## A High-capacity, High-dielectricstrength, Multi-pole Relay Used Like a Contactor

■ Miniature hinge for maximum switching power for motor loads as well as resistive and inductive loads.
■ No contact chattering for momentary voltage drops up to $50 \%$ of rated voltage.


- Withstanding more than 4 kV between contacts that are different in polarity and between the coil and contacts.

미장
■ Flame-resistant materials (UL94V-0-qualifying) used for all insulation material..
■ Standard models approved by UL and CSA.

## Ordering Information

| Mounting type | Contact form | PCB terminals | Screw terminals | Quick-connect terminals |
| :---: | :---: | :---: | :---: | :---: |
| PCB mounting | 4PST-NO | G7J-4A-P, G7J-4A-PZ | - | - |
|  | 3PST-NO/SPST-NC | G7J-3A1B-P, G7J-3A1B-PZ | - | - |
|  | DPST-NO/DPST-NC | G7J-2A2B-P | - | - |
| W-bracket (See Note) | 4PST-NO | - | G7J-4A-B, G7J-4A-BZ | G7J-4A-T, G7J-4A-TZ |
|  | 3PST-NO/SPST-NC | - | G7J-3A1B-B, G7J-3A1B-BZ | G7J-3A1B-T, G7J-3A1B-TZ |
|  | DPST-NO/DPST-NC | - | G7J-2A2B-B | G7J-2A2B-T |

Note: These Relays need a W-bracket (sold separately) for mounting.
When ordering specify the voltage. Example: G7J-4A-P 240 VAC

Rated coil voltage

## Model Number Legend

G7J $-\frac{\square}{1}-\frac{\square}{2}-\frac{\square}{3}$

1. Contact Form

4A: 4PST-NO
3A1B: 3PST-NO/SPST-NC
2A2B: DPST-NO/DPST-NC
2. Terminal Shape

P: PCB terminals
B: Screw terminals
T: Quick-connect terminals (\#250 terminal) Note: For bifurcated contact type, output is 1 NO (4PST-NO) or 1NC (3PST-NO/SPST-NC).

## PCB Terminals

| Contact form | Rated voltage (V) | Model |
| :--- | :--- | :--- |
| 4PST-NO | $24,50,100$ to 120, <br> 200 to 240 VAC | G7J-4A-P |
|  | $12,24,48,100 \mathrm{VDC}$ |  |
|  | $24,50,100$ to 120, <br> 200 to 240 VAC | G7J-3A1B-P |
|  | $12,24,48,100 \mathrm{VDC}$ |  |
| DPST-NO/DPST- <br> NC | $24,50,100$ to 120, <br> 200 to 240 VAC | G7J-2A2B-P |
|  | 12,24, VDC |  |

PCB Terminals (Bifurcated Contact)

| Contact Form | Rated voltage (V) | Model |
| :--- | :--- | :--- |
| 4PST-NO | 200 to 240 VAC <br> 24 VDC | G7J-4A-PZ |
| 3PST-NO/ <br> SPST-NC | 12, 24 VDC | G7J-3A1B-PZ |

## W-bracket Screw Terminals

| Contact form | Rated voltage(V) | Model |
| :---: | :---: | :---: |
| 4PST-NO | 24, 50, 100 to 120 , 200 to 240 VAC | G7J-4A-B |
|  | 12, 24 VDC |  |
| $\begin{aligned} & \text { 3PST-NO/ } \\ & \text { SPST-NC } \end{aligned}$ | $24,50,100$ to 120 , 200 to 240 VAC | G7J-3A1B-B |
|  | 12, 24 VDC |  |
| DPST-NO/DPSTNC | 24, 50, 100 to 120 , 200 to 240 VA.C | G7J-2A2B-B |
|  | 12, 24, VDC |  |

## Screw Terminals (Bifurcated Contact)

| Name | Rated voltage (V) | Model |
| :--- | :--- | :--- |
| 4PST-NO | Under registration | G7J-4A-B |
| 3PST-NO/ <br> SPST-NC | $24,50,100$ to 120, <br> 200 to 240 VAC | G7J-3A1B-BZ |
|  | $6,12,24,48,100,110$ VDC |  |

## - Accessories (Order Separately)

| Name | Model | Applicable Relay |
| :---: | :--- | :--- |
| W-bracket | R99-04 for G5F | G7J-4A-B |
|  |  | G7J-3A1B-B |
|  |  | G7J-2A2B-B |
|  |  | G7J-4A-T |
|  |  | G7J-3A1B-T |
|  |  | G7J-2A2B-T |

Tab Terminals

| Contact form | Rated voltage(V) | Model |
| :--- | :--- | :--- |
| 4 PST-NO | $24,50,100$ to 120, <br> 200 to 240 VAC | G7J-4A-T |
|  | 12,24 VDC |  |
|  | $24,50,100$ to 120, <br> 200 to 240 VAC | G7J-3A1B-B |
|  | 12,24 VDC |  |
| DPST-NO/ <br> DPST-NC | $24,50,100$ to 120, <br> 200 to 240 VA.C |  |
|  | 12,24, VDC |  |

Tab Terminals (Bifurcated Contact)

| Contact form | Rated voltage (V) | Model |
| :--- | :--- | :--- |
| 4PST-NO | 100 to 120, 200 to 240 VAC | G7J-4A-TZ |
| 3PST-NO/ <br> SPST-NC | Under registration | G7J-3A1B-TZ |

## Application Examples

- Compressors for air conditioners and heater switching controllers.
- Switching controllers for power tools or motors.
- Lamp controls, motor drivers, and power supply switching controllers in copy machines, facsimile machines, and other office equipment.
- Power controllers for packers or food processing equipment.
- Power controllers for inverters.


## Specifications

- Coil Ratings

| Rated voltage |  | $\begin{array}{c}\text { Rated current } \\ \text { voltage }\end{array}$ | Coil Resistance | $\begin{array}{c}\text { Must operate } \\ \text { voltage }\end{array}$ | $\begin{array}{c}\text { Must release } \\ \text { voltage }\end{array}$ | Max. voltage |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{c}Power <br>

consumption\end{array}\right]\)

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for AC rated current and $\pm 15 \%$ for DC coil resistance. (The values given for AC rated current apply at 50 Hz or 60 Hz .)
2. Performance characteristic data are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is one that is applicable to the Relay coil at $23^{\circ} \mathrm{C}$.

## - Contact Ratings

| Item | Resistive load ( $\cos \varphi=1$ ) | Inductive load ( $\cos \varphi=0.4)$ | Resistive load |
| :---: | :---: | :---: | :---: |
| Contact mechanism | Double break |  |  |
| Contact material | Ag alloy |  |  |
| Rated load | NO: 25 A at 220 VAC ( 24 A at 230 VAC) NC: 8 A at 220 VAC ( 7.5 A at 230 VAC ) |  | NO: 25 A at 30 VDC NC: 8 A at 30 VDC |
| Rated carry current | $\begin{aligned} & \text { NO: } 25 \text { A (1 A) } \\ & \text { NC: } 8 \text { A (1 A) } \end{aligned}$ |  |  |
| Max. switching voltage | 250 VAC |  | 125 VDC |
| Max. switching current | $\begin{aligned} & \text { NO: } 25 \text { A (1 A) } \\ & \text { NC: } 8 \text { A (1 A) } \end{aligned}$ |  |  |

Note: The values in parentheses indicate values for a bifurcated contact.
Characteristics

| Contact resistance (see note 2) | $50 \mathrm{~m} \Omega$ max. |
| :---: | :---: |
| Operate time (see note 3) | 50 ms max. |
| Release time (see note 3) | 50 ms max. |
| Max. operating frequency | Mechanical: 1,800 operations/hr Electrical: 1,800 operations/hr |
| Insulation resistance (see note 4) | 1,000 M min . (at 500 VDC ) |
| Dielectric strength | $4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts <br> 4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity <br> $2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity |
| Impulse withstand voltage | $10,000 \mathrm{~V}$ between coil and contact (with $1.2 \times 50 \mu \mathrm{~s}$ impulse wave) |
| Vibration resistance | Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude ( 1.5 mm double amplitude) Malfunction: NO: 10 to 55 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude ( 1.5 mm double amplitude); NC: 10 to 26 to $10 \mathrm{~Hz}, 0.75 \mathrm{~mm}$ single amplitude ( 1.5 mm double amplitude) |
| Shock resistance | Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: NO: $100 \mathrm{~m} / \mathrm{s}^{2}$ NC: $20 \mathrm{~m} / \mathrm{s}^{2}$ |
| Endurance | Mechanical: 1,000,000 operations min. (at 1,800 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr) (see note 5) |
| Error rate (see note 6) | 100 mA at 24 VDC (bifurcated contact: 24 VDC 10 mA ) |
| Ambient temperature | Operating: $-25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (with no icing or condensation) |
| Ambient humidity | Operating: 5\% to 85\% |
| Weight | PCB terminal: approx. 140 g Screw terminal: approx. 165 g Quick-connect terminal: approx. 140 g |

Note: 1. The above values are all initial values.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
3. The operate and the release times were measured with the rated voltage imposed with any contact bounce ignored at an ambient temperature of $23^{\circ} \mathrm{C}$.
4. The insulation resistance was measured with a $500-\mathrm{VDC}$ megger applied to the same places as those used for checking the dielectric strength.
5. The electrical endurance was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
6. This value was measured at a switching frequency of 60 operations per minute.

