
Vishay Siliconix

E Series Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V) at T _J max.	650				
R _{DS(on)} typ. (Ω) at 25 °C	$V_{GS} = 10 V$	1.3			
Q _g max. (nC)	7.5				
Q _{gs} (nC)	1				
Q _{gd} (nC)	3				
Configuration	Single				

FEATURES

- 4th generation E series technology
- Low figure-of-merit (FOM) Ron x Qg
- Low effective capacitance (C_{o(er)})
- Reduced switching and conduction losses
- Avalanche energy rated (UIS)
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Solar (PV inverters)

ORDERING INFORMATION	
Package	DPAK (TO-252)
Lead (Pb)-free and halogen-free	SiHD1K4N60E-GE3

PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-source voltage			V _{DS}	600	v	
Gate-source voltage			V _{GS}	± 30	v	
Continuous drain current (T _J = 150 °C)	V _{GS} at 10 V	$T_{C} = 25 \text{ °C}$ $T_{C} = 100 \text{ °C}$	L_	4.2		
	VGS at TO V	T _C = 100 °C	I _D	2.6	А	
Pulsed drain current ^a			I _{DM}	5		
Linear derating factor				0.5	W/°C	
Single pulse avalanche energy ^b			E _{AS}	14	mJ	
Maximum power dissipation			PD	63	W	
Operating junction and storage temperature ra	ange		T _J , T _{stg}	-55 to +150	°C	
Drain-source voltage slope		T _J = 125 °C	°C 70		1//	
Reverse diode dv/dt ^d		dv/dt		3	V/ns	
Soldering recommendations (peak temperatur	re) ^c	For 10 s		260	°C	

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature
- b. V_{DD} = 140 V, starting T_J = 25 °C, L = 28.2 mH, R_g = 25 Ω , I_{AS} = 1 A
- c. 1.6 mm from case
- d. $I_{SD} \leq I_D, \, di/dt$ = 100 A/µs, starting T_J = 25 $^\circ C$

