

LOW PROFILE HIGH FREQUENCY RELAY

RP RELAYS

mm inch

RoHS Directive compatibility information http://www.nais-e.com/

FEATURES

- High frequency relay with the low profile of 4 mm .157 inch
- Excellent high frequency characteristics

Isolation: Min. 10dB (at 1.8 GHz) Insertion loss: Max. 1.0dB (at 1.8 GHz)

V.S.W.R.: Max. 1.3 (at 1.8 GHz) • High sensitivity in small size

Size: 10.6 \times 9 \times 4 mm $.417 \times .354 \times .157$ inch

Nominal operating power: 140 mW

- Utilizes tube package for automatic mounting.
- Self-clinching terminal also available

SPECIFICATIONS

Contact

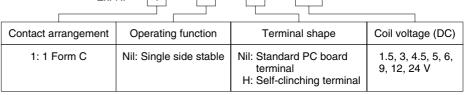
Arrangement		1 Form C		
Contact material	Movable	Silver alloy		
Contact material	Stationary	Gold-clad silver		
Initial contact resi (By voltage drop		50 mΩ		
Rating	Nominal switching capacity	0.1 A 30 V DC Contact switching power: 1 W (Max. 1.8 GHz); Contact carrying power: 3 W (Max. 1.2 GHz) 1 W (Max. 1.8 GHz)		
High frequency characteristics (Impedance 50Ω) (Initial)	V.S.W.R.	Max. 1.2 (at 1 GHz) Max. 1.3 (at 1.8 GHz)		
	Insertion loss	Max. 0.5 dB (at 1 GHz) Max. 1 dB (at 1.8 GHz)		
	Isolation	Min. 15 dB (at 1 GHz) Min. 10 dB (at 1.8 GHz)		
Expected life (min. operations)	Mechanical (at 180 cpm)	5×10 ⁶		
	Electrical (at 20 cpm)	10 ⁵ (0.1 A 30 V DC resistive load)		
		10⁵ (1 W at 1.8 GHz; V.S.W.R.: max. 1.3)		
Coil (at 25°C, 6				
Voltag	je type	Nominal operating power		
1.5 to 12 V DC		140 mW		

270 mW

Characteristics

Onal acteristics	•				
Max. operating s	peed (at r	20 cpm			
Initial insulation	esistance	Min. 1,000 MΩ at 500 V DC			
Initial breakdown	Between	open contacts	750 Vrms for 1 min.		
voltage*2	Between	contacts and coil	1,500 Vrms for 1 min.		
Operate time*3 (at nominal voltage)			Max. 3 ms (Approx. 1.5 ms)		
Release time(without diode)*3 (at nominal voltage)			Max. 2 ms (Approx. 1 ms)		
Temperature rise			Max. 50°Cwith nominal coil voltage across coil and at nominal switching capacity		
Shock resistance		Functional*4	Min. 500 m/s ² {50 G}		
		Destructive*5	Min. 1,000 m/s ² {100 G}		
Vibration resistance		Functional*6	10 to 55 Hz at double amplitude of 3 mr		
		Destructive	10 to 55 Hz at double amplitude of 5 mn		
Conditions for operation, transport and storage* ⁷ (Not freezing and condensing at low temperature)		Ambient temp.	-40°C to 70°C -40°F to 158°F		
		Humidity	5 to 85% R.H.		
Unit weight			Approx. 1 g .04 oz		
Remarks					

- Specifications will vary with foreign standards certification ratings.
- Measurement at same location as "Initial breakdown voltage" section
- *2 Detection current: 10mA
- *3 Excluding contact bounce time
- *4 Half-wave pulse of sine wave: 11ms, detection time: 10μs
- *5 Half-wave pulse of sine wave: 6ms
- * Detection time: 10μs
 * Refer to 7. Conditions for operation, transport and storage conditions in NOTES


TYPICAL APPLICATIONS

- Antenna switching of mobile phone
- · Switching signal of measuring equipment

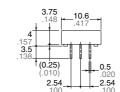
24 V DC

• All types of compact wireless devices

ORDERING INFORMATION

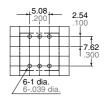
Note: Standard packing; Carton: 50 pcs. Case 1,000 pcs.

