muRata

Reference Specification

MLCC radial lead type (RH Series 150deg.C max. for Automotive)

Product specifications in this catalog are as of Dec.2014, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: F,X8L,X7R,X7S,X7T, Y5V), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment 6. Transportation equipment (vehicles, trains, ships, etc.)

7. Traffic signal equipment 8. Disaster prevention / crime prevention equipment

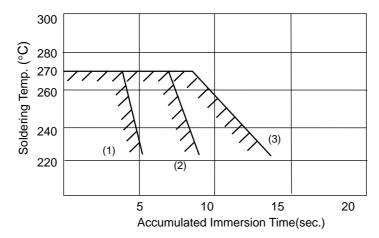
9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.


Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly. Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. Soldering and Mounting

1) Allowable Conditions for Soldering Temperature and Time Perform soldering within tolerance range (shaded portion).

Dimension code

(1) 0, 1, 2(F 2.5mm)

(2) 0, 1, 2(F 5.0mm), 3, 4, W

(3) 5, U

2) Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char.: F,X8L,X7R,X7S,X7T,Y5V)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGLEDMNO01

1. Application

This product specification is applied to Radial Lead Type Monolithic Ceramic Capacitors used for Automotive in the condition of maximum temperature of 150°C, in accordance with AEC-Q200 requirements.

2. Rating

• Applied maximum temperature up to 150°C

Note: Maximum accumulative time to 150°C is within 2000 hours.

• Part number configuration

ex.)	RHE	L8	1H	103	K	0	A2	H03	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Packing
		Characteristic	voltage		tolerance	code	code	specification	style
								code	code

Series

Code	Content
RHE	Epoxy coated, 150°C max.

• Temperature characteristic

Code	Temp. Char.	Temp. Range	Cap. Change (Within%)	Standard Temp.	Operating Temp. Range		
1.0	-55∼+125°C		+/-15	25°C	-55∼+150°C		
L8		+15/-40	25°C				

• Rated voltage

Code	Rated voltage
1E	DC25V
1H	DC50V
2A	DC100V

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 103.

 $10 \times 10^3 = 10000 pF$

• Capacitance tolerance

Code	Capacitance tolerance
K	+/-10%
М	+/-20%

• Dimension code

Code	Dimensions (LxW) mm max.
0	3.6 x 3.5
1	4.0 x 3.5
2	5.5 x 4.0
3	5.5 x 5.0
W	5.5 x 7.5

Lead code

Code	Lead style	Lead spacing (mm)				
A2	Straight type	2.5+/-0.8				
DB	Straight taping type	2.5+0.4/-0.2				
K1	Inside crimp type	5.0+/-0.8				
M1	Inside crimp taping type	5.0+0.6/-0.2				

Lead wire is solder coated CP wire.

Individual specification code
 Murata's control code
 Please refer to [Part number list].

• Packing style code

Code	Packing style
Α	Taping type of Ammo
В	Bulk type

3. Marking

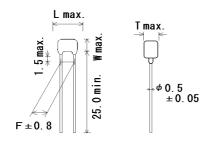
Temp. char. : Letter code : 8 (X8L char.)

Capacitance : 3 digit numbers

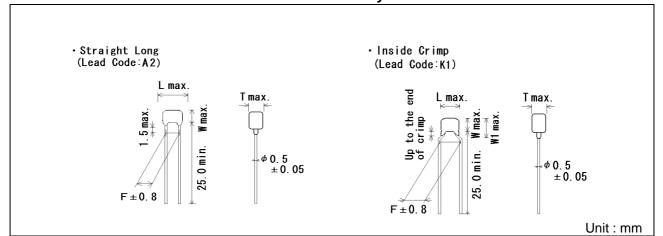
Capacitance tolerance: Code

Rated voltage : Letter code : 2 (DC25V only, Except dimension code : 0,1)

Letter code: 5 (DC50V only, Except dimension code: 0,1) Letter code: 1 (DC100V only, Except dimension code: 0,1)

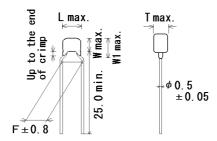

Company name code : Abbreviation : (Except dimension code : 0,1)

(Ex.)