COMPLIANT

HALOGEN

FREE

Vishay Siliconix

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	THERMAL RESISTANCE RAT	INGS							
Maximum junction-to-case (drain) R_{hulc} - 2.0 SPECIFICATIONS ($T_J = 25 °C$, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS Min. TYP. MAX. UNI Static Drain-source breakdown voltage V_{DS} $V_{GS} = 0 V, I_D = 250 \mu A$ 600 - - V/V Gate-source breakdown voltage V_{DS} $V_{DS} = 120 \mu A$ 3.0 - 5.0 V/V Gate-source threshold voltage (N) $V_{OS} = 10 V$ $V_{DS} = 230 \mu A$ 3.0 - t 100 nA Cose = 430 V - t 100 $N_{OS} = \pm 20 V$ - t 100 nA Cose = 430 V V_{OS} = 480 V, V_{OS} = 0 V t t 100 nA t tA Drain-source on-state resistance $R_{DS(m)}$ $V_{OS} = 100 V$ $t_{OS} = 0 V$ $t_{OS} = 0 V$ $t_{OS} = 10 V$ $t_{OS} = 0 V$ $t_{OS} = 0 V$ $t_{OS} = 10 V$ $t_{OS} = 0 V$ $t_{OS} = 0 V$ $t_{OS} = 0 V$ $t_{OS} = 0 V$	PARAMETER	SYMBOL	TYP.		MAX.		UNIT		
Maximum junction-to-case (drain) R_{Hulc} - 2.0 SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS Min. TYP. MAX. UNI Static Diain-source breakdown voltage V_{DS} $V_{GS} = 0.V, I_D = 250 \mu A$ 600 - - V/V Gate-source breakdown voltage V_{DS} Reference to 25 °C, I_D = 1 mA - 0.68 - V/VC Gate-source breakdown voltage V_{DS} VGS = 250 µA 3.0 - - + 100 nA Gate-source leakage I_{QSS} $V_{DS} = 480 V, V_{QS} = 0 V$ - - + 101 nA Zero gate voltage drain current I_{DSS} $V_{DS} = 480 V, V_{QS} = 0 V, T_J = 125 °C - 10 µA Drain-source on-state resistance R_{DS(m)} V_{DS} = 400 V, I_D = 2.0 A - 0.8 - S Dynamic Input capacitance C_{cas} V_{DS} = 100 V, I_D = 2.0 A - 10 20 Reverse$	Maximum junction-to-ambient	R _{thJA}	- 62			*CAN			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-case (drain)	R _{thJC}	- 2.0				°C/W		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Static Vois Vois Vois Cois Vois Cois Vois Cois Cois <thcois< th=""> Cois Cois <</thcois<>	SPECIFICATIONS (T _J = 25 $^{\circ}$ C, u	unless otherwi	se noted)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
	Static	•				•	•	•	
	Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 2	250 µA	600	-	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C,	, I _D = 1 mA	-	0.68	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source threshold voltage (N)	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 2	250 µA	3.0	-	5.0	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source leakage					-	-	± 100	nA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		IGSS				-	-	± 1	μA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zero gate voltage drain current	1				-	-	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IDSS	V _{DS} = 480 V	, V _{GS} = 0 V	/, T _J = 125 °C	-	-	10	μΑ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	١ _c	₀ = 0.5 A	-	1.3	1.45	Ω
$ \begin{array}{c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Forward transconductance a		V _{DS} =	= 20 V, I _D =	= 2.0 A	-	0.8	-	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic					•	•	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input capacitance	C _{iss}	V _{DS} = 100 V,		-	172	-	pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output capacitance	C _{oss}			-	19	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse transfer capacitance				-	4	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Effective output capacitance, energy related ^a	C _{o(er)}	V_{DS} = 0 V to 480 V, V_{GS} = 0 V		-	12	-		
Gate-source charge Q_{gs} $V_{GS} = 10 \text{ V}$ $I_D = 2.0 \text{ A}, V_{DS} = 480 \text{ V}$ $ 1$ $ nC$ Gate-drain charge Q_{gd} Q_{gd} $U_D = 2.0 \text{ A}, V_{DS} = 480 \text{ V}$ $ 1$ $ nC$ Turn-on delay time $t_{d(on)}$ $V_{DD} = 480 \text{ V}, I_D = 2.0 \text{ A}, V_{GS} = 10 \text{ V}$ $ 10$ 20 $ 10$ 20 Rise time t_r $V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ $ 10$ 20 $ 22$ 44 Gate input resistance R_g $f = 1 \text{ MHz}, \text{ open drain}$ 2.1 4.2 8.4 Ω Drain-Source Body Diode CharacteristicsContinuous source-drain diode current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode $ 4$ A Diode forward voltage V_{SD} $T_J = 25 \text{ °C}, I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$ $ 1.2$ V Reverse recovery time t_{rr} $T_J = 25 \text{ °C}, I_F = I_S = 0.5 \text{ A}, di/dt = 100 \text{ A/µs}, V_R = 25 \text{ V}$ $ 2.22$ 444 ns	Effective output capacitance, time related ^b	C _{o(tr)}			-	50	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total gate charge	Qg				-	5	7.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source charge	Q _{gs}	V _{GS} = 10 V I _D = 2.0 A, V _{DS} = 480 V		-	1	-	nC	
Rise timetrVDD = 480 V, ID = 2.0 A, VGS = 10 V, Rg = 9.1 Ω -2346nsTurn-off delay timetd(off)Fall timetfGate input resistanceRgf = 1 MHz, open drain2.14.28.4 Ω Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse p - n junction diode4ADiode forward currentIsMOSFET symbol showing the integral reverse p - n junction diode5ADiode forward voltageVsDTJ = 25 °C, Is = 0.5 A, VGS = 0 V1.2VReverse recovery timetrrTJ = 25 °C, IF = IS = 0.5 A, di/dt = 100 A/µs, VR = 25 V-0.81.6µC	Gate-drain charge					-	3	-	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-on delay time	t _{d(on)}	V _{DD} = 480 V. I _D = 2.0 A.		-	10	20		
Turn-off delay time $t_{d(off)}$ $V_{GS} = 10 \ V, R_g = 9.1 \Omega$ -1020Fall time t_f -2244Gate input resistance R_g $f = 1 \ MHz$, open drain2.14.28.4 Ω Drain-Source Body Diode CharacteristicsContinuous source-drain diode current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode4ADiode forward voltage V_{SD} $T_J = 25 \ ^\circ$ C, $I_S = 0.5 \ A$, $V_{GS} = 0 \ V$ 1.2VReverse recovery time t_{rr} $T_J = 25 \ ^\circ$ C, $I_F = I_S = 0.5 \ A$, di/dt = 100 A/µs, $V_R = 25 \ V$ 0.81.6µC	Rise time				-	23	46	1	
Fall time t_f -2244Gate input resistance R_g $f = 1 \text{ MHz}$, open drain2.14.28.4 Ω Drain-Source Body Diode CharacteristicsContinuous source-drain diode current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode4APulsed diode forward current I_{SM} $MOSFET symbol$ showing the integral reverse $p - n$ junction diode4ADiode forward voltage V_{SD} $T_J = 25 \ ^\circ C$, $I_S = 0.5 \ ^\circ A$, $V_{GS} = 0 \ ^\circ$ 1.2 V Reverse recovery time t_{rr} $T_J = 25 \ ^\circ C$, $I_F = I_S = 0.5 \ ^\circ A$, di/dt = 100 A/µs, $V_R = 25 \ ^\circ A$ -0.81.6µC	Turn-off delay time	t _{d(off)}	V _{GS} =			-	10	20	ns
Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse $p - n$ junction diode4Pulsed diode forward currentIsMIsM $r = 1, 25, 0, 1,$	Fall time				-	22	44	1	
Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse $p - n$ junction diode4Pulsed diode forward currentIsMIsM $r = 1, 25, 0, 1,$	Gate input resistance	R _g	f = 1 MHz, open drain		2.1	4.2	8.4	Ω	
Continuous source-drain diode currentisshowing the integral reverse p - n junction diode4APulsed diode forward currentIsIs r_{SM} p - n junction diode5Diode forward voltageVspTJ = 25 °C, Is = 0.5 A, Vgs = 0 V1.2VReverse recovery time t_{rr} TJ = 25 °C, Is = 0.5 A, di/dt = 100 A/µs, Vg = 25 V1.6µC	Drain-Source Body Diode Characteristi		•					•	
Pulsed diode forward currentIIntegral foreign $ring (a + 0) = 000$ $ring (a + 0) $	Continuous source-drain diode current	۱ _S	showing the integral reverse		-	-	4		
Reverse recovery time t_{rr} $T_J = 25 \text{ °C}, I_F = I_S = 0.5 \text{ A},$ - 222 444 ns Reverse recovery charge Q_{rr} $di/dt = 100 \text{ A/}\mu\text{s}, V_R = 25 \text{ V}$ - 0.8 1.6 μC	Pulsed diode forward current	I _{SM}			-	-	5	A	
Reverse recovery time t_{rr} $T_J = 25 \text{ °C}, I_F = I_S = 0.5 \text{ A},$ - 222 444 ns Reverse recovery charge Q_{rr} $di/dt = 100 \text{ A/}\mu\text{s}, V_R = 25 \text{ V}$ - 0.8 1.6 μC	Diode forward voltage	V _{SD}	T _J = 25 °C, I _S = 0.5 A, V _{GS} = 0 V			-	-	1.2	V
Reverse recovery charge Q_{rr} $T_J = 25 \text{ °C}, I_F = I_S = 0.5 \text{ Å},$ - 0.8 1.6 μC di/dt = 100 A/µs, $V_R = 25 V$ - 0.8 1.6 μC	Reverse recovery time		T _J = 25 °C, I _F = I _S = 0.5 A,		-	222	444	ns	
	Reverse recovery charge				-	0.8	1.6	μC	
	Reverse recovery current				-	5.6	-	-	