TYPES ANE COIL DATA (at 20°C 68°F)

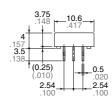

Part No.		Nominal	Pick-up	Drop-out	Coil	Nominal operating	Nominal	Maximum.
Standard PC board terminal	Self-clinching terminal	voltage, V DC	voltage, max. V DC	voltage, min. V DC	resistance, Ω (±10%)	current, mA (±10%)	operating power, mW	allowable voltage, V DC
RP1-1.5V	RP1-H-1.5V	1.5	1.125	0.15	16	93.8	140	2.25
RP1-3V	RP1-H-3V	3	2.25	0.3	64.3	46.7	140	4.5
RP1-4.5V	RP1-H-4.5V	4.5	3.375	0.45	145	31.1	140	6.75
RP1-5V	RP1-H-5V	5	3.75	0.5	178	28	140	7.5
RP1-6V	RP1-H-6V	6	4.5	0.6	257	23.3	140	9
RP1-9V	RP1-H-9V	9	6.75	0.9	579	15.6	140	13.5
RP1-12V	RP1-H-12V	12	9	1.2	1,028	11.7	140	18
RP1-24V	RP1-H-24V	24	18	2.4	2,133	11.3	270	28.8

DIMENSIONS

mm inch



Standard PC board terminal



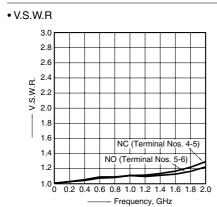
PC board pattern (Bottom view)

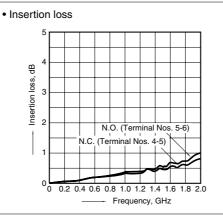
Self-clinching terminal

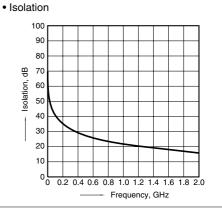

Tolerance: ±0.1 ±.004 Schematic (Bottom view)

Deenergized condition

REFERENCE DATA

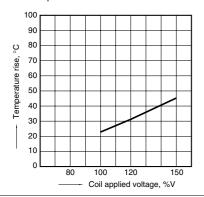

1. High frequency characteristics Sample: RP1-6V Measuring method: Impedance 50Ω Measuring tool:



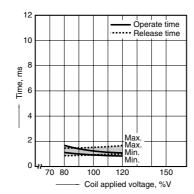

PC board

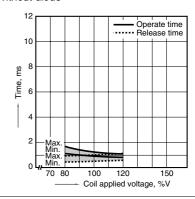
General tolerance: ±0.3 ±.012

- Double-sided through hole
- Material: Glass-epoxy resin
- t = 1.0mm .039 inch
- Copper plated thickness: 35 μm