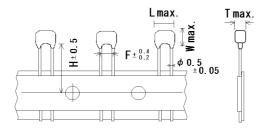

(Ex.)			
Rated voltage Dimension code	25V	50V	100V
0,1	8 105K	8 102K	8 103K
2	G ⁴⁷⁵ K28	G _{K58}	G ²²⁴ K18
3, W	@ 106 K28	G 4335 K58	

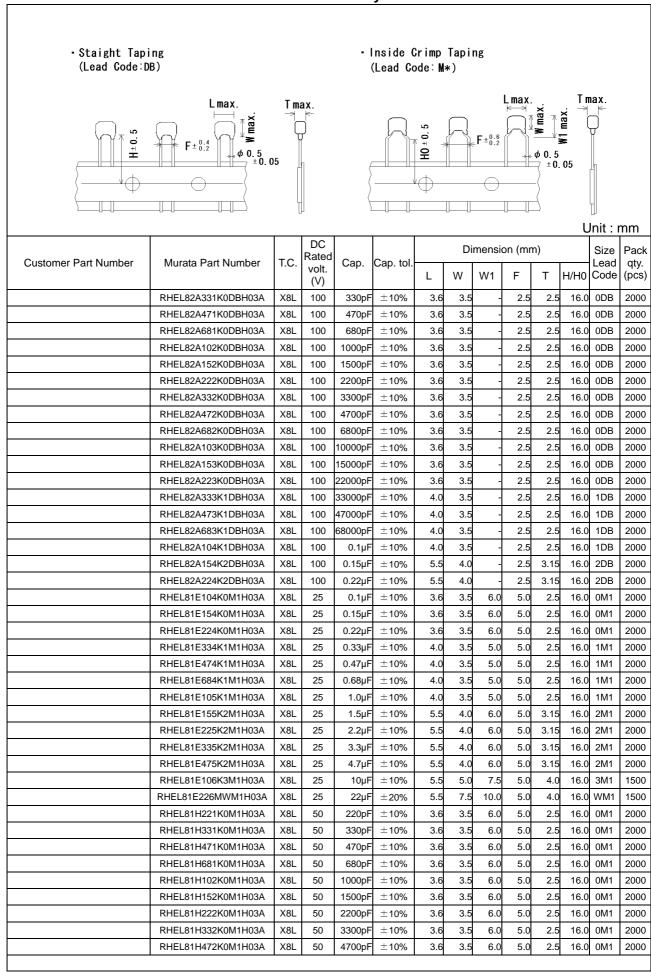
4. Part number list

• Straight Long (Lead Code: A2)

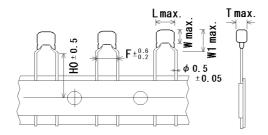


Outland Bott North or	Marria Bart Nambar	Τ.Ο	DC Rated	0.515	Сар.		Dime	nsion	(mm)		Size	Pack
Customer Part Number	Murata Part Number	T.C.	Volt. (V)	Сар.	tol.	L	W	W1	F	Т	Lead Code	qty. (pcs)
	RHEL81E104K0A2H03B	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E154K0A2H03B	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E224K0A2H03B	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E334K1A2H03B	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E474K1A2H03B	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E684K1A2H03B	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E105K1A2H03B	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E155K2A2H03B	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E225K2A2H03B	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E335K2A2H03B	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E475K2A2H03B	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E106K3A2H03B	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL81H221K0A2H03B	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H331K0A2H03B	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H471K0A2H03B	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H681K0A2H03B	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H102K0A2H03B	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H152K0A2H03B	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H222K0A2H03B	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H332K0A2H03B	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H472K0A2H03B	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H682K0A2H03B	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H103K0A2H03B	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H153K0A2H03B	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H223K0A2H03B	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H333K0A2H03B	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H473K0A2H03B	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H683K0A2H03B	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H104K0A2H03B	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H154K1A2H03B	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H224K1A2H03B	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H334K1A2H03B	X8L	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H474K2A2H03B	X8L	50	-	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H684K2A2H03B	X8L	50	0.68µF		5.5	4.0		2.5	3.15		500
	RHEL81H105K2A2H03B	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H155K2A2H03B	X8L	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H225K2A2H03B	X8L	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H335K3A2H03B	X8L	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL81H475K3A2H03B	X8L	50	4.7µF		5.5	5.0	-	2.5	4.0	3A2	500
	RHEL82A221K0A2H03B	X8L	100	220pF		3.6	3.5	-	2.5	2.5	0A2	500
	ı	1	1		1			1	ıl		1	