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS}

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS}

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

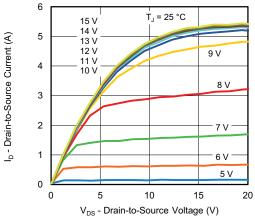


Fig. 1 - Typical Output Characteristics

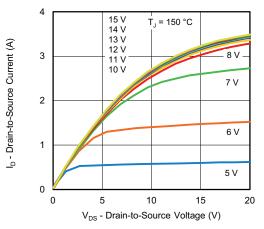


Fig. 2 - Typical Output Characteristics

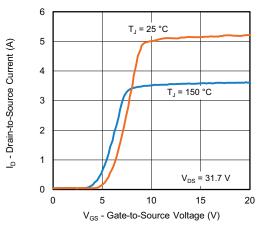


Fig. 3 - Typical Transfer Characteristics

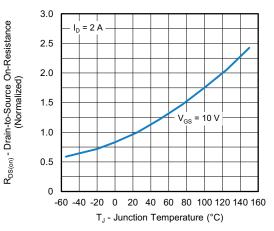


Fig. 4 - Normalized On-Resistance vs. Temperature

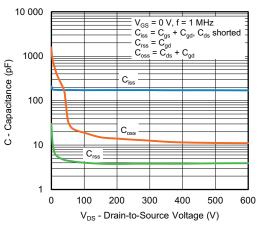
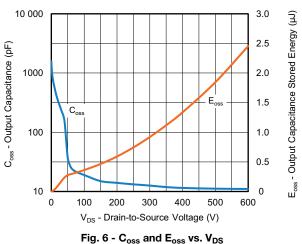



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

S19-0021-Rev. B, 14-Jan-2019

3 For technical questions, contact: hvm@vishay.com Document Number: 92125

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

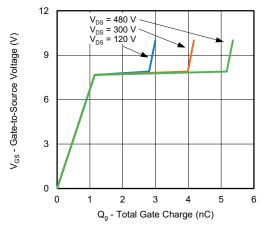


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

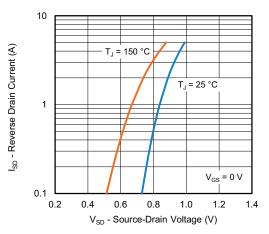


Fig. 8 - Typical Source-Drain Diode Forward Voltage

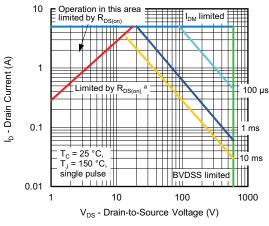


Fig. 9 - Maximum Safe Operating Area

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

4

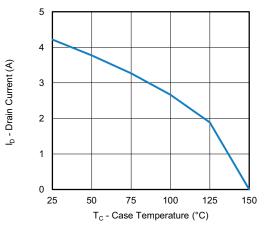


Fig. 10 - Maximum Drain Current vs. Case Temperature

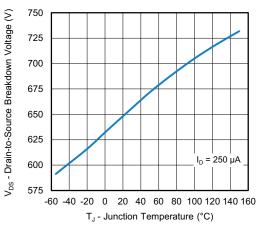
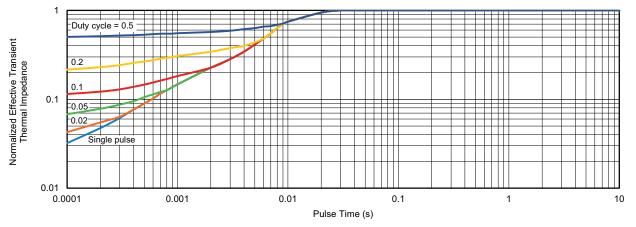



Fig. 11 - Temperature vs. Drain-to-Source Voltage

Vishay Siliconix

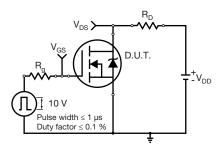


Fig. 13 - Switching Time Test Circuit

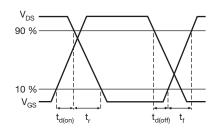


Fig. 14 - Switching Time Waveforms

Fig. 15 - Unclamped Inductive Test Circuit

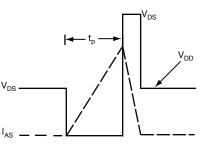


Fig. 16 - Unclamped Inductive Waveforms

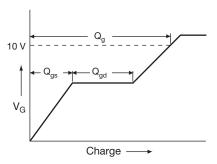


Fig. 17 - Basic Gate Charge Waveform

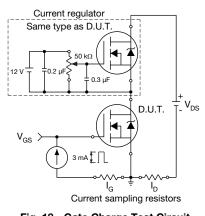
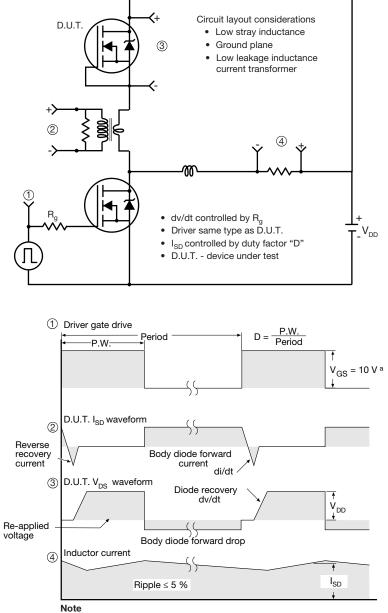


Fig. 18 - Gate Charge Test Circuit

S19-0021-Rev. B, 14-Jan-2019

Document Number: 92125


For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

Peak Diode Recovery dv/dt Test Circuit

a. $V_{GS} = 5$ V for logic level devices

Fig. 19 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?92125.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.