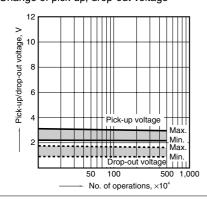
RP


2. Coil temperature rise Sample: RP1-6V; No. of samples: n = 5 Carrying current: 0.1 A Ambient temperature: 25°C 77°F

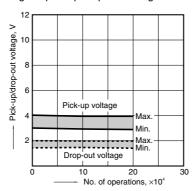

3. Operate/release time

Sample: RP1-9V; No. of samples: n = 50

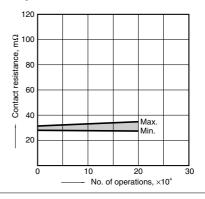
• With diode



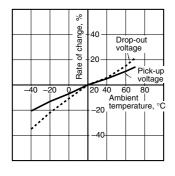
• Without diode

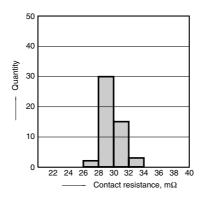

4. Mechanical life Sample: RP1-5V; No. of samples: n = 8

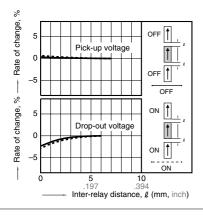
• Change of pick-up, drop-out voltage

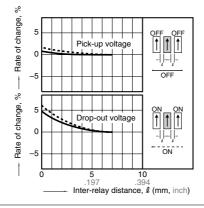


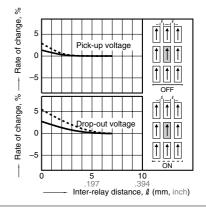
5. Electrical life (0.1 A 30 V DC) Sample: RP1-6V; No. of samples: n = 6

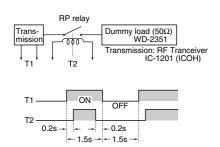

· Change of pick-up/drop-out voltage

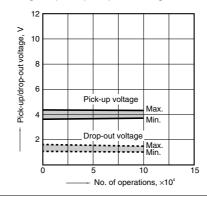

• Change of contact resistance

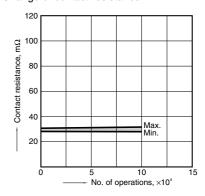

6. Ambient temperature characteristics Sample: RP1-6V; No. of samples: n = 5


7. Contact resistance distribution (initial) Sample: RP1-12V; No. of samples: n = 25


8.-(1) Influence of adjacent mounting Sample: RP1-12V; No. of samples: n = 6


8.-(2) Influence of adjacent mounting Sample: RP1-12V; No. of samples: n = 6


8.-(3) Influence of adjacent mounting Sample: RP1-12V; No. of samples: n = 6


9. High frequency switching test (1.2 GHz, 1 W) Sample: RP1-6V; No. of samples: n = 6 Ambient temperature: 20°C 68°F

• Change of pick-up/drop-out voltage

• Change of contact resistance

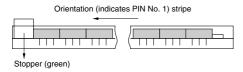
NOTES

1. Coil operating power

Pure DC current should be applied to the coil. The wave form should be rectangular. If it includes ripple, the ripple factor should be less than 5%.

However, check it with the actual circuit since the characteristics may be slightly different. The nominal operating voltage should be applied to the coil for more than 20 ms to set/reset the latching type relay.

2. Coil connection


When connecting coils, refer to the wiring diagram to prevent mis-operation or malfunction.

3. External magnetic field

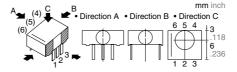
Since RP relays are highly sensitive polarized relays, their characteristics will be affected by a strong external magnetic field. Avoid using the relay under that condition.

4. Packing direction

Relays are packed in a tube with the orientation stripe (PIN NO. 1) toward the green stopper.

5. Automatic mounting

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.


Chucking pressure* in the direction A: 4.9 N {500 gf} or less

Chucking pressure* in the direction B: 9.8 N {1 kgf} or less

Chucking pressure* in the direction C: 9.8 N {1 kgf} or less

Please chuck the portion.

Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

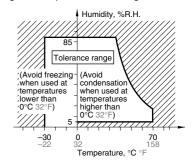
*Value of chucking pressure is shown by the value of weight pressed on the portion (4 mm .157 inch dia.).

6. Soldering

Preheat according to the following conditions.

Temperature	120°C 248°F or less
Time	Within 2 minute

Soldering should be done at 260±5°C 500±5°F within 6 s.


- 1) Perform manual soldering under the conditions below.
- Within 10 s at 260°C 500°F
- Within 3 s at 350°C 662°F

7. Conditions for operation, transport and storage conditions

- 1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
- (1) Temperature:
- -40 to +70°C -40 to +158°F
- (2) Humidity: 5 to 85% RH

(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.

(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.

3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than 0°C 32°F. This causes problems such as sticking of movable parts or operational time lags.

4) Low temperature, low humidity environments

The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.