

Reference Specification

MLCC radial lead type with epoxy coat (RDE Series)

Do not use these products in any automotive power train or safety equipment including batterychargers for electric vehicles and plug-in hybrids.

Product specifications in this catalog are as of Dec.2014, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : F,X8L,X7R,X7S,X7T, Y5V), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

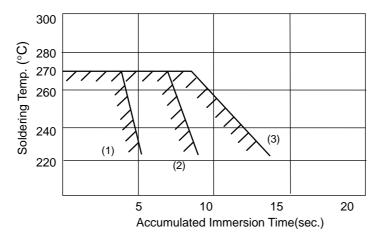
10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.


Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. Soldering and Mounting

1) Allowable Conditions for Soldering Temperature and Time Perform soldering within tolerance range (shaded portion).

Dimension code

(1) 0, 1, 2(F 2.5mm)

(2) 0, 1, 2(F 5.0mm), 3, 4, W

(3) 5, U

2) Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char.: F,X8L,X7R,X7S,X7T,Y5V)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGLEDMNO01

1. Application

This product specification is applied to MONOLITHIC LEADED CERAMIC CAPACITOR radial lead type with epoxy coat used for General Electronic equipment.

2. Rating

• Part number configuration

ex.)	RDE	D7	2E	104	K	3	K1	H03	В
3	Series	Temperature Characteristic	Rated voltage	Capacitance	Capacitance tolerance	Dimension code	Lead code	Individual specification code	Packing style code

• Temperature characteristic

Code	Temp. Char.	Temp. Range	Cap. Change (Within%)	Standard Temp.	Operating Temp.Range
D7	X7T	-55~125°C	+22/-33	25°C	-55~125°C

• Rated voltage

Code	Rated voltage
2E	DC250V
2W	DC450V
2J	DC630V

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 104

 $10 \times 10^4 = 100000 pF$

• Capacitance tolerance

Code	Capacitance Tolerance				
K	+/-10%				
M	+/-20%				

• Dimension code

Code	Dimensions (LxW) mm max.
2	5.5 x 4.0
3	5.5 x 5.0
4	7.5 x 5.5
5	7.5 x 7.5 *
U	7.7 x12.5 *

*DC630V: W+0.5mm

• Lead code

Code	Lead style	Lead spacing (mm)
B1	Straight type	5.0+/-0.8
E1	Straight taping type	5.0+0.6/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

Lead wire is solder coated CP wire.

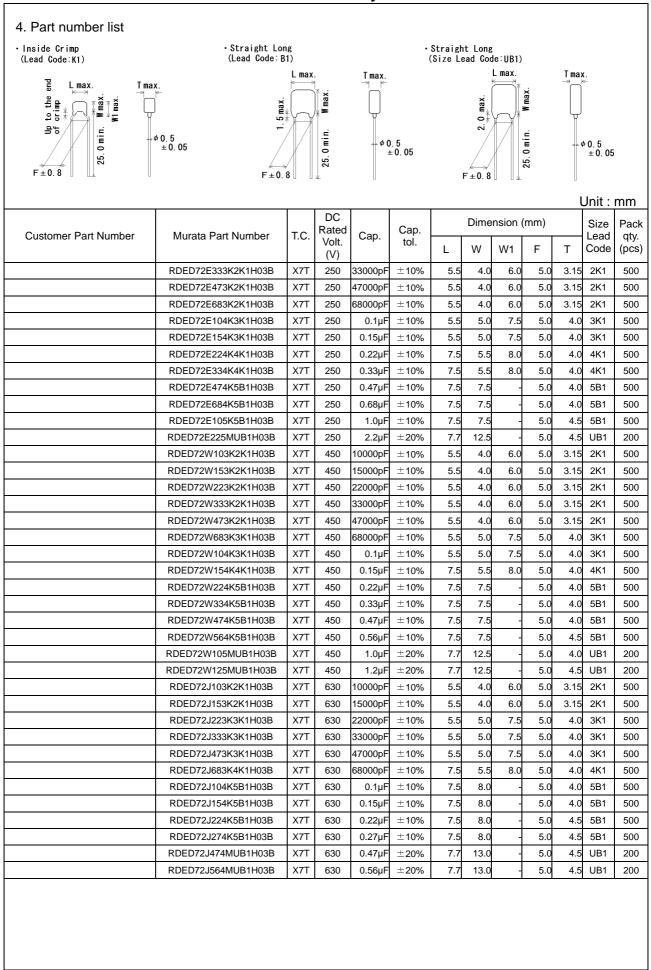
• Individual specification code Murata's Control Code Please refer to [Part number list].