## ■ Approved by Standards

The G7J satisfies the following international standards. Approval for some international markings and symbols are still pending, however, and information on them will be added when they are approved.

## UL (File No. E41643)

CSA (File No. LR35535)

| Coil ratings | Contact ratings |  | Number of test operations |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 24 \text { to } 265 \text { VAC } \\ & 6 \text { to } 110 \text { VDC } \end{aligned}$ | NO contact | 25 A 277 VAC, Resistive | 30,000 |
|  |  | 25 A 120 VAC, General Use |  |
|  |  | 25 A 277 VAC, General Use |  |
|  |  | 1.5 kW 120 VAC, Tungsten | 6,000 |
|  |  | 1.5 hp 120 VAC |  |
|  |  | $3 \mathrm{hp} \mathrm{240/265/277} \mathrm{VAC}$ |  |
|  |  | 3-phase 3 hp 240/265/277 VAC |  |
|  |  | 3-phase 5 hp 240/265/277 VAC | 30,000 |
|  |  | 20FLA/120LRA 120 VAC |  |
|  |  | 17FLA/102LRA 277 VAC |  |
|  |  | TV-10 120 VAC | 25,000 |
|  |  | 25 A 30 VDC, Resistive | 30,000 |
|  |  | 1 A 277 VAC, General Use | 6,000 |
|  | NC contact | 8 A 277 VAC, Resistive | 30,000 |
|  |  | 8 A 120 VAC, General Use |  |
|  |  | 8 A 277 VAC, General Use |  |
|  |  | 8 A 30 VDC , Resistive |  |
|  |  | 1 A 277 VAC, General Use | 6,000 |

## Reference

## UL approval: UL508 for industrial control devices

UL1950 for information processing equipment including business machines
CSA approval: CSA C22.2 No. 14 for industrial control devices
CSA C22.2 No. 950 for information processing equipment including business machines
VDE (File No. 5381UG)

| Model | Coil ratings | Contact ratings |  |
| :---: | :---: | :---: | :---: |
|  |  | NO contact | NC contact |
| $\begin{aligned} & \text { G7J-4A-B(P) (T) (Z) } \\ & \text { G7J-2A2B(P) (T) } \\ & \text { G7J-3A1B-B(P) (T) (Z) } \end{aligned}$ | 6, 12, 24, 48, 100 VDC <br> $24,50,100$ to 120,200 to 240 VAC | $\begin{aligned} & 25 \mathrm{~A} 240 \mathrm{VAC} \cos \varphi=0.4 \\ & 25 \mathrm{~A} 240 \mathrm{VAC} \cos \varphi=1 \\ & 25 \mathrm{~A} 30 \mathrm{VDCL} / \mathrm{R} \geq 1 \\ & { }^{1} \mathrm{~A} 240 \mathrm{VAC} \cos \varphi=0.4 \end{aligned}$ | $\begin{aligned} & 8 \mathrm{~A} 240 \mathrm{VAC} \cos \varphi=0.4) \\ & 8 \mathrm{~A} 240 \mathrm{VAC} \cos \varphi=1 \\ & 8 \mathrm{~A} 30 \mathrm{VDCL} \mathrm{~L} \geq 1 \\ & { }^{1} 1 \mathrm{~A} 240 \mathrm{VAC} \cos \varphi=0.4 \end{aligned}$ |

Note: Add the suffix "-KM" to the model number when ordering.
*These ratings are bifurcated contact ratings.

## Reference

VDE approval: VDE0435 for electromagnetic relays IEC255 for relays

KEMA (File No. 97.9140.01)

| Model | Coil ratings | Contact ratings |
| :--- | :--- | :--- |
|  |  | NO contact |
| G7J-4A-B(P) (T) (Z) | $6,12,24,48,100$ VDC | Class AC1: 25 A at 220 VAC |
| G7J-2A2B(P) (T) | $24,50,100$ to 120, 200 to 240 VAC | 11.5 A at 380 to 480 VAC |
| G7J-3A1B-B(P) (T) (Z) |  | Class AC3: 11.5 A at 220 VAC and 8.5 A at <br>  |
|  |  | 380 to 480 VAC |
|  |  | Class AC $1: 1$ A at 220 VAC |

Note: Add the suffix "-KM" to the model number when ordering.
*This rating is the bifurcated contact ratings.

## Reference

KEMA approval: EN60947-4-1 for contacts
IEC947-4-1 for contacts

## Engineering Data

Maximum Switching Power


Malfunctioning Shock
G7J-2A2B


## Endurance



Number of samples: 5
Measurement conditions: Increase and decrease the specified shock gradually imposed in $\pm \mathrm{X}, \pm \mathrm{Y}$, and $\pm Z$ directions three times each with the Relay energized and not energized to check the shock values that cause the Relay to malfunction.
Criteria: There must not be any contact
separation for 1 ms or greater with a shock of $100 \mathrm{~m} / \mathrm{s}^{2}$ imposed when the coil is energized or with a shock of $20 \mathrm{~m} / \mathrm{s}^{2}$ when the coil is not energized.

Ambient Temperature vs. Must-operate and Must-release Voltage
G7J $\mathbf{1 0 0}$ to $\mathbf{1 2 0}$ VAC


G7J 24 VDC


## Ambient Temperature vs.

 Coil Temperature RiseG7J-4A 100 to 120 VAC


G7J-4A 24 VDC


## Motor Load

| Item | G7J-4A-P, G7J-3A1B-P, G7J-4A-B, G7J-3A1B-B, G7J-4A-T, G7J-3A1B-T |
| :--- | :--- |
| Load | $3 ø, 220$ VAC, 2.7 kW (with a inrush current of 78 A and a breaking current of 13 A) |
| Endurance | Electrical: 100,000 operations min. |

## Dimensions

Note: All units are in millimetres unless otherwise indicated.

## Screw Terminals with W-bracket

G7J-4A-B, G7J-4A-BZ, G7J-3A1B-B, G7J-3A1B-BZ, G7J-2A2B-B


Mounting Holes



Mounting Dimensions


Terminal Arrangement/Internal Connections


The coil has no polarity.

Note: Terminals 43 and 44 of the G7J-4A-P(B)(T)(Z) and contacts 41 and 42 of the G7J-3A1B-P(B)(T)(Z) are bifurcated contacts.

Accessories (Order Separately)
R99-04 W-bracket (for G5F)


## Precautions

## Installation

PCB Terminal-equipped Relays weigh approximately 140 g . Be sure that the PCB is strong enough to support them. We recommend dual-side through-hole PCBs to reduce solder cracking from heat stress.
Mount the G7J with its test button facing downwards. The Relay may malfunction due to shock if the test button faces upwards. Be careful not to press the test button by mistake because the contacts will go ON if the test button is pressed.
Be sure to use the test button for test purposes only.
The test button is used for Relay circuit tests, such as a circuit continuity test. Do not attempt to switch the load with the test button.

## Minute Loads

The G7J is used for switching power loads, such as motor, transformer, solenoid, lamp, and heater loads. Do not use the G7J for switching minute loads, such as signals. Use a Relay with a bifurcated contact construction for switching minute loads, in which case, however, only SPST-NO or SPST-NC output is obtained.

## Soldering PCB Terminals

Be sure to solder the PCB terminals manually only. In the case of automatic soldering, some flux may stick to the test button and the G7J. As a result, the G7J may malfunction.
The G7J is not of enclosed construction. Therefore, do not wash the G7J with water or any detergent.

## Connecting

Refer to the following diagram when connecting a wire with a screw terminal to the G7J.


Allow suitable slack on leads when wiring, and do not subject the terminals to excessive force.
Tightening torque: $0.98 \mathrm{~N} \cdot \mathrm{~m}$
Do not impose excessive external force on the G7J in the horizontal or vertical directions when inserting the G7J to the Faston receptacle or pulling the G7J out from the Faston receptacle. Do not attempt to insert or pull out more than one G7J Unit together.
Do not solder the tab terminals.

| Terminal | Receptacle | Housing |
| :--- | :--- | :--- |
| \#250 terminal | AMP170333-1 | AMP172076-1: natural |
| (6.35 mm in width) | (170327-1) | AMP172076-4: yellow |
|  | AMP170334-1 | AMP172076-5: green |
|  | (170328-1) | AMP172076-6: blue |
|  | AMP170335-1 |  |
|  | (170329-1) |  |

Note: Numbers in parentheses are for air feed use.

## General Purpose Relay - G7J

OPERATING COIL
Internal Connections of Coils


If a transistor drives the G7J, check the leakage current, and connect a bleeder resistor if necessary.
The AC coil is provided with a built-in full-wave rectifier. If a triac, such as an SSR, drives the G7J, the G7J may not release. Be sure to perform a trial operation with the G7J and the triac before applying them to actual use.

