10A 250V AC Qualified Type

Detector
Slide
Push
Rotary

Encoders

Power

Dual-in-line Package Type

TACT Switch ${ }^{\text {TM }}$

Ratings and Safety Standards

Items	Specifications
UL, CSA	10A 250V AC
SEMKO	6A / 96A 250V ~ , 10 (6) / $250 \sim$
VDE	6A / 96A 250V ~ , 10 (6) / $250 \sim$
BS	6A / 96A 250V ~ , 10 (6) / $250 \sim$
Ratings satisfying local electrical appliance and material safety law	125V 10A \ddagger

Product Line

Notes

1. The lead terminals are also used as tab terminals\#187 (Use a positive lock connector type).
2. The lead terminal type can be mounted onto a board.(Manual soldering required)
3. Standard products apply Grade V-2 material (Flame Class). For Grade V-0 type please contact us.
4. Products other than those listed in the above chart are also available. Please contact our us for details.

Packing Specifications

Bulk

Product No.	Number of packages (pcs.)		Export package measurements $(\mathbf{m m})$
	1 case / Japan	1 case $/$ export packing	
SDDJE11600, SDDJE10300, SDDJE10700, SDDJE11200,			
SDDJE31600, SDDJE30100, SDDJE32700, SDDJE30200, SDDJE30300, SDDJE33300, SDDJE30500, SDDJE30700	400	2,000	
SDDJE12200, SDDJE12300, SDDJE12400, SDDJE12500, SDDJE32000, SDDJE32100, SDDJE30400	250	1,250	$411 \times 328 \times 379$

No. | For Lead (SPST) |
| :--- | :--- | :--- |

Detector

Slide

Push

Rotary

Encoders

Power
Dual-in-line
Package Type
TACT Switch ${ }^{\text {TM }}$

Push
Type
Rocker
Type
Slide
Type
Rotary
Type

Circuit Diagram
SPST

Mounting Hole Dimensions
Square-shaped Hole

Thickness of mounting board	\mathbf{Y}_{1}	Unit:mm
0.75 to 1.25	$19.2_{-0.1}^{0}$	$12.9_{0}^{+0.1}$
1.25 to 2.00	$19.4{ }_{-0.1}^{0}$	

U-shaped Hole

Thickness of mounting board	\mathbf{Y}_{2}	Z
0.75 to 1.1	$19.5{ }^{\circ}{ }_{0.1}$	$12.9+0.1$
1.1 to 1.7	$19.7{ }_{-0.1}$	
1.7 to 2	$19.9{ }^{\circ}{ }_{0.1}$	

Detector

Slide

Push

Rotary

Encoders

Power
Dual-in-line
Package Type
TACT Switch ${ }^{\text {TM }}$
Note
Verify the performance under actual product conditions before use.

Marking Variety

[^0]
Power Switches

- Power Switches Soldering Conditions • . 215

Power Switches Cautions . 215

- Power Switches Safety Standard . 215

Notes

1. ※ 1. Dip soldering can be used on SDDJE for PC board terminal and SDDJF right angle terminal types only.
2. ※2. The operating temperature range for automotive applications can be raised upon request. Please contact us for details.
3. indicates applicability to all products in the series, while \bigcirc indicates applicability to some products in the series.

Reference for Hand Soldering

Series	Soldering temperature	Soldering time
SDDJE, SDDJF, SDKP, SDDJF1A, SDKZ, SDDE	$350 \pm 10^{\circ} \mathrm{C}$	$3+1 / 0 \mathrm{~s}$
SDKT	$350 \pm 10^{\circ} \mathrm{C}$	$3 \pm 0.5 \mathrm{~s}$
SDKR	$300 \pm 10^{\circ} \mathrm{C}$	$3 \pm 0.5 \mathrm{~s}$

Reference for Dip Soldering
(For PC board terminal types and SDDJF rightangle terminal types)

Series	Dip soldering	
	Soldering temperature	Duration of immersion
SDKR, SDDJE, SDDJF, SDKP, SDKT, SDKZ, SDDE	$260 \pm 5^{\circ} \mathrm{C}$	$10 \pm 1 \mathrm{~s}$

Power Switches Cautions

1. The primary power supply switching is subject to the safety regulations, and the provisions differ by each destination. Consult with us for non-standard use cases.
2. An unstable contact may occur if the switch current is lower than 0.5 A . For this case, consult with us.
3. These power switches were produced for alternating current. For direct current, consult with us.
4. Appling load to terminals during soldering under certain conditions may cause deformation and electrical property degradation.
5. Avoid use of water-soluble soldering flux, since it may corrode the switches.
6. When soldering twice, wait until the first soldered portion cools to normal temperature. Continuous heating will deform the external portions, loosen or dislodge terminals, or may deteriorate their electrical characteristics.
7. Before soldering switches with locking mechanism, release the locks. If they are soldered without releasing the locks, the soldering heat may deform the locking mechanism.
8. Be sure to release the locks before removing the knobs. Otherwise, the locking mechanism may be broken.
9. Be sure to use the switch with forced travel positioned as close to the total travel as possible.
10. Tighten the mounting screws by applying the specified torque. Tightening with a larger torque than the specified will result in malfunction or breakage of screws.
11. Corrosive gas if generated by peripheral parts of a set, malfunction such as imperfect contact may occur. Thorough investigation shall be required beforehand.
12. Storage
(1)Store the products as delivered, at a normal temperature and humidity, without direct sunshine and corrosive gas ambient. Use them at an earliest possible timing, not later than six months upon receipt.
(2)After breaking the seal, keep the products in a plastic bag to shut out ambient air, store them in the same environment as above, and use them up as soon as possible.
(3)Do not stack too many switches.

Detector
Slide

Push
Rotary
Encoders
Power
Dual-in-line
Package Type
TACT Switch ${ }^{\text {™ }}$

Push
 Type
 Rocker
 Type
 Slide
 Type
 Rotary
 Type

Power Switches Safety Standards

1. Safety Standards Outline

Safety standards are established by a country or an organization representing it to protect general users from electrical shock and fire hazards. It establishes standards for electrical devices and components. For electrical equipment manufacturers, utilizing switches that have been safetyapproved ensures the safety of the switch. The use of a safety-approved switch also simplifies at least one part of the process of obtaining certification by safety testing.

2. Major Safety Standards

(1) Electrical Appliance and Material Safety Law

The conventional [Electrical Appliance and Material Control Law] has changed to [Electrical Appliance and Material Safety Law] and has been enforced since April 1, 2001. Electrical appliances are categorized into special electric appliances and parts (formerly Class A) and Electrical appliances other than the special electric appliances (formerly Class B) . Special electric appliances are required to receive goodness of fit test at a certified test agency and to store the certificate. Also, penal provisions have been reinforced.
(2) UL (Underwriters Laboratories Inc.) $\mathbf{N I}^{\oplus}$

Underwriters Laboratories Inc. (UL) is the American safety approving organization. Its purpose is to ensure consumer safety and protect them from fire hazards. State law requires that equipment to be exported to the United States utilize UL approved power switches or power switches meeting UL standards and capable of passing UL tests.

[^0]: Push
 Type
 Rocker
 Type
 Slide
 Type
 Rotary
 Type