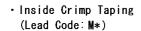
• Packing style code

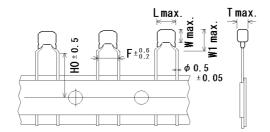
Code	Packing style
Α	Taping type of Ammo
В	Bulk type

3. Marking

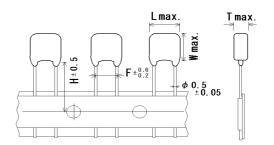
Temp. Char. : Letter code : 7 (X7T char.) Temp. Char. : Letter code : 7 (X)
Capacitance : 3 digit numbers


Capacitance Tolerance : Code


Rated voltage : Letter code : 4 (DC250V)


Letter code: 9 (DC450V) Letter code: 7 (DC630V)

Company name code : Abbreviation : [M


(Ex.) Rated voltage DC450V DC630V DC250V Dimensions **€**683 K47 **€**153 K77 **€**153 K97 2 **(**4334 **(**104 **€** 223 3, 4 K97 K77 K47 **(**≁ 474 **⋈** 474 **€** 225 5, U M47 K97 M77

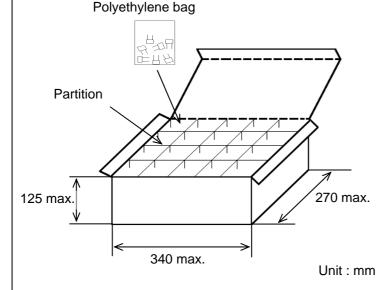
Staight Taping (Lead Code:E*)

												/I III . I	
Customer Part Number	Murata Part Number	T.C.	DC Rated	Con	Con tol		Di	mensi	on (mr	n)		Size	Pack
Customer Part Number	Murata Part Number	1.0.	volt. (V)	Cap.	Cap. tol.	L	W	W1	F	Т	H/H0	Lead Code	qty. (pcs)
	RDED72E333K2M1H03A	X7T	250	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72E473K2M1H03A	X7T	250	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72E683K2M1H03A	X7T	250	68000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72E104K3M1H03A	X7T	250	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72E154K3M1H03A	X7T	250	0.15µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72E224K4M1H03A	X7T	250	0.22µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDED72E334K4M1H03A	X7T	250	0.33µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDED72E474K5E1H03A	X7T	250	0.47µF	±10%	7.5	7.5	-	5.0	4.0	17.5	5E1	1500
	RDED72E684K5E1H03A	X7T	250	0.68µF	±10%	7.5	7.5	-	5.0	4.0	17.5	5E1	1500
	RDED72E105K5E1H03A	X7T	250	1.0µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72E225MUE1H03A	X7T	250	2.2µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	1000
	RDED72W103K2M1H03A	X7T	450	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W153K2M1H03A	X7T	450	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W223K2M1H03A	X7T	450	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W333K2M1H03A	X7T	450	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W473K2M1H03A	X7T	450	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72W683K3M1H03A	X7T	450	68000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72W104K3M1H03A	X7T	450	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72W154K4M1H03A	X7T	450	0.15µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDED72W224K5E1H03A	X7T	450	0.22µF	±10%	7.5	7.5	-	5.0	4.0	17.5	5E1	1500
	RDED72W334K5E1H03A	X7T	450	0.33µF	±10%	7.5	7.5	-	5.0	4.0	17.5	5E1	1500
	RDED72W474K5E1H03A	X7T	450	0.47µF	±10%	7.5	7.5	-	5.0	4.0	17.5	5E1	1500
	RDED72W564K5E1H03A	X7T	450	0.56µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDED72W105MUE1H03A	X7T	450	1.0µF	±20%	7.7	12.5	-	5.0	4.0	17.5	UE1	1500
	RDED72W125MUE1H03A	X7T	450	1.2µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	1000
	RDED72J103K2M1H03A	X7T	630	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72J153K2M1H03A	X7T	630	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDED72J223K3M1H03A	X7T	630	22000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72J333K3M1H03A	X7T	630	33000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72J473K3M1H03A	X7T	630	47000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDED72J683K4M1H03A	X7T	630	68000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDED72J104K5E1H03A	X7T	630	0.1µF	±10%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RDED72J154K5E1H03A	X7T	630	0.15µF	±10%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RDED72J224K5E1H03A	X7T	630	0.22µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDED72J274K5E1H03A	X7T	630	0.27µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDED72J474MUE1H03A	X7T	630	0.47µF	±20%	7.7	13.0	-	5.0	4.5	17.5	UE1	1000
	RDED72J564MUE1H03A	X7T	630	0.56µF	±20%	7.7	13.0	-	5.0	4.5	17.5	UE1	1000

No.	ECIFICATIONS AND		Specification		Test Method					
1	Appearance		No defects or abnormalities	Visual inspection.						
2		and Marking	Within the specified dimensions and Marking		Visual inspection, Using Caliper.					
3	Dielectric Between Strength Terminals		ectric Between No defects or abnormalities		The capacitor should not be damaged when volta in Table is applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50n					
					Rated voltag	, <u> </u>				
					DC250V	200% of the rated voltage				
					DC450V DC630V	150% of the rated voltage 120% of the rated voltage				
		Body Insulation	No defects or abnormalities	of fisk of to second the second t	The capacitor is placed in a container with of 1mm diameter so that each terminal, sh is kept approximately 2mm from the balls, of the rated DC voltage is impressed for 1 seconds between capacitor terminals and balls. (Charge/Discharge current ≤ 50mA.)					
4	Insulation Resistance (I.R.)	Between Terminals	10 000M Ω or 100M Ω ·μF min. (Whichever is smaller)	The DC DC hur	e insulation re 500±50V (DC 250V,DC450 nidity and wit	ssistance should be measured witl 2250±25V in case of rated voltage V) at normal temperature and hin 2 minutes of charging.				
5	Capacitano	e e	Within the specified tolerance	The	e capacitance he frequency	rge current is ≤ 50mA) s, D.F. should be measured at 25° and voltage shown in the table.				
6	Dissipation	Factor	0.01 max.		Ch	ar. X7T				
	(D.F.))			Frequency	1±0.1kHz				
				Voltage AC1±0.2Vrms						
7	Capacitano Temperatur Characteris			The spe	e capacitance ecified tempe	change should be measured at e rature stage.				
					Step 1	Temperature(°C) 25±2				
					2	-55±3				
					3 4	25±2 125±3				
					5	25±2				
					 Pretreatment Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 hours. 					
8	Terminal Strength Strength		Termination not to be broken or loosened	app in t unt the	oly the force of the radial dire il reaching 10 force applied	fix the capacitor body, gradually to each lead ction of the capacitor NN and then keep If for 10±1 seconds.				
		Bending Strength	Termination not to be broken or loosened	2.5 one orig	N and then be direction. Easier	should be subjected to a force of e bent 90° at the point of egress in ach wire is then returned to the and bent 90° in the opposite ate of one bend per 2 to 3 second				
9	Vibration Resistance	Appearance	No defects or abnormalities			nould be subjected to a simple n having a total amplitude of 1.5mi				
	. toolotarioe	Capacitance D.F.	Within the specified tolerance 0.01max.	the	frequency be	eing varied uniformly between the				
				The to 1 Thi eac hou	approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz an to 10Hz, shall be traversed in approximately This motion shall be applied for a period of 2 each 3 mutually perpendicular directions (to hours).					
10	O Solderability of Lead		Solder is deposited on unintermittently immersed portion in axial direction covering 3/4 or more in circumferential direction of lead wires.	eth ros for is u	The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in solder solutifor 2±0.5 seconds. In both cases the depth of dipp is up to about 1.5 to 2mm from the terminal body. Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5C 235±5°C H60A or H63A Eutectic Solder					

٧o.	Ite	Item Specification		Test Method								
11	Resistance to Soldering	Appearance Capacitance	No defects or abnormalities Within ±10%	The lead wire is immersed in the melted solde 1.5 to 2mm from the main body at 350±10°C to 3.5±0.5 seconds. The specified items are meaning after 24±2 hours.								
	Heat	Change Dielectric Strength (Between terminals)	No defects	• Pretr	 after 24±2 hours. Pretreatment Perform a heat treatment at 150+0/-10°C for one hour and then set at room temperature for 24±2 							
12	Temperature Cycle	Appearance Capacitance	No defects or abnormalities Within ±7.5%	listed i	n the followi	ng table.	he 4 heat treat l±2 hours, the					
		Change	WIGHT ±1.576	measu	re.							
		D.F.	0.01max.	Step Temp	Min.	2 Room	3 Max.	4 Roor				
		I.R.	1 0000M Ω or 100M Ω ·μF min. (Whichever is smaller)	(°C)	Operatin Temp. ±	9 I Tomp	Operating Temp. ±3	Temp				
		Dielectric Strength (Between Terminals)	No defects or abnormalities	Perfo	eatment orm a heat to and then se	reatment at 1	150+0/-10°C f	for one				
13	Humidity (Steady	Appearance	No defects or abnormalities	humid	Set the capacitor at 40±2°C and relative humidty 90 to 95% for 500+24/-0 hours.							
	State)	Capacitance Change	Within ±12.5%		Remove and set at room temperature for 24±2 hou then measure.							
		D.F.	0.02 max.		Pretreatment Perform a heat treatment at 150+0/-10°C for							
		I.R.	1 000MΩ or 10MΩ·μF min. (Whichever is smaller)			t at room ter	at room temperature for 24±2					
14	Humidity Load	Appearance	No defects or abnormalities	humid	Apply the rated voltage at 40±2°C and relative humidity of 90 to 95% for 500+24/-0 hours. Remove and set at room temperature for 24±2 hour							
		Capacitance Change	Within ±12.5%	then m	easure.	t room temp		±2 hou				
		D.F.	0.02 max.		Pretreatment							
		I.R.	1 000MΩ or 10MΩ·μF min. (Whichever is smaller)	Perfo hour	Perform a heat treatment at 150+0/-10°C for hour and then set at room temperature for hours.							
15	High Temperature	Appearance	No defects or abnormalities	Apply maxim	voltage in Ta um operatin	g temperatu						
	Load	Capacitance Change	Within ±12.5%	then m	easure.		erature for 24	±2 hou				
		D.F.	0.02 max.	(Charg	(Charge/Discharge current ≤ 50mA)							
		I.R.	1 000M Ω or 10M Ω ·μF min. (Whichever is smaller)	<u> </u>	Rated voltage		st voltage					
					DC250V DC450V		ne rated voltage					
				-	DC450V 130% of the rated voltage DC630V 120% of the rated voltage							
				Appl Rem	Pretreatment Apply test voltage for one hour at test temperature Remove and set at room temperature for 24±2 hours.							
16	Solvent Resistance	Appearance	No defects or abnormalities	in reag	ent at 20 to	25°C for 30:	nmersed, una ±5 sec. and th	nen				
		Marking	Legible				surface of the e visually exa					
				Reger	t : Isopropyl	alcohol						

6. Packing specification

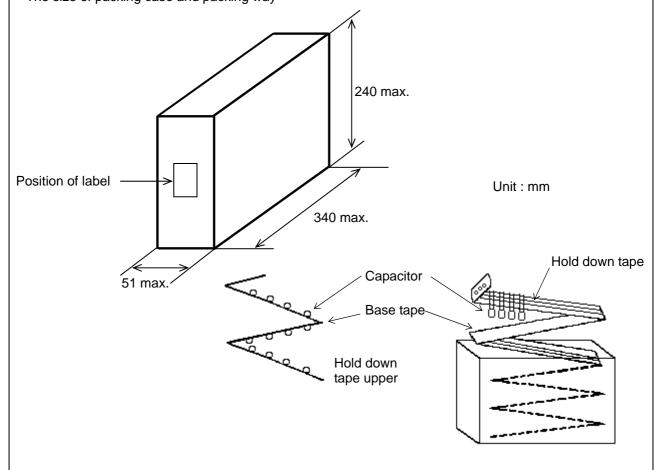

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

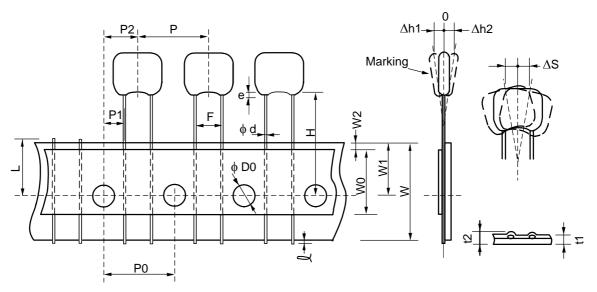


Note)

The outer package and the number of outer packing be changed by the order getting amount.

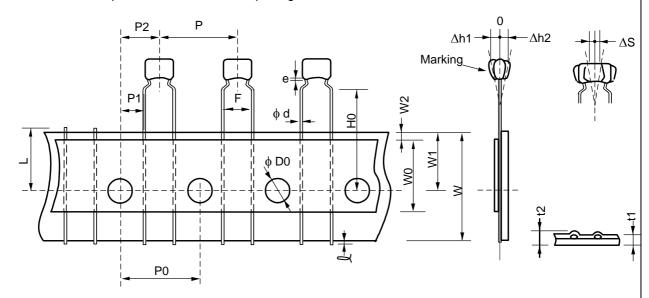
- •Ammo pack taping type (Packing style code : A)
 - · A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

The size of packing case and packing way


EKBCRPE01

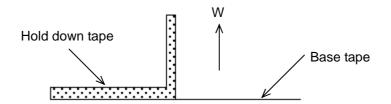
7. Taping specification

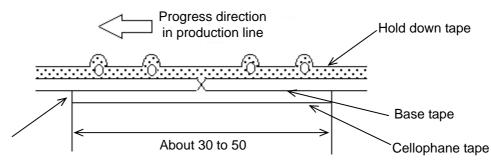
7-1. Dimension of capacitors on tape


Straight taping type < Lead code : E1 >

Pitch of component 12.7mm / Lead spacing 5.0mm

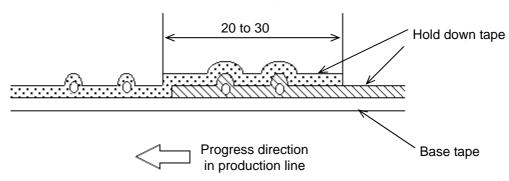
Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of managed diseasting	
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
For straight lead type	Н	17.5+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	D0	4.0+/-0.1		
Lead diameter	φd	0.50+/-0.05		
Total tape thickness	t1	0.6+/-0.3	The continuous health decree to the later and	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
	∆h1	2.0 max. (Dime	ension code: U)	
Deviation across tape	∆h2	1.0 max. (exce	pt as above)	
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	WO	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	2.0 max. (Dimension code : U) 1.5 max. (except as above)		


Inside crimp taping type < Lead code : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm


Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	Н0	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	φd	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape thickness.
Total thickness of tape and lead wire	t2	1.5 max.	
Deviation across tape	∆h1	2.0 max. (Dimension code : W)	
	∆h2	1.0 max. (except as above)	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	WO	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of crimp	

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine