stable, type-N(m) to TNC(m), 3.28 ft or 1 m $$
012-1764-00	Cable, rugged, phase-stable, type-N(m) to TNC(m), 5 ft or 1.5 m $$
012-1765-00	Cable, rugged, phase-stable, type-N(m) to type-N(f), 60 cm (23.6 in.)
012-1766-00	Cable, rugged, phase-stable, type-N(m) to type-N(f), 3.28 ft or 1 m
012-1767-00	Cable, rugged, phase-stable, type-N(m) to type-N(m), 3.28 ft or 1 m

Datasheet

012-1768-00	Cable, rugged, phase-stable, type-N(m) to type-N(m), 60 cm (23.6 in.)
012-1769-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(f), 60 cm (23.6 in.)
012-1770-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(f), 3.28 ft or 1 \mbox{m}
012-1771-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(f), 5 ft or 1.5 m $$
012-1772-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(m) 60 cm (23.6 in.)
012-1773-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(m), 3.28 ft or 1 \mbox{m}
012-1774-00	Cable, rugged, phase-stable, type-N(m) to type-SMA(m), 5 ft or 1.5 m $$

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

Product Area Assessed: The planning, design/development and manufacture of electronic Test and Measurement instruments.

Austria 00800 2255 4835*

Brazil +55 (11) 3759 7627 Central Europe & Greece +41 52 675 3777 France 00800 2255 4835*

ASEAN / Australasia (65) 6356 3900 Belgium 00800 2255 4835* Central East Europe and the Baltics +41 52 675 3777 Finland +41 52 675 3777 Hong Kong 400 820 5835 Japan 81 (3) 6714 3086 Middle East, Asia, and North Africa +41 52 675 3777 People's Republic of China 400 820 5835 Republic of Korea +822 6917 5084, 822 6917 5080 Spain 00800 2255 4835* Taiwan 886 (2) 2656 6688

 10 820 5835
 India 000 800 650 1835

 1714 3086
 Luxembourg +41 52 675 3777

 Asia, and North Africa +41 52 675 3777
 The Netherlands 00800 2255 4835*

 ublic of China 400 820 5835
 Poland +41 52 675 3777

 orea +822 6917 5084, 822 6917 5080
 Russia & C15 +7 (495) 6647564

 2255 4835*
 Sweden 00800 2255 4835*

) 2656 6688
 United Kingdom & Ireland 00800 2255 4835*

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Canada 1 800 833 9200 Denmark +45 80 88 1401 Germany 00800 2255 4835* Italy 00800 2255 4835*

Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Norway 800 16098

Norway 800 16098 Portugal 80 08 12370 South Africa +41 52 675 3777 Switzerland 00800 2255 4835* USA 1 800 833 9200

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com.

Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

23 Sep 2016 37W-60380-3

www.tek.com

 $^{^{\}star}$ European toll-free number. If not accessible, call: +41 52 675 3777