Customer Deat Number	Museus Deut Nussels au	T.C.	DC Rated	Con	Cap.		Dime	nsion	(mm)		Size	Pack
Customer Part Number	Murata Part Number	1.0.	Volt. (V)	Сар.	tol.	L	W	W1	F	Т	Lead Code	qty. (pcs)
	RHEL82A331K0A2H03B	X8L	100	330pF	±10%	3.6	3.5		2.5	2.5	0A2	500
	RHEL82A471K0A2H03B	X8L	100	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A681K0A2H03B	X8L	100	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A102K0A2H03B	X8L	100	1000pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A152K0A2H03B	X8L	100	1500pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A222K0A2H03B	X8L	100	2200pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A332K0A2H03B	X8L	100	3300pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A472K0A2H03B	X8L	100	4700pF	±10%	3.6	3.5		2.5	2.5	0A2	500
	RHEL82A682K0A2H03B	X8L	100	6800pF	±10%	3.6	3.5		2.5	2.5	0A2	500
	RHEL82A103K0A2H03B	X8L	100	10000pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A153K0A2H03B	X8L	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A223K0A2H03B	X8L	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL82A333K1A2H03B	X8L	100	33000pF	±10%	4.0	3.5		2.5	2.5	1A2	500
	RHEL82A473K1A2H03B	X8L	100	47000pF	±10%	4.0	3.5		2.5	2.5	1A2	500
	RHEL82A683K1A2H03B	X8L	100	68000pF	±10%	4.0	3.5		2.5	2.5	1A2	500
	RHEL82A104K1A2H03B	X8L	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL82A154K2A2H03B	X8L	100	0.15µF	±10%	5.5	4.0		2.5	3.15	2A2	500
	RHEL82A224K2A2H03B	X8L	100	0.22µF	±10%	5.5	4.0		2.5	3.15	2A2	500
	RHEL81E104K0K1H03B	X8L	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81E154K0K1H03B	X8L	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81E224K0K1H03B	X8L	25	0.22µF	$\pm 10\%$	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81E334K1K1H03B	X8L	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81E474K1K1H03B	X8L	25	0.47µF	$\pm 10\%$	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81E684K1K1H03B	X8L	25	0.68µF	$\pm 10\%$	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81E105K1K1H03B	X8L	25	1.0µF	$\pm 10\%$	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81E155K2K1H03B	X8L	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81E225K2K1H03B	X8L	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81E335K2K1H03B	X8L	25	3.3µF	$\pm 10\%$	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81E475K2K1H03B	X8L	25	4.7µF	$\pm 10\%$	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81E106K3K1H03B	X8L	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81E226MWK1H03B	X8L	25	22µF	$\pm 20\%$	5.5	7.5	10.0	5.0	4.0	WK1	500
	RHEL81H221K0K1H03B	X8L	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H331K0K1H03B	X8L	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H471K0K1H03B	X8L	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H681K0K1H03B	X8L	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H102K0K1H03B	X8L	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H152K0K1H03B	X8L	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H222K0K1H03B	X8L	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H332K0K1H03B	X8L	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H472K0K1H03B	X8L	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500



0		т.	DC Rated	0.575	Cap.			Size	Pack			
Customer Part Number	Murata Part Number	T.C.	Volt. (V)	Сар.	tol.	L	W	W1	F	Т	Lead Code	qty. (pcs)
	RHEL81H682K0K1H03B	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H103K0K1H03B	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H153K0K1H03B	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H223K0K1H03B	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H333K0K1H03B	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H473K0K1H03B	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H683K0K1H03B	X8L	50	68000pF	\pm 10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H104K0K1H03B	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H154K1K1H03B	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H224K1K1H03B	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H334K1K1H03B	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H474K2K1H03B	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H684K2K1H03B	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H105K2K1H03B	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H155K2K1H03B	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H225K2K1H03B	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H335K3K1H03B	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81H475K3K1H03B	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81H106MWK1H03B	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500
	RHEL82A221K0K1H03B	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A331K0K1H03B	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A471K0K1H03B	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A681K0K1H03B	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A102K0K1H03B	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A152K0K1H03B	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A222K0K1H03B	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A332K0K1H03B	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A472K0K1H03B	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A682K0K1H03B	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A103K0K1H03B	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A153K0K1H03B	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A223K0K1H03B	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A333K1K1H03B	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A473K1K1H03B	X8L	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A683K1K1H03B	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A104K1K1H03B	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A154K2K1H03B	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL82A224K2K1H03B	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500


Staight Taping (Lead Code:DB)

Customer Part Number	Murata Part Number		DC Rated volt.	Сар.	Cap. tol.				on (mr	,		Size Lead	Pack qty.
			(V)			L	W	W1	F	Т	H/H0	Code	(pcs)
	RHEL81E104K0DBH03A	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E154K0DBH03A	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E224K0DBH03A	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E334K1DBH03A	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E474K1DBH03A	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E684K1DBH03A	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E105K1DBH03A	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E155K2DBH03A	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E225K2DBH03A	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E335K2DBH03A	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E475K2DBH03A	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E106K3DBH03A	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
	RHEL81H221K0DBH03A	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H331K0DBH03A	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H471K0DBH03A	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H681K0DBH03A	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H102K0DBH03A	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H152K0DBH03A	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H222K0DBH03A	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H332K0DBH03A	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H472K0DBH03A	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H682K0DBH03A	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H103K0DBH03A	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H153K0DBH03A	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H223K0DBH03A	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H333K0DBH03A	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H473K0DBH03A	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H683K0DBH03A	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H104K0DBH03A	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H154K1DBH03A	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81H224K1DBH03A	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81H334K1DBH03A	X8L	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5			2000
	RHEL81H474K2DBH03A	X8L	50	0.47µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H684K2DBH03A	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H105K2DBH03A	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H155K2DBH03A	X8L	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H225K2DBH03A	X8L	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H335K3DBH03A	X8L	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	2000
	RHEL81H475K3DBH03A	X8L	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	2000
	RHEL82A221K0DBH03A	X8L	100	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000

Inside Crimp Taping (Lead Code: M*)

Customer Part Number	Murata Part Number	T.C.	DC Rated	Cap.	Cap. tol.		Di	mensi	on (mr	n)		Size Lead	Pack qty.
Customer Fait Number	Murata Fart Number	1.0.	volt. (V)	voit.	Сар. юі.	L	W	W1	F	Т	H/H0	Code	
	RHEL81H682K0M1H03A	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H103K0M1H03A	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H153K0M1H03A	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H223K0M1H03A	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H333K0M1H03A	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H473K0M1H03A	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H683K0M1H03A	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H104K0M1H03A	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H154K1M1H03A	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H224K1M1H03A	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H334K1M1H03A	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H474K2M1H03A	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H684K2M1H03A	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H105K2M1H03A	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H155K2M1H03A	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H225K2M1H03A	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H335K3M1H03A	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	150
	RHEL81H475K3M1H03A	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RHEL81H106MWM1H03A	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1500
	RHEL82A221K0M1H03A	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A331K0M1H03A	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A471K0M1H03A	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A681K0M1H03A	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A102K0M1H03A	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A152K0M1H03A	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
-	RHEL82A222K0M1H03A	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A332K0M1H03A	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A472K0M1H03A	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A682K0M1H03A	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A103K0M1H03A	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A153K0M1H03A	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A223K0M1H03A	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	200
	RHEL82A333K1M1H03A	X8L	100	33000pF		4.0	3.5	5.0	5.0	2.5			200
	RHEL82A473K1M1H03A	X8L	100	47000pF		4.0	3.5	5.0	5.0	2.5			2000
	RHEL82A683K1M1H03A	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	200
	RHEL82A104K1M1H03A	X8L	100	0.1µF		4.0	3.5	5.0	5.0	2.5			200
	 	V01	400	-		5.5	4.0	6.0	5.0	3.15			2000
	RHEL82A154K2M1H03A	X8L	100	0.15µF	- 1070	0.0	4.0	0.0	5.0	0.10	10.0	ZIVII	2000

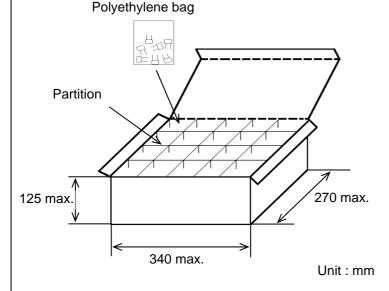
5. A	EC-Q200	Murata St	tandard Specifications and Test Metho	uds					
No.		Q200 Item	Specification	AEC-Q200 Test Method					
1	Pre-and Post			<u> </u>					
2	Electrical Tes High Temper Exposure (St	rature orage)	The measured and observed characteristics should satisfy the specifications in the following table.	Sit the capacitor for 1,000±12h at 150±3°C. Let sit for 24±2h at room temperature, then measure.					
		Appearance Capacitance Change D.F. I.R.	No defects or abnormalities within ±12.5% 0.04 max. More than 1,000ΜΩ or 50 ΜΩ·μF (Whichever is smaller)	- - -					
3	Temperature	Cycling	The measured and observed characteristics should satisfy the specifications in the following table.	Perform the 1,000 cycles according to the four heat treatments listed in the following table. Let sit for 24±2 h at *room condition,					
		Appearance Capacitance Change D.F. I.R.	No defects or abnormalities except color change of outer coating. Within $\pm 12.5\%$ 0.05 max. 1,000M Ω or $50M\Omega\cdot\mu F$ min. (Whichever is smaller)	Step					
4	Moisture Res	sistance	The measured and observed characteristics should satisfy the specifications in the following table.	then let sit for 24±2 h at *room condition. Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.					
		Appearance Capacitance Change D.F. I.R.	No defects or abnormalities within ±12.5% 0.05 max. 500MΩ or 25MΩ·μF min. (Whichever is smaller)	Let sit for 24±2 h at *room condition, then measure. Temperature					
5	Biased Humi	Appearance	The measured and observed characteristics should satisfy the specifications in the following table. No defects or abnormalities within ±12.5% 0.05 max. 500MΩ or 25MΩ·μF min. (Whichever is smaller)	Apply the rated voltage and DC1.3+0.2/-0 V (add $6.8k\Omega$ resistor) at $85\pm3^{\circ}$ C and 80 to 85% humidity for $1,000\pm12h$. Remove and let sit for 24 ± 2 h at *room condition, then measure. The charge/discharge current is less than 50mA. • Pretreatment Perform a heat treatment at $150+0/-10^{\circ}$ C for 1hr. and then set at room temperature for 24 ± 2 hrs.					
6	Operational L	Departional Life The measured and observed characteristics should satisfy the specifications in the following table. Appearance No defects or abnormalities except color change of outer coating. Capacitance Change D.F. 1.R. 1,000ΜΩ or 50ΜΩ·μF min. (Whichever is smaller)		Apply 150% of the rated voltage for 1,000±12h at 150±3°C. Let sit for 24±2 h at *room condition, then measure. The charge/discharge current is less than 50mA. •Pretreatment Apply test voltage for 60±5 min at test temperature. Remove and let sit for 24±2 h at *room condition.					
* "roon	n condition"	Femperature:1	5 to 35°C, Relative humidity:45 to 75%, Atmosphere p	ressure:86 to 106kPa					

No.	AEC-Q200 Test Item		Specification		AEC-Q200 Test Method					
7			No defects or abnormalities	Visual inspe	ection					
8	Physical Dim	ension	Within the specified dimensions	Using calipe	ers and micro	meters.				
9	Marking		To be easily legible.	Visual inspe	ection					
10	Resistance to Solvents	Appearance Capacitance D.F.	No defects or abnormalities Per			d 215 blume) of isoprop olume) of miner				
		I.R.	More than 10,000M Ω or 500 M Ω ·μF (Whichever is smaller)		1part (by vo	volume) of wate lume) of propyle	ene glycol			
11	Mechanical Shock	Appearance	No defects or abnormalities				e applied along 3 pecimen (18 shoo	cks).		
			Within the specified tolerance	The specifie	ed test pulse	should be Half-s	ine and should ha	ave a		
		D.F.	0.025 max.	duration :0.	bms, peak va	lue:1,500G and	velocity change: 4	4.7m		
12	Vibration		No defects or abnormalities			•	imple harmonic mequency being va			
		Capacitance	Within the specified tolerance		•					
		D.F.	0.025 max.	uniformly between the approximate limits of 10 and 2,000Hz The frequency range, from 10 to 2,000Hz and return to 10H should be traversed in approximately 20 min. This motion should be applied for 12 items in each 3 mutually perpendic directions (total of 36 times).						
13	Resistance to Soldering Heat						solder 1.5 to 2mm e specified items			
		ppearance	No defects or abnormalities		fter 24±2 h.					
	C	apacitance hange	within ±7.5%	•Pretreatme	ent	ant at 150±0/-10	°C for 60±5 min a	nd		
	Dielectric Strength (Between terminals)		No defects			*room condition.		iiu		
14	Thermal Sho	ck	The measured and observed characteristics should satisfy the specifications in the following table.				wo heat treatment ime is 20s.). Let			
	A	ppearance	No defects or abnormalities	24±2 h at *r	oom conditio	n, then measure).			
	1	apacitance hange	within ±12.5%		Step Temp.	1	2	-		
		.F.	0.05 max.	1	(°C)	-55+0/-3	150+3/-0			
		.r. R.	1,000MΩ or 50MΩ·μF min. (Whichever is smaller)	•Pretreatme	Time (min.)	15±3	15±3			
					Perform the heat treatment at 150+0/-10°C for 60±5 min and then let sit for 24±2 h at *room condition.					
15	l –	ppearance	No defects or abnormalities	Per AEC-Q	200-004					
	l –		Within the specified tolerance	-						
	_	.F. R.	0.025 max. More than 10,000M Ω or 500 M Ω ·μF	_						
16	Solderability		(Whichever is smaller) Lead wire should be soldered with uniform coating on	The termina	ol of a capacit	or is dippod into	a solution of etha	anal		
10	Soluerability		the axial direction over 3/4 of the circumferential direction.	(JIS-K-8101 propotion) a In both case the termina	and rosin (and then into les the depth of body.	JIS-K-5902) (259 molten solder (JI	% rosin in weight IS-Z-3282) for 2±0 o about 1.5 to 2m).5 s		
						A Eutectic Solde				
roon	n condition"	Temperature:1	5 to 35°C, Relative humidity:45 to 75%, Atmosphere pr							

ESRH01B

No.	AEC-Q200 Test Item			Specifications	AEC-Q200 Test Method					
17	Electrical	Apperance	No defects or	abnormalities	Visual inspection.					
	Characte- rization	Capacitance	Within the sp	ecified tolerance	The capacitance/D.F. should be measured at 25°C at the					
		D.F.	0.025 max.		frequency and voltage shown in the table.					
					Frequency Voltage					
					1±0.1N12 1±0.2V(IIIS)					
		Insulation Resistance (I.R.)	Room Temperature	10,000M Ω or 500M Ω · μ F min. (Whichever is smaller)	The insulation resistance should be measured at 25±3 °C with DC voltage not exceeding the rated voltage at normal tempera and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)					
			High Temperature	100M Ω or 5M Ω · μ F min. (Whichever is smaller)	The insulation resistance should be measured at 150±3 °C widdle DC voltage not exceeding the rated voltage at normal temperal and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)					
		Dielectric Strength	Between Terminals	No defects or abnormalities	The capacitor should not be damaged when DC voltage of 25 of the rated voltage is applied between the terminations for 1 seconds. (Charge/Discharge current ≤ 50mA.)					
			Body Insulation	No defects or abnormalities	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and 250% of the rated DC voltage is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.)					
18	Terminal Strength	Tensile Strength	Termination r	ot to be broken or loosened	As in the figure, fix the capacitor body, apply the force gradua to each lead in the radial direction of the capacitor until reachi 10N and then keep the force applied for 10±1 seconds.					
		Bending Strength	Termination r	not to be broken or loosened	Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire then returned to the original position and bent 90° in the opposition at the rate of one bend per 2 to 3 seconds.					
19	Capacitan	l ce	X8L : within ±	:15%	The capacitance change should be measured after 5min. at					
	Temperatu Characteri			Range: -55 to +125°C)	each specified temperature step.					
	Onaracien	teristics within +15/-40% (Temp. Range: +125 to +150°C)			Step Temperature(°C) 1 25±2					
					2 -55±3					
					3 25±2					
					4 150±3 5 25±2					
					The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges. •Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 min and then let sit for 24±2 h at *room condition. Perform the initial measurement.					
_ 201		, 5.000		lative humidity:45 to 75%, Atmosphe						

6. Packing specification

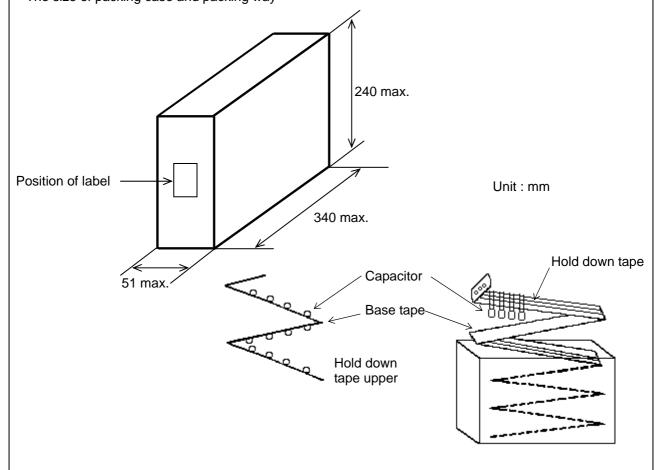

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

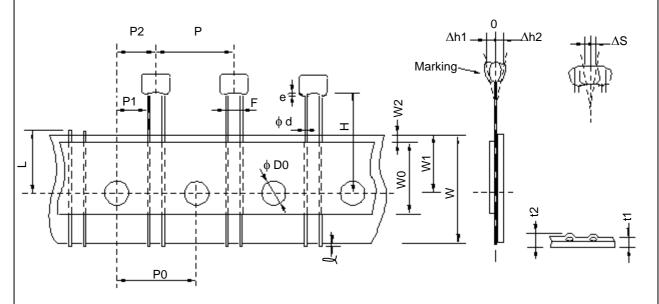


Note)

The outer package and the number of outer packing be changed by the order getting amount.

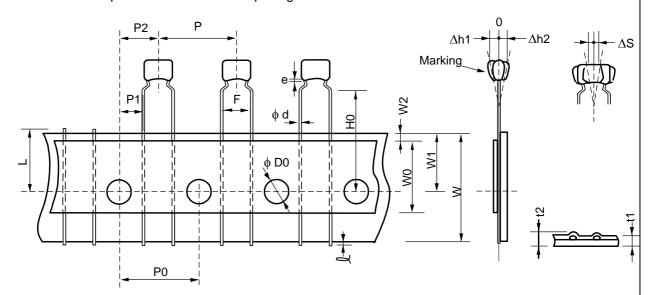
- •Ammo pack taping type (Packing style code : A)
 - · A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

The size of packing case and packing way


EKBCRPE01

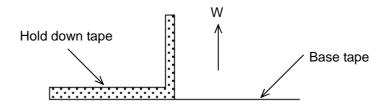
7. Taping specification

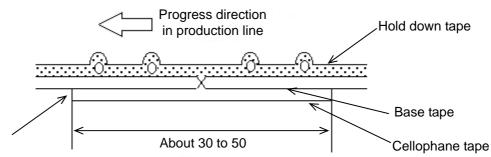
7-1. Dimension of capacitors on tape


Straight taping type < Lead code : DB >

Pitch of component 12.7mm / Lead spacing 2.5mm

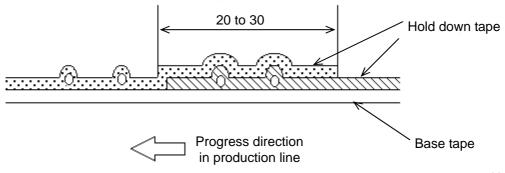
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	2.5+0.4/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of programs discation
Length from hole center to lead	P1	5.1+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	Н	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	d	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Designation access to a	∆h1	1.0 max.	
Deviation across tape	∆h2	1.0 max.	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	1.5 max.	


Inside crimp taping type < Lead code : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm


Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of management discording
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	НО	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	φd	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
	∆h1	2.0 max. (Dime	ension code: W)
Deviation across tape	∆h2	1.0 max. (exce	pt as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of o	rimp

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine