

interface

Timer and Switching Relays

Timer and switching relays Contents interface

Contents - Timer and switching relays

Electronic timer relays, selection by function			688
Electromechanical timer relays, selection by function			690
General information			692
Electronic timer and switching relays for DIN rail mounting	Multi-function	NGM 1600 NGM 1004 NGM 1003 NGM 1002 NGMP 1001 KZL 92, KLZ 91 KZL 72, KZL 71 FLARE-TIMER-S	$\begin{aligned} & 698 \\ & 702 \\ & 706 \\ & 710 \\ & 714 \\ & 718 \\ & 721 \\ & 724 \end{aligned}$
	Interval ON	NGY 71 NGYP 72-S NGY 11 NGY 52	$\begin{aligned} & 726 \\ & 728 \\ & 730 \\ & 732 \end{aligned}$
	Interval ON/OFF	$\begin{aligned} & \text { SSY } 12 \\ & \text { KSY } 51 \end{aligned}$	$\begin{aligned} & 734 \\ & 736 \end{aligned}$
	ON-delay	NGZ 71 NGZ 72 NGZ 72-S NGZP 71 NGZP 72 NGZP 72-S NGZ 11 NGZ 12 NGZ 12-S NGZP 31 NGZP 32 NGZP 32-S KZD 31 K KZTH 11 FLARE-TIMER-A	$\begin{aligned} & 738 \\ & 740 \\ & 742 \\ & 744 \\ & 746 \\ & 748 \\ & 750 \\ & 752 \\ & 754 \\ & 756 \\ & 758 \\ & 760 \\ & 762 \\ & 764 \\ & 766 \end{aligned}$
	OFF-delay with auxiliary voltage	NGZ 710 NGZ 720 NGZ 310 NGZ 320	$\begin{aligned} & 768 \\ & 770 \\ & 772 \\ & 774 \end{aligned}$
	OFF-delay without auxiliary voltage	$\begin{aligned} & \text { NGZ } 110 \\ & \text { NGZ } 210 \end{aligned}$	$\begin{aligned} & 776 \\ & 776 \end{aligned}$
	ON-delay and OFF-delay	KZT 510 K	779
	Star-delta relay	NGD 31	781
	Signal watchdog	NGW 11	783
	Flasher relay	$\begin{aligned} & \text { NGB } 11 \\ & \text { NGB } 12 \end{aligned}$	$\begin{aligned} & 785 \\ & 787 \end{aligned}$

Timer and switching relays Contents

Contents - Timer and switching relays

Page			
	Repeat cycle timer	KPT 11 KD KPT 31 KD SPT 72 D	$\begin{aligned} & 789 \\ & 789 \\ & 791 \end{aligned}$
	Pre-set pulse counter	$\begin{aligned} & \text { KID } 31 \text { K } \\ & \text { SID } 32 \end{aligned}$	$\begin{aligned} & 793 \\ & 795 \end{aligned}$
	Stepping relay	NGF 32 NGF 52	$\begin{aligned} & 797 \\ & 799 \end{aligned}$
	Latching relay	KSP 12	801
Electronic timer and switching relays for front panel mounting	Multi-function Pre-set pulse counter	$\begin{aligned} & \text { DZD } 92 \text { L } \\ & \text { UZD } 51 \\ & \text { UID } 51 \end{aligned}$	$\begin{aligned} & 803 \\ & 807 \\ & 810 \end{aligned}$
Discontinued models of electronic timer and switching relays			814
Electromechanical timer and switching relays for DIN rail mounting	ON-delay	SZA 52-S; SZA 52; SZAN 52-S, SZA 54-2S	815
	OFF-delay	SZA 521	818
	Electromechanical repeat cycle timer	SPZA 52	821
	Electromechanical stepping relay	SSF 32, SSF 52, SSF 62	824
	Electromechanical latching relay	$\begin{aligned} & \text { SSP 56, SSP 33, } \\ & \text { SSP 72, SSP } 34 \end{aligned}$	826
Electromechanical timer and switching relays for front panel mounting	ON-delay	DZ 12-S L, DZN 12-S L DZ 52-S G DZ 52-S L, DZN 52-S L DZ 72-S, DZ 74-2S DZ 74-2S L DZA 52-S L, DZA 53-S L, DZAN 52-S L, DZA 52 L DZR 12-S L DZR 52-S L	828 832 834 837 840 842 845 848
	OFF-delay	$\begin{aligned} & \text { DZ } 521 \text { L } \\ & \text { DZA } 521 \text { L } \end{aligned}$	$\begin{aligned} & 851 \\ & 854 \end{aligned}$
Discontinued models of electromechanical timer and switching relays			856
Accessories for timer and switching relays			857
Electronic contactors	Three-phase contactor	$\begin{aligned} & \text { cemos-SSAC3 - } \\ & 400 \mathrm{~V}-2 \mathrm{~A} \end{aligned}$	863
	Reversing contactor	$\begin{aligned} & \text { cemos-SSPHC - } \\ & 400 \mathrm{~V}-2.5 \mathrm{~A} \end{aligned}$	864

Timer and switching relays

Electronic timer relays, selection by function interface

		$\begin{aligned} & 0 \\ & \hline 0 \\ & \sum \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { Mo } \\ & \stackrel{1}{\circ} \\ & \sum_{2}^{2} \end{aligned}$	$\frac{\text { No }}{\substack{0}}$	$\begin{aligned} & \overline{0} \\ & \vdots \\ & \sum_{0}^{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \bar{\sigma} \\ & \underset{N}{N} \end{aligned}$	N N N	N N
CATALOG PAGE		698	702	706	710	714	803	718	718	721	721
DESIGN	Multi-function	-	-	-	-	-	-	-	\bullet	-	\bullet
	Single function										
	Multi-range	-	-	\bullet	-	-	-	\bullet	-	-	\bullet
	Single range										
	Fixed time										
HOUSING	Panel mounting $48 \times 48 \mathrm{~mm}$										
	$72 \times 72 \mathrm{~mm}$						-				
	Surface mounting 22.5 mm NGG	-	-	\bullet	-	\bullet					
	22.5 mm							\bullet	\bullet	\bullet	\bullet
	45 mm										
	6.2 mm										
FUNCTION											
Timer relays	ON-delay	-	-	\bullet	-	-	-	\bullet	-	-	\bullet
	ON-delay (pulse signal)				-						
	OFF-delay	-	\bullet			-	-	\bullet	\bullet		
	OFF-delay without auxiliary voltage										
	ON-delay and OFF-delay, symmetrical	\bullet					-	\bullet	\bullet		
	ON-delay and OFF-delay, separately selectable										
Signal watchdog	Cyclic signal monitoring, OFF/ON sym. and selectable										
Interval ON relay	Interval ON	-	-	-	-	-	-	\bullet	-	-	\bullet
	Interval OFF	-	-				-				
	Interval ON and OFF	\bullet				\bullet		-	\bullet		
Flasher relay	OFF start, symmetrical and fixed										
Repeat cycle timer	OFF start, symmetrical and selectable			\bullet	\bullet		-	\bullet	\bullet		
	OFF start, sym. and fixed, cycle time setting range				\bullet						
	OFF start, OFF and ON separately selectable										
	ON start, symmetrical and selectable				\bullet		-	\bullet	-	\bullet	\bullet
	ON start, symmetrical and fixed		-		-	-					
	ON start, OFF and ON selectable separately										
	OFF and ON start, sym. and fixed, cycle time setting range	-		\bullet							
	OFF or ON start, OFF and ON selectable separately										
Star-delta relay	Switch-over relay, interval ON	-		\bullet							
	Switch-over relay, ON-delay			\bullet							
Pulse relay	Pulse relay, ON-delay, one shot	-	-	\bullet	-	\bullet		\bullet	-	-	\bullet
	Pulse relay, OFF start, OFF time selectable, ON time fixed		-		-	\bullet					
	Pulse relay, ON start, ON time selectable, OFF time fixed				-						
	Pulse relay, alternating, OFF or ON time selectable	\bullet		\bullet							
	One shot (interval ON)	-	-			-	-				
Pulse counter	Pre-set pulse counter, upward counting										
	Pre-set pulse counter, upward/downward counting										
Stepping relay	ON-OFF										
	ON-OFF and OFF-ON										
Coupling relay	Instantaneous change-over contact										
Latching relay	Protected against power failure										
CONTACTS	Timed change-over contact	2^{1}	1	2^{1}	1	1	2^{2}	$2{ }^{2}$	1	2^{2}	1
	Timed normally open contact										
	Instantaneous change-over contact	$1{ }^{1}$		$1{ }^{1}$			$1{ }^{2}$	1^{2}		$1{ }^{2}$	
	Instantaneous normally open contact										
RATED VOLTAGE	Multi-voltage AC/DC 24 to 230 (240) V	-	-	-	-	\bullet		-	-	-	\bullet
SPECIAL FEATURES	Remote potentiometer connection					\bullet					
	Protected against power failure										
	Additive (+), or additive/subtractive (\pm)	+	+			+	+				
	Immediate signal through B1 (B) or Reset (R)		B			B					
	Digital (D) or analog (A) settings	A	A	A	A	A	A/D	A	A	A	A

UZD 51
NGY 71
NGYP $72-S$
NGY 11
NGY 52
SSY 12
KSY 51
NGZ 71
NGZ 72
NGZ $72-S$
NGZP 71
NGZP 72
NGZP $72-S$
NGZ 11
NGZ 12
NGZ $12-S$
NGZP 31
NGZP 32
NGZP $32-S$
KZD $31 ~ K$
KZTH 11
NGZ 710
NGZ 720
NGZ 110
NGZ 210
NGZ 310
NGZ 320
KZT 510 K
NGD 31
NGW 11
NGB 11
NGB 12
KPT 11 KD
KPT 31 KD
SPT 72 D
UID 51
KID 31 K
SID 32
NGF 32
NGF 52
FLARE-TIMER 12

807726728730732734736738740742744746748750752754756758760762764768770776776772774779781783785787789789791810793795797799801724766

CATALOG PAGE	
DESIGN	Multi-range
	Single range
HOUSING	Panel mounting $72 \times 72 \mathrm{~mm}$
	$96 \times 96 \mathrm{~mm}$
	Surface mounting 45 mm
	55 mm
	90 mm
	110 mm
FUNCTION	
Timer relays	ON-delay
	ON-delay (pulse signal)
	OFF-delay
Repeat cycle timer	ON start, P/I selectable separately
Stepping relay	ON-OFF
	ON-OFF and OFF-ON
Latching relay	Protected against power failure
CONTACTS	Timed change-over contact
	Timed normally open contact
	Timed normally closed contact
	Instantaneous change-over contact
	Instantaneous normally open contact
	Instantaneous normally closed contact
	Change-over contact
	Normally open contact (NO)
	Normally closed contact (NC)
SPECIAL FEATURES	Protected against power failure
	Time accumulation
	Mechanical resetting
	TÜV Test Certificate for burner systems
	Analog setting

Timer and switching relays
Electromechanical timer relays, selection by function

Timer and switching relays
 General information interface

Abstract

The values listed in the following apply for all devices, provided that no contradictory indications are made for the individual devices in their technical data. The devices meet the current standards and regulations:

Standards

"Low-voltage switching devices"
EN 60947-5-1:2004
"Relays with defined time behavior (timer relays) for industrial applications"
EN 61812-1:1999

Rated voltage \mathbf{U}_{N}

The voltage type is represented by the indication AC, DC or AC/DC of the relevant rated voltage.

V AC

These devices are designed for operation under AC voltage. The corresponding rated frequency is indicated.

V DC

These devices are designed for operation under DC voltage. We have indicated either the permissible amplitude and the maximum value of the voltage characteristic of the superimposed AC voltage according to DIN 41755-1 or the rated frequency. Devices for which a rated frequency has been indicated, can also be operated at an unfiltered voltage from a bridge rectification (no half-wave rectification). In this case the operating voltage is the root-mean-square value of the voltage.

$U_{d}=$ arithmetic mean value
$u_{\text {uss }}=$ amplitude (peak-to-peak displacement)
û= absolute maximum value of the voltage characteristic $=u_{\text {max }}$

AC/DC

These devices are designed for operation under $A C$ and $D C$ voltage. They can be operated with an unfiltered voltage from a bridge rectification (no half-wave rectification). The operating voltage is the root-mean-square value of the voltage.

Operating voltage range

If the rated voltage is indicated as a range, for example 110 to 127 V and a permissible operating range between 0.8 and $1.1 \times \mathrm{U}_{\mathrm{N}^{\prime}}$ the operating range will extend from $0.8 \times 110 \mathrm{~V}$ to $1.1 \times 127 \mathrm{~V}$.

Rated frequency

The devices can be operated within the indicated range, for example 50 to 60 Hz , without any restrictions. When 50 to 60 Hz is indicated, the devices have a frequency selector. When 50 or 60 Hz is indicated, the devices are designed for the relevant frequency. Operating range 0.95 to $1.05 \times$ rated frequency. When a rated frequency range is indicated, for example 50 to 60 Hz , the permissible operating range is $0.95 \times 50 \mathrm{~Hz}$ to $1.05 \times 60 \mathrm{~Hz}$.

Rated consumption

The rated consumption is indicated under reference conditions according to EN 61812-1. Devices that are designed for operation at AC voltage are specified in VA and W related to the rated frequency. If several rated frequencies are indicated, or a range, the indication will always refer to 50 Hz . For devices designed for operation with DC voltage, the values are indicated for a DC voltage without superimposition. For devices designed for operation under AC and DC voltage, the same values are indicated as for $A C$ devices. When the consumption changes during the functional sequence, the highest value is always indicated. If the consumption of the devices can be higher for a short period of time, for example at power ON (DC system, economy connection), its value will be indicated in addition. Due to capacitors in the power supply, an increased switch-on peak occurs in electronic devices.

Release value

When the devices are operated through inductive proximity switches in 2-wire designs or through long lines in case of AC voltage, a residual voltage is still applied to the devices, although the excitation voltage has been switched off. For proper functioning of the devices this voltage must be smaller than the release value. LEDs for function indications may burn weakly in case of a residual voltage.

Half-wave rectification

Various devices are equipped with an internal half-wave rectification. As the devices must be adjusted for operation with 2-wire inductive proximity switches, their half-wave rectification value is indicated in the key data.

Timer and switching relays General information

Inductive proximity switches in 2-wire design

Inductive proximity switches are subject to specified values for the residual current that is allowed to flow over the load when the switch is disabled. These maximum values contradict the requirement for power consumption of the triggered contactors and relays to be as low as possible. The market offers inductive proximity switches with far lower residual currents. In order to adjust them to the required data of the switches, a field device can be added to the load (mandatory for field devices with integrated half-wave rectification). Not all relays can be operated parallel to the control input, pulse input or zero input with an additional load. A corresponding indication is made for each device under Technical data.

Ambient temperature

Measured in a distance of 10 mm above the center of the upper housing surface.

Storage and transport temperature

$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Operating mode

Continuous operation

Climate resistance

Tested according to DIN 50016 (humid alternating atmosphere with 24 -hour cycle, 83% relative humidity at $23^{\circ} \mathrm{C}$ and 92% relative humidity at $40^{\circ} \mathrm{C}$).

Vibration resistance

Tested according to EN 60068-2-6:1995; frequency range 10 to 55 Hz ; amplitude 0.35 mm ; acceleration $5 \mathrm{~g}, 20$ frequency cycles per axis (1 h 45 min).

Installation position

any

Degree of protection

In accordance with EN 60529:2000. The protection degree for housing and connections is provided by the housing data in this section.

Recovery time

For proper functioning of the device, the value must not fall below the specified value. See the function diagram for additional information. This value does not imply that an interruption is permissible.

Standard of accuracy

According to EN 61812-1999.

Mean value of the fault

Deviation of the arithmetic mean value of all the measured values from the pre-selected value.

Analog time setting

The indications apply to the full scale value.

Digital time setting

The error in devices with digital time setting depends only on the absolute accuracy of the time basis used. The indications relate to the selected value.

Fixed times

The indications for devices with fixed times, such as flasher relay or interval ON relay, refer to the rated value.

Analog setting

The indications apply to the full scale value.

Fixed values

The indications apply to the rated value.

Dispersion

Dispersion means the difference between the smallest measured value and the largest measured value at a certain setting and constant values of the setting variables. The indications for mechanical devices relate to the full scale value. The indications for electronic devices relate to the pre-selected time value (note the indications under "Maintenance").

Influence of the energizing quantity / supply voltage

If an additional error is caused by changing the energizing quantity / supply voltage, this influence is indicated in \% for each \% of change to the energizing quantity / supply voltage. The rated value is the reference point. This indication applies for the entire operating range.

Influence of the ambient temperature

If an additional error is caused by changing the ambient temperature, this influence is indicated in \% for each K of temperature change. The reference point is $+20^{\circ} \mathrm{C}$. This indication applies for the entire operating range.

Fault influence

If an influence occurs that exceeds the standard value, it must be indicated accordingly.

Settings:

Analog time setting, single-range devices with time factor
The time can be set infinitely. It results from the scale value multiplied by the time factor.

Timer and switching relays
 General information Interface

Analog, single-range devices

he time can be set infinitely. The scale values are absolute values related to the selected time unit.

Analog, multi-range devices

The time can be set infinitely within the selected time range. It results from the scale value multiplied by the selected time factor.

Digital

Never set all the selector switches to zero. The position of the selector switches should not be changed during the functional sequence, as otherwise this may cause functional faults.

Digital, single-range devices

The time can be set in decimal increments at the selector switch. The set values are absolute values related to the selected time unit. Integer values of the time unit can be set with selector switches with black number wheels. Decimal fractions of the time unit can be set with selector switches with red number wheels.

Digital, multi-range devices

The time can be set in decimal increments at the selector switch. The set values are absolute values related to the selected time unit. Integer values of the time unit can be set with selector switches with black number wheels. Decimal fractions of the time unit can be set with selector switches with red number wheels.

Remote time setting

On some devices, the time can also be set with remote potentiometers. The remote potentiometer is connected to the identified terminals. The time is set on the device itself to the end stop below the smallest value. Devices in standard design are delivered with the terminals for the remote potentiometer jumpered. This jumper must be removed prior to connecting the remote potentiometer. Devices with modified connections E, A, A1 and A2 are delivered without this jumper. If it is to be operated without remote potentiometer, the relevant connections must be jumpered. Remote potentiometers of the relevant resistance match all time ranges of the corresponding model; they have a relative scale without reference to the device's time range. Indications about the setting tolerance refer to the device taking into consideration the tolerance of the built-in setting resistance. The resistance tolerance of the remote potentiometer may cause deviations. The cable length between the device and the remote potentiometer will usually not have any influence. Follow the instructions regarding screening etc. of the corresponding application examples. The resistance value of the remote potentiometer matching the corresponding device is indicated on the type plate.

Creepage distances and clearances

DIN VDE 0110-1:1997 (EN 60664-1:2003)

Rated impulse voltage

See the "Technical data" of the device for the corresponding values.

Overvoltage category

See the "Technical data" of the device for the corresponding values.

Degree of pollution

Outdoors; inside the device: See the "Technical data" of the device for the corresponding values.

Rated voltage

See the "Technical data" of the device for the corresponding values.

Contacts

Output circuit according to EN 60947-5-1:2004

Contact material

The contact material is indicated in "Technical data". So far, we do not know any contact material that would be perfect for the variety of application options. The major characteristics of the most important contact materials are listed in the following descriptions.

Hard silver

Ag Cu has good conductivity, a high resistance to erosion and a low welding tendency. It is suitable for medium to high switching capacities. An especially sulfurous atmosphere facilitates the generation of oxide that may cause contact interruptions. Ag Cu is not suitable for switching voltages $<6 \mathrm{~V}$.

Silver nickel

Ag Ni, an important material for inductive loads ($6-380 \mathrm{~V}$). Suitable for switch-on current between 10 mA and 100 A . The contacts have good resistance to erosion, a low welding tendency and higher contact resistances than Ag contacts.

Silver alloy, gold-plated

Silver alloys with a high resistance to erosion ($\mathrm{Ag} \mathrm{Ni}, \mathrm{Ag} \mathrm{Sn}_{2}$) are used underneath the gold plating, so that the same life span as with $\mathrm{Ag} \mathrm{Ni}$,Ag CdO or $\mathrm{Ag} \mathrm{Sn}_{2}$ can be expected after the gold plating is punctured through higher or inductive loads. Low voltages and currents are safely switched with the gold plating. Please ensure that the gold layer, if required, is not destroyed by improper use prior to the contact's intended use.

Switching voltage

Rated value U_{n} : see the upper limit value under
"Technical data": $1.1 \times U_{n}$

Current

Max. continuous current I_{n} : 5 A

Short-circuit protection

Fuse insert according to EN 60269-1:1998 and EN 60269-2:1995; utilization category gG, max. 6 A .

- gG identifies overall fuse inserts for general applications.

Breaking capacity

Standard contact material

AC load in $W, ~ V A ~$				
Voltage V AC				
$\cos \varphi 0.7$ to 1	150	250	115	230
inductive $\cos \varphi \approx 0.3$	50	80	150	200
DC load in W				
Voltage V DC	24	60	115	230
R load	100	100	80	80
L load $\approx 200 \mathrm{~ms}$	30	35	40	40

Contact life span and making capacity

Standard contact material

Load: AC $230 \mathrm{~V}, \cos \varphi \approx 0.3$ Operating cycles Operating frequency			
Sch	Power ON	Power OFF	
10^{4}	20	10 A	1 A
10^{5}	50	5 A	0.5 A
10^{6}	500	3 A	0.3 A
10^{7}	3000	1 A	0.1 A

Application category

In EN 60497-5-1:2004, application categories are indicated for auxiliary circuit switches. They clearly define the purpose of use of the switching devices in combination with the rated operating voltage U_{e}, the rated operating current $I_{e^{\prime}}$ the number of operating cycles and the test cycle.

Voltage type	Application category	Typical application Controlling of electromagn. load $(>72 \mathrm{VA})$
AC voltage voltage	AC15	Controlling of electromagn.

Rated operating voltage U_{e} and current I_{e}

	AC15	DC13	
	I_{e}	I_{e}	
24 V	3 A	2	A
115 V	3 A	0.2 A	
230 V	3 A	0.1 A	
400 V	2 A	0.05 A	

The permissible switching voltage U_{n} (see the Technical data) must be observed.

Terminal markings and position of the terminals

The terminal markings and position of the terminals of timer relays meet the requirements of DIN 46199 T5:01.76. Other devices meet the standard's requirements correspondingly. DIN 46199 T5:01.76 stipulates that with devices for operation under direct voltage the plus pole must be assigned to terminal A1. All devices designed for operation under DC voltage are protected against destruction in case of incorrect poling. If this protection is designed as bridge rectification, the devices will work properly even in case of incorrect poling. In this case, the circuit diagram of the corresponding devices will not show any polarity. If the poling protection is designed as half-wave rectification, the devices will not work in the case of incorrect poling. The polarity meeting DIN 46199 T5:01.76 is indicated in the circuit diagram. For an optimal interference suppression of devices designed for AC voltage, terminal A1 should be assigned to L1 and terminal A2 to N. When a control-power transformer is used, terminal A2 should always be assigned to the line common for all consumers. The circuit diagrams in the catalog the position of the terminals corresponds to the assignment on the device.

Maintenance

In view of the operating conditions and economic considerations, the devices should be regularly checked for proper functioning. All bearings of mechanical devices are sufficiently and specially lubricated for long operating hours. Electronic devices that are equipped with an electrolytic capacitor within the time circuit (capacitor interval ON relay, capacitor timer relay) may considerably prolong the times of their first few switching cycles after several months without operation.

Timer and switching relays
 General information interface

EC directives and declaration of conformity

This general technical information applies for all the devices that may be covered by one of several of the following EC directives:

EC Machine Directive 98/37/EG
EC EMC Directive 89/336/EWG
EC Low-Voltage Directive 73/23/EWG
The conformity of the devices that meet the requirements of the corresponding EC directive is indicated by the CE mark of conformity on the type plate. Information about which directives and standards are met by the devices is provided by the EC Declaration of Conformity. If the devices identified as such do not meet all the directives during the directive's transition period, this will be mentioned in the documents that accompany the device. The devices without the EC mark of conformity meet the indicated standards. This indication functions as declaration of conformity in the sense of article 10 of the EC Low-Voltage Directive 73/23. The devices that were put on the market after 1995-12-31 must meet the requirements of the EMC Directive. In case of replacement devices that cannot be operated on their own and do not carry the CE mark, the user himself is responsible for the proper installation according to § 5 sec .5 EMVG and for the fulfillment of the protection requirements according to $\S 4 \mathrm{sec} .1$ EMVG. Wieland Electric GmbH will provide users with the EC declarations of conformity on request.

Safety instructions

Installation, start-up, modification and retrofit of all devices must be performed by an qualified personnel only! Disconnect the device/system from the load prior to starting any service. Follow the safety instructions of electrical engineering and the trade association. Negligence of the safety instructions may cause death, grievous bodily harm or severe material damage.

Changes

We reserve the right for technical changes that further technological advance.

Timer and switching relays
 Multi-function NGM 1600

Multi-function multi-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 16 functions
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 2 change-over contacts or 1 instantaneous change-over contact and 1 timed change-over contact (function-dependent)
- 3 LEDs for function display

Function							
The function is set with the MODE selector switch and displayed by the function code in the window next to it. The code designation for the function can be found in the column "Function diagrams".							
Setting the time delay The time range is set with the RANGE selector switch and displayed in the window next to it. The desired delay time is set with a selecting wheel.							
LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.							
Function diagrams							
See the following pages for the function diagrams							
Time ranges							
Setting range from 0.1 s to 300 h divided into:							
<0.1 ...		5	100 s	1.5 ...	30 min	0.5 ...	10 h
<0.15 ...	3 s		300 s	3 ...	60 min		30 h
<0.5 ...	10 s	50.	1000 s	5 ...	100 min	5.	100 h
<1.5 ...	30 s	0.5	10 min	0.15 ...	3 h	15.	300 h

Notes

- The device is designed for multi-voltage. Connect phase L1 or L+ to terminal A1 and B1 and neutral N and/or M to terminal A 2 .
- You can change the function or delay time during operation. The change is effective immediately.

Circuit diagram

Dimension diagram

k3.3

$\mathrm{t}_{\mathrm{A}}=$ operating time
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2
Function code 11C-ON = ON-delay, accumulative y / n, with auxiliary supply

Function code 12 = OFF-delay, with auxiliary supply

$\mathrm{t}_{\mathrm{B}}=$ returning time
$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ make time, must be $>$ minimum ON time 2
$\mathrm{t}_{3}=$ time between switching on auxiliary supply and energizing
quantity, must be $>$ recovery time 1
$t_{4}=$ break time, must be $>$ recovery time 2

Function code $\mathbf{1 2 - O N}=$ OFF-delay, with auxiliary supply

$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ make time, must be $>$ minimum ON time 2
$\mathrm{t}_{3}=$ time between switching on auxiliary supply and energizing
quantity, must be > recovery time 1
$t_{4}=$ break time, must be $>$ recovery time 2

Function diagrams
Function code 11-12 = ON-delay, OFF-delay, with auxiliary supply

-			L A1-A2	Auxiliary supply
		\square	L B1-A2	Energizing quantity
			$=-{ }_{15-16}^{15-18}$	Delayed contact LED green
			$\urcorner_{\substack{25-26}}^{25-28}$	Delayed contact LED green
${ }_{3}$	t_{R}	$\mathrm{t}_{2}<\mathrm{t}_{2}$		
』ーப	¢	\cdots	_ LED green	Energizing quantity

$\mathrm{t}_{\mathrm{A}}=$ operating time
$\mathrm{t}_{\mathrm{R}}=$ returning time
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{3}=$ time between switching on auxiliary supply and energizing
quantity, must be < recovery time 2
Function code 12-22 = OFF-delay and interval OFF, 0.5 s fixed interval time, with auxiliary supply

LR
$\mathrm{t}_{\mathrm{R}}=$ returning time
$t_{\text {WA }}=$ fixed interval OFF time
$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$t_{2}=$ time between switching on auxiliary supply and energizing
quantity, must be $>$ recovery time 1
$\mathrm{t}_{3}=$ break time, must be $>$ recovery time 2
Function code 21 = interval ON

$\mathrm{t}_{\mathrm{WE}}=$ interval ON time
$t_{\text {WE }}=$ interval
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2
Function code 21-ON = interval ON

Function code 21-22 = interval ON, interval OFF, with auxiliary supply

Timer and switching relays
 Multi-function NGM 1600 interface

$\mathrm{t}_{\mathrm{WA}}=$ interval OFF time
$\mathrm{t}_{1} \quad=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ make time, must be $>$ minimum ON time 2

Function code 43-44 = clock-generating, 0.5 s fixed OFF and ON time, OFF/ON start, with cycle time setting
Energizing quantity
Delayed contact

Function code 81-1 s-ON = ON-delay, pulse-generating, 1 s fixed ON time

Function code 82-ON = pulse-shaping, with auxiliary supply

$\mathrm{t}_{1}=$ fixed ON time
$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{3}=$ time between switching on auxiliary supply and energizing quantity,
must be > recovery time2

Function diagrams
Function code 83-84-1 $\mathbf{s}=$ pulse-generating, 1 s fixed ON or OFF time

$\mathrm{t}_{\mathrm{p}}=$ OFF time
$\mathrm{t}_{\mathrm{t}}=\mathrm{ON}$ time
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1

Description of the drawing

LED green Energizing quantity $\quad 5$-fold function
Time out - energizing quantity on

Function codes / times							
Function code	Function diagram	Recovery time (ms) 1		3	Minimum ON time (ms)		
				1	2		
11	250-3	≤ 50	≤ 50		-	-	-
11-ON	250-5	≤ 50	≤ 50	-	-	-	
11C-ON	250-8	≤ 50	≤ 50	-	-	-	
12	250-12	0	0	-	≤ 25	≤ 25	
12-ON	250-13	0	0	-	≤ 25	≤ 25	
11-12	250-14	≤ 25	0	-	≤ 25	-	
12-22	250-15	0	$\mathrm{t}_{\mathrm{WA}}+0$	-	≤ 25	-	
21	250-21	≤ 50	≤ 50	-	-	-	
21-ON	250-25	≤ 50	≤ 50	-	-	-	
21-22	250-27	≤ 25	-	-	≤ 25	-	
22-ON	250-29	≤ 50	≤ 50	-	-	-	
43-44	250-41	≤ 50	≤ 50	-	-	-	
51	250-46	-	-	-	-	-	
81-1s-ON	250-53	≤ 50	≤ 50	-	-	-	
82-ON	250-57	0	0	-	≤ 25	-	
83-84-1s	250-60	≤ 50	-	-	-	-	

Technical data

Product standard (timer relays)
Relay function according to IEC 60050 (445)
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (power capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (B1-A2)
Rated consumption on control connection (B1-A2)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2/3
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2
Response time / release time at excitation of B1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Degree of protection according to IEC 60529 housing/terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid

stranded with ferrules

Weight
Accessories
Approvals

Overview of devices / Part numbers
Type
NGM 1600

NGM 1600

EN 61812-1:1999-08
Multi-function relay with multi-time range
3 LEDs green
See column "Function diagrams"

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110\%
50 to $60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes / B1-A2 yes
A1-A2 no / B1-A2 yes
analog / 16
See table "Time ranges"
See table "Function codes / times"
See table "Function codes / times"
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

2 change-over contacts
AgNi 90/10
AC/DC 24 to 240 V
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 Ue DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 /IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-31
$1 \times 0.2-6$ or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.13 kg
(dilis being prepared: (IL)

Timer and switching relays

Multi-function NGM 1004

Multi-function multi-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 10 functions
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 1 change-over contact
- 2 LEDs for function display

being prepared: (1L)

Functions							
The function is set with the MODE selector switch and displayed by the function code in the window next to it. The code designation for the function can be found in the column "Function diagrams".							
Setting the time delay The time range is set with the RANGE selector switch and displayed in the window next to it. The desired delay time is set with a selecting wheel.							
LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.							
Function diagram							
See the following pages for the function diagrams							
Time ranges							
Setting range from 0.1 s to 300 h divided into:							
<0.1 ...			100 s	1.5 ...	30 min		10 h
0.15 ...	3 s	15	300 s	3 ...	60 min		30 h
0.5 ...	10 s	50.	1000 s	5 ...	100 min		100 h
1.5 ...	30 s	0.5	10 min	0.15	3 h		300 h

Notes

- The device is designed for multi-voltage. Connect phase L 1 or $L+$ to terminal A1 and B1 and neutral N and/or M to terminal A 2 .
- You can change the function or delay time during operation. The change is effective immediately.

Circuit diagram

KS 250.30

Dimension diagram

(x)

Function diagrams

Function code 11-C = ON-delay, accumulative y / n, with auxiliary supply

Function code 12 = OFF-delay, with auxiliary supply

$\mathrm{t}_{\mathrm{h}}=$ returning time
$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2
$\mathrm{t}_{3}=$ time between switching on auxiliary supply and
energizing quantity, must be $>$ recovery time 1

Function code 21 = interval ON, also immediate release

$\mathrm{t}_{\mathrm{WE}}=$ interval ON time
$\mathrm{t}_{\mathrm{s}}=$ immediate signal, must be $>$ minimum ON time 1
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 22 = interval OFF, with auxiliary supply

Function diagrams

Function code 44 = clock-generating, 0.5 s fixed ON and OFF time, ON start, with cycle time setting range, also immediate release

Function code $\mathbf{8 1 C - 1} \mathbf{s}=\mathrm{ON}$-delay, accumulative y / n, pulse-generating, 1 s fixed ON time, with auxiliary supply

$\mathrm{t}_{1}=$ fixed ON time

Function code 82 = pulse-shaping, with auxiliary supply

$\mathrm{t}_{1}=0 \mathrm{~N}$ time
$t_{1}=$ ON time
$t_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ time between switching on auxiliary supply and energizing quantity, must be $>$ recovery time 2

Function code 83-1 s = pulse-generating, 1 s fixed ON time, OFF start, also immediate pulse generation

Timer and switching relays
 Multi-function NGM 1004
 interface

Function diagram						
Descripti LED green Ene	the drawi Con - Time on - - Time on - - Time out	of the ene ne le time g quantity witching e witching e witching g quantity	g quantity t in ON p tin OFF p t in ONo	ssition		
Function codes / times						
Function code	Function diagram	Recovery time (ms)			Minimum ON time (ms)	
11	250-6	≤ 50	≤ 50	-	≤ 25	-
11-C	250-7	≤ 50	≤ 50	-	-	-
12	250-10	0	0	-	≤ 25	-
21	250-26	≤ 50	≤ 50	-	≤ 25	-
22	250-28	-	-	-	≤ 25	≤ 50
44	250-43	≤ 50	-	-	≤ 25	-
81C-1s	250-55	≤ 50	≤ 25	0	-	-
81C-2s	250-55	≤ 50	≤ 25	0	-	-
82	250-56	0	0	-	≤ 25	-
83-1s	250-59	≤ 50	-	-	≤ 25	-

NGM 1004

EN 61812-1:1999-08
Multi-function relay with multi-time range
2 LEDs green
See column "Function diagrams"

AC/DC 24 to 240 V
3.5 VA / 1.7 W
1.6 W

70-110\%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes / B1-A2 yes
A1-A2 no / B1-A2 yes
analog / 16
See table "Time ranges"
See table "Function codes / times"
See table "Function codes / times"
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 Ue DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-30
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.1 kg
(dilis being prepared: (11)

Timer and switching relays

Multi-function NGM 1003 interface

Multi-function multi-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 10 functions
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 2 change-over contacts or 1 instantaneous change-over contact and 1 timed change-over contact (function-dependent)
- 3 LEDs for function display

being prepared: (1L)

Functions						
The function is set with the MODE selector switch and displayed by the function code in the window next to it. The code designation for the function can be found in the column "Function diagrams".						
Setting the time delay The time range is set with the RANGE selector switch and displayed in the window next to it. The desired delay time is set with a selecting wheel.						
LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.						
Function diagram						
See the following pages for the function diagrams.						
Time ranges						
Setting range from 0.1 s to 300 h divided into:						
<0.1 ...	1 s	$5 \ldots 100 \mathrm{~s}$	1.5 ...	30 min	$0.5 \ldots$	10 h
0.15 ...	3 s	$15 \ldots 300 \mathrm{~s}$		60 min		30 h
0.5 ...	10 s	$50 \ldots 1000 \mathrm{~s}$	5 ...	100 min		100 h
1.5 ...	30 s	$0.5 \ldots 10 \mathrm{~min}$	0.15 ...	3 h		300 h

Notes

- The device is designed for multi-voltage. Connect phase L1 or L+ to terminal A1 and B 1 and neutral N and/or M to terminal A 2 .
- You can change the function or delay time during operation. The change is effective immediately.

Circuit diagram

KS 250-29

Dimension diagram

K3-3
Function diagrams
$\mathrm{t}_{\mathrm{A}}=$ operating time
$t_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 11-ON = ON-delay

$t_{A}=$ operating time
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 21 = interval ON

$\mathrm{t}_{\text {WE }}=$ interval ON time
$t_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 21-ON = interval ON

$\mathrm{t}_{\text {WE }}=$ interval ON time
$t_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 41 = clock-generating, with OFF start

$\mathrm{t}_{\mathrm{p}}=$ OFF time
$\mathrm{t}_{1}=0 \mathrm{~N}$ time
$t_{p}=$
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function diagrams
Function code 43-44 = clock-generating, 0.5 s fixed OFF and ON time, OFF/ON start, with cycle time setting

Function code 51 = star-delta switching, interval ON

Function code 52 = star-delta switching, 2-fold ON-delay

Function code 81-1 s-ON = ON-delay, pulse-generating, 1 s fixed ON time

Function code 83-84-1 $\mathbf{s}=$ pulse-generating, 1 s fixed ON or OFF time

$\mathrm{t}_{\mathrm{p}}=$ OFF time

$\mathrm{t}_{\mathrm{p}}=$ OFF time
$\mathrm{t}_{1}=0 \mathrm{~N}$ time
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1

Timer and switching relays

Multi-function NGM 1003
interface

Function diagram						
Descripti LED green Ene	f the draw Con Adju Fixed Adju quantity Time out Time on - Time on - Time on -	of the ene ne le time g quantity witching e witching e witching g quantity	g quantit t in ON p tin OFF p t in ON or	ssitio		
Function codes / times						
Function code	Function diagram	Reco time 1	2	3	Min ON 1	ns) 2
11	250-3	≤ 50	≤ 50	-	-	-
11-ON	250-5	≤ 50	≤ 50	-	-	-
21	250-21	≤ 50	≤ 50	-	-	-
21-ON	250-25	≤ 50	≤ 50	-	-	-
41	250-35	≤ 50	≤ 50	-	-	-
43-44	250-41	≤ 50	≤ 50	-	-	-
51	250-46	-	-	-	-	-
52	250-47	-	-	-	-	-
81-1s-ON	250-53	≤ 50	≤ 50	-	-	-
83-84-1s	250-60	≤ 50	-	-	-	-

Timer and switching relays

Technical data

Product standard (timer relays)
Relay function according to IEC 60050 (445)
Function display
Function diagram

Input circuit

Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (power capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2/3
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Degree of protection according to IEC 60529 housing/terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules

Weight

Accessories
Approvals

[^0]according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-29
1×0.2 to 6 or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
1×0.4 to 4 or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.13 kg
©(1)is being prepared: (1)

Timer and switching relays

Multi-function NGM 1002

Multi-function multi-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 10 functions
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 1 change-over contact
- 2 LEDs for function display

being prepared: (1L)

Notes

- The device is designed for multi-voltage. Connect phase L1 or L+ to terminal A1 and B 1 and neutral N and/or M to terminal A 2 .
- You can change the function or delay time during operation. The change is effective immediately.

Circuit diagram

Dimension diagram

Timer and switching relays Multi-function NGM 1002

Function code 41 = clock-generating, with OFF start

\square -	Energizing quantity
	Delayed contact
	LED green
	Energizing quantity
$\mathrm{t}_{\mathrm{p}}=$ OFF time	
$\mathrm{t}_{1}=0 \mathrm{~N}$ time	
$\mathrm{t}_{\mathrm{p}}=\mathrm{t}_{1}$	
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1	
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2	

Function code 42 = clock-generating, with ON start

$t_{1}=$ ON time
$t_{p}=$ OFF time
$t_{1}=t_{p}$
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 43 = clock-generating, 0.5 s fixed OFF and ON time, OFF/ON start, with cycle time setting

Function diagrams

Function code 44 = clock-generating, 0.5 s fixed ON and OFF time, ON start, with cycle time setting range

Function code 81-1s = ON-delay, pulse-generating, 1 s fixed ON time

$t_{A}=$ operating time
$t_{A}=$ operating time
$t_{t}=$ fixed ON time
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$t_{1}=$ break time, must be $>$ recovery time 2

Function code 81-2s = ON-delay, pulse-generating, 2 s fixed ON time

A $=$ operating time
$t_{1}=$ fixed ON time
= break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 83-1s = pulse-generating, OFF start, 1 s fixed ON time

Function code 84-1s = pulse-generating, ON start, 1 s fixed OFF time

A1-A2 | Energizing quantity |
| :--- |
| Delayed contact |
| LED green |

$\mathrm{t}_{\mathrm{t}}=$ ON time
$\mathrm{t}_{\mathrm{t}}=0 \mathrm{FF}$ time
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1

Timer and switching relays
 Multi-function NGM 1002
 interface

Function diagram						
Descripti LED green Ene	f the draw \qquad Time on Time on - — Time on - - Time out	of the ene ne le time g quantity witching e witching e witching g quantity	g quantit t in ON p tin OFF p t in ON or	ssitio		
Function codes / times						
Function code	Function diagram	Recovery time (ms)			Minimum ON time (ms)	
11	250-1	≤ 50	≤ 50	-	-	-
21	250-20	≤ 50	≤ 50	-	-	-
41	250-34	≤ 50	≤ 50	-	-	-
42	250-38	≤ 50	≤ 50	-	-	-
43	250-40	≤ 50	≤ 50	-	-	-
44	250-42	≤ 50	≤ 50	-	-	-
81-1s	250-52	≤ 50	≤ 50	-	-	-
81-2s	250-52	≤ 50	≤ 50	-	-	-
83-1s	250-58	≤ 50	-	-	-	-
84-1s	250-61	≤ 50	-	-	-	-

Timer and switching relays
Multi-function NGM 1002

Technical data

Product standard (timer relays)
Relay function according to IEC 60050 (445)
Function display
Function diagram

Input circuit

Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (power capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2/3
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Degree of protection according to IEC 60529 housing/terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules

Weight

Accessories
Approvals

Overview of devices / Part numbers

Timer and switching relays
 Multi-function NGMP 1001

Multi-function multi-range timer relay with remote potentiometer connection

- Multi-voltage for AC/DC 24 up to 240 V
- 10 functions
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- Remote potentiometer connection
- 1 change-over contact
- 2 LEDs for function display

being prepared: (HL)
Functions
Setting the function
The function is set with the MODE selector switch and displayed by the function code
in the window next to it. The code designation for the function can be found in the
column "Function diagrams".
Setting the time delay
The time range is set with the RANGE selector switch and displayed in the window
next to it. The desired delay time is set with a selecting wheel.
Connecting a remote potentiometer allows you to set parameters at greater
distances. When a remote potentiometer is used, the time selecting wheel is to be
set to the right-hand stop above the largest value. Operation without remote
potentiometer does not require a jumper on the device.
LEDs show the state of the excitation input and the position of the contacts. You can
monitor the countdown on a flashing LED.

Function diagram

See the following pages for the function diagrams.

Time ranges							
Setting range from 0.1 s to 300 h divided into:							
<0.1... 1 s	5	100 s		... 30 min		0.5 10 h
$0.15 \ldots 3 \mathrm{~s}$	15	300 s		... 60 min		1.5 30 h
$0.5 \ldots 10 \mathrm{~s}$	50	1000 s		... 100 min		5 100 h
$1.5 \ldots 30 \mathrm{~s}$	0.5	10 min	0.15 3 h		5 300 h

Accessories

Accessories:
Remote potentiometer FP
10 k

Notes

- The device is designed for multi-voltage. Connect phase L1 or L+ to terminal A1 and B1 and neutral N and/or M to terminal A 2 .
- You can change the function or delay time during operation. The change is effective immediately.

Circuit diagram

Dimension diagram

K 3-3

Function diagrams

Function code 11 = ON-delay, also immediate operation

$\mathrm{t}_{\mathrm{A}}=$ operating time
$\mathrm{t}_{\mathrm{s}}=$ immediate signal, must be $>$ minimum ON time 1
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 11C = ON-delay, accumulative y / n, with auxiliary supply

Function code 12 = OFF-delay, with auxiliary supply
A1-A2 \quad Auxiliary supply
$\mathrm{t}_{\mathrm{R}}=$ returning time
$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2
$\mathrm{t}_{3}=$ time between switching on auxiliary power and
energizing quantity, must be $>$ recovery time 1

Function code 21 = interval ON, also immediate release

$\mathrm{t}_{\mathrm{WE}}=$ interval ON time
$\mathrm{t}_{\mathrm{S}}=$ immediate signal, must be $>$ minimum ON time 1
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function code 22 = interval OFF, with auxiliary supply

A1-A2 Auxiliary supply
B1-A2 Energizing quantity
15-18 Delayed contact
15-16 LED green
$\mathrm{t}_{\mathrm{WA}}=$ interval OFF time
$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ make time, must be $>$ minimum ON time 2

Function diagrams

Function code 44 = clock-generating, 0.5 s fixed ON and OFF time, ON start, with cycle time setting range, also immediate release

Function code 81-1s = ON-delay, pulse-generating,
1 s fixed ON time, also immediate pulse generation

$\mathrm{t}_{\mathrm{A}}=$ operating time
$\mathrm{t}_{1}=$ fixed ON time
$\mathrm{t}_{\mathrm{S}}=$ immediate signal, must be $>$ minimum 0 N time 1
$\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1

Function code 81C-3s = ON-delay, accumulative y / n, pulse-generating, 3 s fixed ON time, with auxiliary supply

Function code $\mathbf{8 2}$ = pulse-shaping, with auxiliary supply

$\mathrm{t}_{1}=$ On time
t_{1} = make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2
$\mathrm{t}_{3}=$ time between switching on auxiliary power and energizing quantity, must be > recovery time 2

Timer and switching relays
 Multi-function NGMP 1001 interface

Function diagrams						
$t_{p}=0$ FFF time $t_{s}=$ immediate signal, must be $>$ minimum ON time 1 $t_{p}=t_{p 1}+t_{p 2}$ $t_{1}=$ break time, must be $>$ recovery time 1 $t_{1}=$ fixed ON time $t_{s \text { s }}=$ fixed immediate pulse time						
Description of the drawing						
Function codes / times						
Function code	Function diagam			3		$\begin{aligned} & n \\ & 2 \\ & \\ & 2 \mathrm{~ms}) \end{aligned}$
11	250-3	≤ 50	≤ 50	-	≤ 25	-
11C	250-5	≤ 50	≤ 25	-	-	-
12	250-10	0	0	-	≤ 25	-
21	250-26	≤ 50	≤ 50	-	≤ 25	-
22	250-28	-	-	-	≤ 25	≤ 50
44	250-43	≤ 50	-	-	≤ 25	-
$81 \mathrm{C}-1 \mathrm{~s}$	250-55	≤ 50	≤ 25	0	-	-
81C-2s	250-55	≤ 50	≤ 25	0	-	-
82	250-56	0	0	-	≤ 25	-
83-1s	250-59	≤ 50	-	-	≤ 25	-

Technical data

Product standard (timer relay)
Relay function according to IEC 60050 (445)
Function display
Function diagram

Input circuit

Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits f_{n}
Rated frequency f_{n}
Release value of the input voltage (power capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current Control connection (B1-A2)
Rated consumption Control connection (B1-A2)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time $1 / 2 / 3$
Minimum ON time $1 / 2$
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $t_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2
Response time / release time at excitation of B1-A2

Other data

Creepage distances and clearances

Degree of pollution

Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals Noise
Immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules

Weight

Accessories
Approvals

NGMP 1001
EN 61812-1:1999-08
Multi-function relay with multi-time range
2 LEDs green
See column "Function diagrams"

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110\%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes / B1-A2 yes
A1-A2 no / B1-A2 yes
analog (internal + external) / 16
See table "Time ranges"
See table "Function codes / times"
See table "Function codes / times"
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$
1 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U_{e} AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-27
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.12 kg

Remote potentiometer FP 10 k
©(1) us being prepared: (IL)

Overview of devices / Part numbers

Timer and switching relays Multi-function KZL 92, KZL 91 interface

Multi-function multi-range timer relay

- Multi-voltage for AC/DC 24 up to 230 V
- 8 functions
- Setting range from 0.1 s to 120 h divided into 7 time ranges
- KZL 92 = 1 instantaneous and 1 timed change-over contact or 2 timed change-over contacts (selectable)
- KZL 91 = 1 timed change-over contact

KZL 92

KZL 91

이 (1)

Time ranges

General information

The functions and time ranges are set on the front through selector switches.

Setting of the operating mode

Rotate the operating mode selector switch with a screwdriver until the desired operating mode appears in the "MODE" display window.

Functions for KZL 92, KZL 91:

- A = ON-delay
(AV)
- $B=$ repeat cycle starting with OFF
(TP)
- B2 = repeat cycle starting with ON (TI)
- $\mathrm{C}=$ interval ON/OFF (EAW)
- D = OFF-delay (RV)
- $\mathrm{E}=$ interval ON (EW)
- G = ON-delay and OFF-delay (ARV)
- $J=$ one shot (ON-delay)

Setting of the time and time range factor

Rotate the time selector switch located in the upper right corner of the operating panel to set the desired time (sec., min. or hrs.) The time unit will be shown in the display window over the time selecting wheel. The time range factor (0.1 or 1) is set by rotating the selector switch located in the upper left corner of the operating panel The selected time range factor will be shown in the display window above the selector switch.

Setting of the operating time

Use the time selecting wheel (ratio $0-12$) to set the desired operating time.

Setting of the contact assignment

The function of the contacts for the model KZL 92 can be selected through a switch located at the bottom of the housing: 2 timed change-over contacts or 1 instantaneous and 1 timed change-over contact.

Circuit diagram

KZL 91 KS 0328/I

Function diagrams
KZL 92 (1 timed and 1 instantaneous change-over contact)
Corresponding function of the instantaneous contact for all selectable functions.

Displays and operating components
Example: KZL 92

Dimension diagram

Timer and switching relays Multi-function KZL 92, KZL 91 interface

Technical data
Function type according to IEC 60050 (445)

Function display
Function diagram

Power supply circuit

Rated voltage U_{N}
Rated consumption at 50 Hz and $\mathrm{U}_{\mathrm{N}} 24 \mathrm{~V} \mathrm{AC}$
Rated consumption at $U_{N} 24 \mathrm{~V}$ DC
Rated consumption at 50 Hz and $\mathrm{U}_{\mathrm{N}} 230 \mathrm{~V} \mathrm{AC}$
Rated consumption at $U_{N} 230 \mathrm{~V}$ DC
Starting current inrush A1/A2 at 24 V DC
Rated frequency
Operating voltage range
Rated current B1 - Input at 50 Hz and $\mathrm{U}_{\mathrm{N}} 24 \mathrm{~V} \mathrm{AC}$
Rated current B1 - Input at $\mathrm{U}_{\mathrm{N}} 24 \mathrm{~V}$ DC
Rated current B1 - Input at 50 Hz and $\mathrm{U}_{\mathrm{N}} 230 \mathrm{~V} \mathrm{AC}$
Rated current B1 - Input at $\mathrm{U}_{\mathrm{N}} 230 \mathrm{~V}$ DC
Minimum ON time B1
Excitation voltage B1
Release value of the excitation voltage B1

Time circuit

Time setting / number of time ranges
Possible setting range
Recovery time
Repeatability
Setting tolerance
Influence of the energizing quantity or supply voltage
Influence of the ambient temperature

Output circuit

Contact assignment

Contact material

Rated operating voltage U_{n}
Max. continuous current I_{n}
Application category according to EN 60947-5-1:1991

Permissible switching frequency
Mechanical life
Electrical life

General information

Creepage distances and clearances between the circuits
Rated impulse voltage
Overvoltage category
Degree of pollution
Rated voltage
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.92
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals

Overview of devices / Part numbers

Type	Rated voltage
KZL 91	AC/DC $24-230$ V $50-60 \mathrm{~Hz}$
KZL 92	AC/DC $24-230$ V $50-60 \mathrm{~Hz}$

ON-delay time	Part No.	Std. Pack
See table "Time ranges"	R2.066.0030.1	1
See table "Time ranges"	R2.066.0040.0	1

Timer and switching relays
Multi-function KZL 72, KZL 71

Multi-function multi-range timer relay

- Multi-voltage for AC/DC 24 up to 230 V
- 4 functions
- Setting range from 0.1 s to 120 h divided into 7 time ranges
- KZL 72 = 1 instantaneous and 1 timed change-over contact or 2 timed change-over contacts (selectable)
- KZL 71 = 1 timed change-over contact

KZL 72

KZL 71

믹

Time ranges	
Setting range from 0.1 s to 120 h divided into:	
$0.1 \mathrm{~s} \quad . .1 .2 \mathrm{~s}$	$0.1 \mathrm{~h} \ldots 1.2 \mathrm{~h}$
$1 \mathrm{~s} \ldots 12 \mathrm{~s}$	$1 \mathrm{~h} \ldots 12 \mathrm{~h}$
0.1 min ... 1.2 min	$10 \mathrm{~h} \ldots 120 \mathrm{~h}$
$1 \mathrm{~min} \ldots 12 \mathrm{~min}$	

General information

The functions and time ranges are set on the front through selector switches.

Setting of the operating mode

Rotate the operating mode selector switch with a screwdriver until the desired operating mode appears in the "MODE" display window.

Functions for KZL 72, KZL 71:
-A $=$ ON-delay (AV)

- B2 = repeat cycle starting with ON (TI)
- $\mathrm{E}=$ interval ON (EW)
- J = one shot (ON-delay) (AI)

Circuit diagram
KZL 72
KS 0328/4

KZL 71
KS 0328/3

Instantaneous contacts have other terminal designations (e.g. 21 instead of 25)

Timer and switching relays
Multi-function KZL 72, KZL 71
interface

Displays and operating components

Example: KZL 72

DIP switch (housing bottom) to select the contact assignment

Dimension diagram

Timer and switching relays Multi-function KZL 72, KZL 71

KZL 72	KZL 71

Multi-function relay with 4 functions for multi-voltage

- ON-delay timer relay
- Interval ON relay
- Repeat cycle starting with ON
- One shot (ON-delay) relay

1 LED green, 1 LED orange
FD 239-4/10-14

AC/DC $24-230 \mathrm{~V}$

$1.1 \mathrm{VA} / 0.9 \mathrm{~W}$	$0.7 \mathrm{VA} / 0.6 \mathrm{~W}$
0.9 W	0.6 W
$2.7 \mathrm{VA} / 1.7 \mathrm{~W}$	$2.3 \mathrm{VA} / 1.4 \mathrm{~W}$
1.4 W	1.4 W

ca. 250 mA
$50-60 \mathrm{~Hz}$
$0.85-1.1 \times U_{N}$
$<8 \mathrm{VAC/DC}$
analog / 7
See table "Time ranges"
$\geq 100 \mathrm{~ms}$
$\pm 1 \%+ \pm 10 \mathrm{~ms}$ average value of all measured values
$\pm 10 \%+ \pm 50 \mathrm{~ms}$
$\pm 0.5 \%+ \pm 10 \mathrm{~ms}$
$\pm 2 \%+ \pm 10 \mathrm{~ms}$
1 instantaneous and 1 timed change-over contact $\quad 1$ timed change-over contact
or 2 timed change-over contacts
AgNi gold-flashed
230/125 V AC/DC
5 A
AC-13: U $250 \mathrm{VAC}, I_{\mathrm{e}} 5$ A
DC-13: U $24 \mathrm{VDC}, I_{\mathrm{e}} 0.1 \mathrm{~A}$
AC-15: Ue $250 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 3$ A
≤ 3600 switching cycles/h
10×10^{6} switching cycles
80×10^{4} switching cycles at AC 5 A, $250 \mathrm{~V}, 360$ switching cycles/h
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP $30 /$ IP 20
Test severity 3
$-10-+55^{\circ} \mathrm{C}$
K1-16
KS 0328/4 \quad KS 0328/3
0.12 kg

민 (18)

ON-delay time	Part No.	Std. Pack
See table "Time ranges"	R2.066.0010.0	1
See table "Time ranges"	R2.066.0020.0	1

Subject to change without further notice

See table "Time ranges"
See table "Time ranges"

Timer and switching relays Multi-function flare TIMER-S interface

Multi-function timer relay

- ON-delay
- One shot
- OFF start - flashing
- ON start - flashing
- OFF-delay
- Time range $0.1 \mathrm{sec}-300 \mathrm{sec}$

Dimensions (mm): W $\times \mathrm{H} \times \mathrm{D}$
$6.2 \times 89 \times 70$

Timer and switching relays
Multi-function flare TIMER-S

Wiring diagram for multi-function timer relay flare $T I M E R-S$

Multi-function

Derating: timer relays

Contact assignment: timer relay

Setting the type of function

Function	DIP switch		
	1	2	3
ON-delay	ON	ON	ON
One shot	ON	OFF	ON
ON start, flashing	ON	ON	OFF
OFF start, flashing	ON	OFF	OFF
OFF-delay	OFF	OFF	OFF

Setting the time ranges

Timer range $\pm 20 \%$		DIP switch	
$t \mathrm{~min}$	t max	4	5
0.1	1.2 sec	OFF	ON
0.4	5 sec	ON	OFF
3.5	40 sec	ON	ON
30	300 sec	OFF	OFF

ON-delay

One shot

ON start, flashing

OFF start, flashing

OFF-delay

Timer and switching relays
 Interval ON NGY 71
 interface

Interval ON multi-range relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: interval ON (EW)
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 1 change-over contact
- 2 LEDs for function display

(14 us being prepared: (II)

Function	Function diagram
Setting the time delay The time range is set with the RANGE selector switch and displayed in the window next to it. The desired delay time is set with a selecting wheel. LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.	Function code 21 = interval ON Description of the drawing $\longleftarrow \longleftarrow$ Control signal of the energizing quantity \square Adjustable time
Time ranges	Fixed time
Setting range from 0.1 s to 300 h divided into:	
Notes	Circuit diagram
The device is designed for multi-voltage. Phase L1 or $\mathrm{L}+$ must be connected to terminal A1; neutral conductor N or M must be connected to terminal A 2 . You can change the delay time during operation. The change is effective immediately.	
	Dimension diagram

Timer and switching relays Inerval ON NGY 71

Technical data
Product standard (timer relay)
Function type of the relay according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. 150 pF/m)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification
Time circuit
Time setting / number of time ranges
Setting ranges for time delay
Recovery time $1 / 2$
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)
Output circuit
Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current Ith
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC 250 V, cos $\varphi=0.3$
Response time / release time on excitation of A1-A2
Other data
Creepage distances and clearances
Accessories degree according to IEC 60529 housing / terminals
Approvals
Ambient immunity according to IEC 61000-4
Dimension diagratu (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
Overvoltage category

NGY 71

EN 61812-1:1999-08
445-01-08
2 LEDs green
FD 250-20

AC/DC 24-240 V
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 change-over contact
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U $\mathrm{AC} 230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×106 switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-13
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.1 kg
(©ilis being prepared: (ll)

Overview of devices / Part numbers
 Type

Timer and switching relays
 Interval ON NGYP 72-S interface

Interval ON multi-range relay with remote potentiometer connection

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: interval ON (EW)
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- Remote potentiometer connection
- 1 instantaneous and 1 timed change-over contact
- LEDs for function display

being prepared: (IL)

Function	Function diagram
Setting the time delay The time range is set with the RANGE selector switch and displayed in the window next to it. The desired delay time is set with a selecting wheel. Connecting a remote potentiometer allows you to set parameters at greater distances. When a remote potentiometer is used, the time selecting wheel is to be set to the right-hand stop above the largest value. Operation without remote potentiometer does not require a jumper on the device. LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.	Function code 21-ON = interval ON $\mathrm{t}_{\mathrm{WE}}=$ interval ON time $\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1 $\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2 Description of the drawing
Time ranges Setting range from 0.1 s to 300 h divided into:	
Notes The device is designed for multi-voltage. Phase L1 or $L+$ must be connected to terminal A1; neutral conductor N or M must be connected to terminal A 2 . You can change the delay time during operation. The change is effective immediately.	Time out - energizing quantity ON Time on - delayed switching element in ON position Time on - delayed switching element in OFF position Time out - energizing quantity OFF
Dimension diagram	Circuit diagram
K3.3	
	Accessories
	Remote potentiometer FP 10 k

Timer and switching relays
Interval ON NGYP 72-S

NGYP 72-S

EN 61812-1:1999-08
445-01-08 + 445-04-05
2 LEDs green
FD 250-24

AC/DC 24-240 V
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
\geq AC/DC 10 V ; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog (internal + external) / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 instantaneous and 1 timed change-over contact
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-16
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.14 kg

Remote potentiometer FP 10 k
c(1)us being prepared: (IL)

Overview of devices / Part numbers

Timer and switching relays
 Interval ON NGY 11
 interface

Interval ON fixed timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: interval ON (EW)
- Fixed time 0.5 s
- 1 change-over contact
- 2 LEDs for function display

being prepared: (1L)
Function
ON-delay time
The NGY 11 timer relay is supplied with a fixed interval ON time of 0.5 s .
LEDs show the state of the excitation input and the position of
the contacts. You can monitor the countdown on a flashing LED .
Time ranges
Fixed time 0.5 s
Note
The device is designed for multi-voltage. Phase L 1 or $\mathrm{L}+\mathrm{must} \mathrm{be} \mathrm{connected} \mathrm{to}$
terminal A 1 ; neutral conductor N or M must be connected to terminal A 2 .

Timer and switching relays Interval ON NGY 11

Technical data
Product standard (timer relays)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. 150 pF/m)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification
Time circuit
Time setting / number of time ranges
Setting ranges for time delay
Recovery time $1 / 2$
Minimum ON time 1/2
Repeatability
Influence of temperature (within range)
Influence of voltage (within range)
Output circuit
Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current Ith
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC 250 V, cos $\varphi=0.3$
Response time / release time on excitation of A1-A2
Other data
Creepage distances and clearances
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Approvals
Sircuit diagram of the terminals
Overses of pollution with ferrule

NGY 11

EN 61812-1:1999-08
445-01-082
LEDs green
FD 250-22

AC/DC 24-240 V
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog / 1 fixed time
0.5 s
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$
1 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U_{e} DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-13
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.1 kg
c(1) ivs being prepared: (IL)

Overview of devices / Part numbers

Timer and switching relays
 Interval ON NGY 52
 interface

Interval ON fixed timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: interval ON (EW)
- Fixed time 0.5 s
- 2 change-over contact
- 2 LEDs for function display

(14) vs being prepared: (II)
Function
ON-delay time
The NGY 52 timer relay is supplied with a fixed interval ON time of 0.5 s .
LEDs show the state of the excitation input and the position of the contacts. You can
monitor the countdown on a flashing LED.
Time ranges
Fixed time 0.5 s
Note
The device is designed for multi-voltage. Phase L 1 or $\mathrm{L}+$ must be connected to
terminal A 1 ; neutral conductor N or M must be connected to terminal A 2 .

Timer and switching relays

Interval ON NGY 52

NGY 52

EN 61812-1:1999-08
445-01-08
2 LEDs green
FD 250-23

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog / 1 fixed time
0.5 s
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$
2 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U_{e} DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-2
KS 250-14
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.11 kg
(114is being prepared: (1.)

Overview of devices / Part numbers

Timer and switching relays
 Interval ON/OFF SSY 12 interface

Interval ON and/or OFF fixed timer relay

- Single voltage
- 1 function: Interval ON and/or OFF (EAW)
- Fixed interval time 0.5 s
- 1 interval change-over contact and 1 interval NO

Function	Function diagram
The function (interval ON, interval OFF, interval ON/OFF) is selectable with the jumpers on the terminals (see connection diagram). Jumper Z1/Z2 = interval ON Jumper Z2/Z3 = interval OFF No jumper = interval ON and OFF	A1/A2 Supply voltage Z1, Z2 with jumper Z2/Z3 with jumper 15/18 Delayed contact 15/16 $t_{\text {we }}=$ interval ON time $t_{\text {wa }}=$ interval OFF time $\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1 $\mathrm{t}_{2}=$ make time, must be $>$ minimum 0 N time 1
Time ranges	Circuit diagram
Fixed interval time 0.5 s	SSY 12 Jumper: Z1/Z2 = interval ON Z2/Z3 = interval OFF None = interval ON and OFF Dimension diagram
	for DIN rail according to EN 50022

SSY 12
Electronic interval timer relay for single voltage; function selectable

- Interval ON relay
- Interval OFF relay

FD 0015

$\mathbf{2 4}$ V	$\mathbf{1 1 0 - 1 2 7}$	V 230 V
$0.6 \mathrm{VA} / 0.5 \mathrm{~W}$	$2.0 \mathrm{VA} / 1.7 \mathrm{~W}$	$2.0 \mathrm{VA} / 1.8 \mathrm{~W}$
0.3 W	1.1 W	1.3 W
$0.3 \mathrm{~A} / 6 \mathrm{~ms}$	$0.1 \mathrm{~A} / 20 \mathrm{~ms}$	$0.1 \mathrm{~A} / 100 \mathrm{~ms}$

0.3 A/ 6 ms
$0.1 \mathrm{~A} / 20 \mathrm{~ms}$
0.1 A / 100 ms
$50-60 \mathrm{~Hz}$
$0.8-1.1 \times U_{N}$
fest / 1
See table "Time ranges"
approx. 250 ms at continuous operation,
approx. 3 s after longer shutdown
approx. 3 s
yes
no
$\leq \pm 20 \%$
$\leq \pm 1.5 \%+ \pm 10 \mathrm{~ms}$
$\leq 1.2 \% / \% \Delta U_{N}$
$\leq 0.5 \% / K$
1 passing change-over contact and 1 passing NO
Ag alloy, gold-plated
230/230 V AC/DC
5 A
AC-15: Ue 230 V AC, 1
DC-13: $U_{e} 24$ V DC, $1{ }_{e} 2 \mathrm{~A}$
≤ 6000 switching cycles/h
30×10^{6} switching cycles
ca. 20 ms
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 30 / IP 20
Test severity 3
$-20-+60^{\circ} \mathrm{C}$
S 3-2
KS 0115-1
0.17 kg
-

Time delay	Part No.	Std. Pack
See table "Time ranges"	R2.133.0010.3	1
	R2.133.0020.3	1
	R2.133.0030.3	1

Rated voltage
AC/DC $110-127 \mathrm{~V} 50-60 \mathrm{~Hz}$
AC/DC 24 V
AC/DC 230 V

Time delay See table "Time ranges"

Timer and switching relays Interval ON/OFF KSY 51 interface

Interval ON and/or OFF fixed timer relay

- Single voltage
- 1 function: Interval ON and/or OFF (EAW)
- Fixed interval time 0.5 s
- 1 passing change-over contact

Function	Function diagram
The function (interval ON, interval OFF, interval ON/OFF) is selectable with the jumpers on the terminals (see connection diagram). Jumper Z1/Z2 = interval ON Jumper Z2/Z3 = interval OFF No jumper = interval ON and OFF	
Time ranges	Circuit diagram
Fixed interval time 0.5 s KSY 51 KS 0306/1 W3	
	Dimension diagram
	for DIN rail according to EN 50022

KSY 51
Electronic interval timer relay for single voltage; function selectable

- Interval ON relay
- Interval OFF relay

FD 0015

ca. 20 ms
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 30 / IP 20
Test severity 3
$-20-+60^{\circ} \mathrm{C}$
K1-12 W3
KS 0306/1 W3
0.14 kg
-

Overview of devices / Part numbers

Type	Rated voltage	
KSY 51	AC/DC 24 V	$50-60 \mathrm{~Hz}$
	AC/DC 230 V	$50-60 \mathrm{~Hz}$

Time delay	Part No.	Std. Pack
See table "Time ranges"	R2.135.0010.0	1
	R2.135.0020.0	

Timer and switching relays

ON-delay NGZ 71 interface

ON-delay multi-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 1 change-over contacts
- 2 LEDs for function display

being prepared: (IL)

Technical data
Product standard (timer relays)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. 150 pF/m)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification
Time circuit
Time setting / number of time ranges
Setting ranges for time delay
Recovery time $1 / 2$
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)
Output circuit
Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current Ith
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC 250 V, cos $\varphi=0.3$
Response time / release time on excitation of A1-A2
Other data
Creepage distances and clearances
Detection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrule
Overvals

NGZ 71

EN 61812-1:1999-08
445-01-02
2 LEDs green
FD 250-1

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U $\mathrm{U}_{\mathrm{e}} \mathrm{AC} 230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-1
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.1 kg
(1ilis being prepared: (ll)

Overview of devices / Part numbers

Type

Timer and switching relays

ON-delay NGZ 72

ON-delay multi-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 2 change-over contact
- 2 LEDs for function display

(11) is being prepared: (Ll)

Function Setting the time delay The time range is set with the RANGE selector switch and displayed in the window next to it. The desired delay time is set with a selecting wheel. LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.				Function diagram Function code $11=\mathrm{ON}$-delay		
Time ranges				Fixed time		
$\begin{array}{r} \text { Setting range } \\ <0.1 \ldots \end{array}$	$\begin{array}{ccc} 1 \mathrm{~s} \text { to } 300 \mathrm{~h} \text { divide } \\ 5 & \ldots & 100 \mathrm{~s} \\ 15 & \ldots & 300 \mathrm{~s} \\ 50 & \ldots & 1000 \mathrm{~s} \\ 0.5 & \ldots & 10 \mathrm{~min} \end{array}$	$\begin{array}{lll} 1.5 & \ldots & 30 \mathrm{~min} \\ 3 & \ldots & 60 \mathrm{~min} \\ 5 & \ldots & 100 \mathrm{~min} \\ 0.15 & \ldots & 3 \mathrm{~h} \end{array}$	$\begin{array}{rl} 0.5 & \ldots \\ 10 \mathrm{~h} \\ 1.5 & \ldots \\ 5 & 30 \mathrm{~h} \\ 5 & \ldots \\ 15 & \ldots \\ 15 & \ldots 00 \mathrm{~h} \end{array}$		ity ON element in O element in O element in O ity OFF	sition sition OFF position
Note				Circuit diagram		
The device is designed for multi-voltage. Phase $L 1$ or $L+$ must be connected to terminal A1; neutral conductor N or M must be connected to terminal A2. You can change the delay time during operation. The change is effective immediately.				KS 250-3		
				Dimension diagram		
740 wo wieland						Subject to cha

Technical data	
	Relay function according to IEC 60050
	Function display
	Function diagram
Input circuit	
Rated voltage A1-A2	
Rated consumption AC	
Rated consumption DC	
Rated voltage limits	
Rated frequency f_{n}	
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)	
Rated current on control connection (A1)	
Rated consumption on control connection (A1)	
Parallel loads permissible	
Internal half-wave rectification	
Time circuit	
Time setting / number of time ranges	
Setting ranges for time delay	
Recovery time 1/2	
Minimum ON time 1/2	
Setting tolerance	
Repeatability (to set value)	
Influence of temperature (within range)	
Influence of voltage (within range)	
Output circuit	
Contact assignment	
Contact material	
Rated operating voltage	
Rated value for limiting continuous current $\mathrm{I}_{\text {th }}$	
Minimum contact load	
Application category according to IEC 60947-5-1	
Permissible switching frequency	
Mechanical life	
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$	
Response time / release time on excitation of A1-A2	
Other data	
Creepage distances and clearances	
Degree of pollution	
Overvoltage category	
Rated voltage	
Protection degree according to IEC 60529 housing / terminals	
Noise immunity according to IEC 61000-4	
Ambient temperature, operating range	
Dimension diagram (housing)	
Circuit diagram of the terminals	
Wire ranges stranded or solid stranded with ferrule	
Weight	
Accessories	
Approvals	

NGZ 72

EN 61812-1:1999-08
445-01-02
2 LEDs green
FD 250-2

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

2 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} \mathrm{AC} 230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-2
KS 250-3
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.11 kg
(『14 us being prepared: (IL)

Overview of devices / Part numbers

Type

Timer and switching relays

ON-delay NGZ 72-S interface

ON-delay multi-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 1 instantaneous and 1 timed change-over contact
- 2 LEDs for function display

(14) vs being prepared: (II)

Technical data

Product standard (timer relays)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time $1 / 2$
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $\mathrm{I}_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time on excitation of A1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrule

Weight

Accessories
Approvals

NGZ 72-S
EN 61812-1:1999-08
445-01-02 + 445-04-05
2 LEDs green
FD 250-4

AC/DC 24-240 V
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 instantaneous and 1 timed change-over contact
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 Ue AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-2
KS 250-5
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.11 kg
©(1is being prepared: (II)

Overview of devices / Part numbers

Timer and switching relays
 ON-delay NGZP 71 interface

ON-delay multi-range timer relay with remote potentiometer connection

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- Remote potentiometer contact
- 1 change-over contact
- 2 LEDs for function display

being prepared: (IL)

Subject to change without further notice

Technical data	
Product standard (timer relay)	
Function type of the relay according to IEC 60050Function display	
Function diagram	
Input circuit	
Rated voltage A1-A2	
Rated consumption AC	
Rated consumption DC	
Rated voltage limits	
Rated frequency f_{n}	
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)	
Rated current on control connection (A1)	
Rated consumption on control connection (A1)	
Parallel loads permissible	
Internal half-wave rectification	
Time circuit	
Time setting / number of time ranges	
Setting ranges for time delay	
Recovery time 1/2	
Minimum ON time 1/2	
Setting tolerance	
Repeatability (to set value)	
Influence of temperature (within range)	
Influence of voltage (within range)	
Output circuit	
Contact assignment	
Contact material	
Rated operating voltage	
Rated value for limiting continuous current Ith	
Minimum contact load	
Application category according to IEC 60947-5-1	
Permissible switching frequency	
Mechanical life	
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$	
Response time / release time on excitation of A1-A2	
Other data	
Creepage distances and clearances	
Degree of pollution	
Overvoltage category	
Rated voltage	
Protection degree according to IEC 60529 housing / terminals	
Noise immunity according to IEC 61000-4	
Ambient temperature, operating range	
Dimension diagram (housing)	
Circuit diagram of the terminals	
Wire ranges stranded or solid stranded with ferrule	
Weight	
Accessories	
Approvals	

NGZP 71
EN 61812-1:1999-08
445-01-02
2 LEDs green
FD 250-1

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog (internal + external) / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-2
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.12 kg

Remote potentiometer FP 10 k
c(1)us being prepared: (IL)

Overview of devices / Part numbers

Type

Timer and switching relays
 oN-delay NGZP 72 Interface

ON-delay multi-range timer relay with remote potentiometer connection

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- Remote potentiometer connection
- 2 change-over contacts
- LEDs for function display

being prepared: © (1L)

NGZP 72
EN 61812-1:1999-08
445-01-02
2 LEDs green
FD 250-2

AC/DC 24-240 V
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog (internal + external) / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$
1/2-/-ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

2 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
2×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-4
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.14 kg

Remote potentiometer FP 10 k
c(1)us being prepared: (IL)

Overview of devices / Part numbers

Timer and switching relays

ON-delay NGZP 72-S

 interface
ON-delay multi-range timer relay with remote potentiometer connection

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- Remote potentiometer connection
- 1 instantaneous and 1 timed change-over contact
- 2 LEDs for function display

in preparation: (1L)

Function	Time ranges
Setting the time delay The time range is set with the RANGE selector switch and displayed in the window next to it. The desired delay time is set with a selecting wheel. Connecting a remote potentiometer allows you to set parameters at greater	Setting range from 0.1 s to 300 h divided into:
set to the right-hand stop above the largest value. Operation without remote potentiometer does not require a jumper on the device. LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.	Notes - The device is designed for multi-voltage. Phase L1 or L+ must be connected to terminal A1; neutral conductor N or M must be connected to terminal A 2 . - You can change the delay time during operation. The change is effective immediately.
Accessories	Circuit diagram
Remote potentiometer FP 10 k Function diagram Funktionscode 11-ON = ON-delay $\mathrm{t}_{\mathrm{A}}=$ operating time $t_{1}=$ break time, must be $>$ recovery time 1 $\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2	
Description of the drawing	Dimension diagram

Technical data

Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram

Input circuit

Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $t_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances

Degree of pollution

Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
$\begin{array}{ll}\text { Wire ranges } & \begin{array}{l}\text { stranded or solid } \\ \\ \text { stranded with ferrules }\end{array}\end{array}$
Weight
Accessories
Approvals
Approvals

Overview of the devices/Part numbers

NGZP 72-S
EN 61812-1:1999-08
445-01-02 + 445-01-05
2 LEDs green
FD 250-4

AC/DC 24 to 240 V
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog (internal + external) / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 instantaneous and 1 timed change-over contact
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 Ue AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-6
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.14 kg

Remote potentiometer FP 10 k
(© ilus in preparation: (II)

Timer and switching relays

ON-delay NGZ 11

 interface
ON-delay single-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- 13 time ranges available from 0.1 s to 100 h
- 1 change-over contact
- 2 LEDs for function display

in preparation: (1L)

Technical data

Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram

Input circuit

Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1

Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances

Degree of pollution

Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
$\begin{array}{ll}\text { Wire ranges } & \begin{array}{l}\text { stranded or solid } \\ \text { stranded with ferrules }\end{array}\end{array}$
Weight
Accessories
Approvals
Overview of the devices/Part numbers
Type

Rated voltage

NGZ 11

AC/DC $24-240$ V $50-60 \mathrm{~Hz}$

NGZ 11
EN 61812-1:1999-08
445-01-02
2 LEDs green
FD 250-1

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog / 1
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 change-over contacts
AgNi 90/10
AC/DC 24 at 240 V
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, I_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-1
$1 \times 0.2-6$ or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.1 kg
(ब1is in preparation: (II)

ON-delay time	Part No.	Std. Pack
<0.1 ... 1 s	R2.064.0070.0	1
$0.15 \ldots 3 \mathrm{~s}$	R2.064.0120.0	1
$0.5 \ldots 10 \mathrm{~s}$	R2.064.0060.0	1
1.5 ... 30 s	R2.064.0110.0	1
5 ... 100 s	R2.064.0030.0	1
$15 . . .300 \mathrm{~s}$	R2.064.0080.0	1
50 ... 1000 s	R2.064.0010.0	1
$0.5 \ldots 10 \mathrm{~min}$	R2.064.0050.0	1
1.5 ... 30 min	R2.064.0100.0	1
$3 \ldots 60 \mathrm{~min}$	R2.064.0130.0	1
$0.5 \ldots 10 \mathrm{~h}$	R2.064.0040.0	1
1.5 ... 30 h	R2.064.0090.0	1
$5 \ldots 100 \mathrm{~h}$	R2.064.0020.0	1

R2.064.0020.0

Timer and switching relays
 ON-delay NGZ 12 interface

ON-delay single-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- 13 time ranges available from 0.1 s to 100 h
- 2 change-over contact
- 2 LEDs for function display

© ${ }^{\text {en }}$ in preparation: (1L)

Technical data

Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules
Weight
Accessories
Approvals
Overview of the devices/Part numbers

Type

NGZ 12

Rated voltage

AC/DC $24-240 \mathrm{~V} 50-60 \mathrm{~Hz}$

NGZ 12
EN 61812-1:1999-08
445-01-02
2 LEDs green
FD 250-2
AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110\%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog / 1
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

2 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
$\mathrm{AC}-15 \mathrm{U}_{\mathrm{e}} \mathrm{AC} 230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 Ue DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-2
KS 250-3
1×0.2 to 6 or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
1×0.4 to 4 or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.11 kg
(18is in preparation: (1)

ON-delay time		Part No.	Std. Pack
<0.1	1 s	R2.064.0210.0	1
0.15	3 s	R2.064.0260.0	1
	10 s	R2.064.0200.0	1
	30 s	R2.064.0250.0	1
	100 s	R2.064.0170.0	1
	300 s	R2.064.0220.0	1
50	1000 s	R2.064.0150.0	1
0.5	10 min	R2.064.0190.0	1
	30 min	R2.064.0240.0	1
	60 min	R2.064.0270.0	1
	10 h	R2.064.0180.0	1
1.5	30 h	R2.064.0230.0	1
	100 h	R2.064.0160.0	1

Timer and switching relays
 oN-delay NGZ 12-s Interface

ON-delay single-range timer relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- 13 time ranges available from 0.1 s to 100 h
- 1 instantaneous and 1 timed change-over contact
- 2 LEDs for function display

S14 in preparation: (HL)

Function	Time ranges
Setting the time delay The desired delay time is set with a selecting wheel. It can be set using a screwdriver. LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.	Available time ranges:
Function diagram	Notes
Function code 11-ON = ON-delay Description of the drawing	- The device is designed for multi-voltage. Phase L1 or L+ must be connected to terminal A1; neutral conductor N or M must be connected to terminal A2. - You can change the delay time during operation. The change is effective immediately. Circuit diagram Dimension diagram K 3-2

Technical data

Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules

Weight

Accessories
Approvals
Overview of the devices/Part numbers

Type

NGZ 12-S

Rated voltage

AC/DC $24-240$ V $50-60 \mathrm{~Hz}$

NGZ 12-S
EN 61812-1:1999-08
445-01-02 + 445-04-05
2 LEDs green
FD 250-4

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110\%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog / 1
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 instantaneous and 1 timed change-over contact
AgNi 90/10
AC/DC 24 to 240 V
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, I_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-2
KS 250-5
1×0.2 to 6 or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
1×0.4 to 4 or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.1 kg
(ब1is in preparation: (II)

ON-delay time		Part No.	Std. Pack
<0.1 ...	1 s	R2.064.0340.0	1
$0.15 \ldots$	3 s	R2.064.0390.0	1
0.5 ...	10 s	R2.064.0330.0	1
1.5 ...	30 s	R2.064.0380.0	1
5 ...	100 s	R2.064.0300.0	1
$15 .$.	300 s	R2.064.0350.0	1
50 ...	1000 s	R2.064.0280.0	1
0.5 ...	10 min	R2.064.0320.0	1
1.5 ...	30 min	R2.064.0370.0	1
3 ...	60 min	R2.064.0370.0	1
0.5 ...	10 h	R2.064.0310.0	1
1.5 ...	30 h	R2.064.0360.0	1
5 ...	100 h	R2.064.0290.0	1

Timer and switching relays

ON-delay NGZP 31

 interface
ON-delay single-range timer relay with remote potentiometer connection

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- 13 time ranges available from 0.1 s to 100 h
- Remote potentiometer connection
- 1 change-over contact
- 2 LEDs for function display

in preparation: (4L)

Technical data
Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1

Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules
Weight
Accessories
Approvals
Overview of the devices/Part numbers

Type

NGZP 31

Rated voltage

AC/DC $24-240 \mathrm{~V} 50-60 \mathrm{~Hz}$

NGZP 31
EN 61812-1:1999-08
445-01-02
2 LEDs green
FD 250-1

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110\%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog (intern + extern) / 1
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U $\mathrm{AC} 230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-9
$1 \times 0.2-6$ or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.12 kg

Remote potentiometer FP 10 k
(© 1 us in preparation: (II)

ON-delay time		Part No.	Std. Pack
<0.1	1 s	R2.064.0480.0	1
0.15	3 s	R2.064.0530.0	1
0.5	10 s	R2.064.0470.0	1
1.5	30 s	R2.064.0520.0	1
5	100 s	R2.064.0440.0	1
15	300 s	R2.064.0490.0	1
	1000 s	R2.064.0420.0	1
	10 min	R2.064.0460.0	1
	30 min	R2.064.0510.0	1
	60 min	R2.064.0540.0	1
0.5	10 h	R2.064.0450.0	1
1.5	30 h	R2.064.0500.0	1
	100 h	R2.064.0430.0	1

Timer and switching relays

ON-delay NGZP 32

 interface
ON-delay single-range timer relay with remote potentiometer connection

- Multi-voltage for AC/DC 24 to 240 V
- 1 function: ON-delay (AV)
- 13 time ranges available from 0.1 s to 100 h
- Remote potentiometer connection
- 2 change-over contact
- 2 LEDs for function display

in preparation: (1L)

NGZP 32
EN 61812-1:1999-08
445-01-02
2 LEDs green
FD 250-2

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110\%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog (intern + extern) / 1
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

2 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U $\mathrm{AC} 230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-4
$1 \times 0.2-6$ or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.14 kg

Remote potentiometer FP 10 k
(© 1 us in preparation: (II)

ON-delay time		Part No.	Std. Pack
<0.1	1 s	R2.064.0610.0	1
0.15	3 s	R2.064.0660.0	1
0.5	10 s	R2.064.0600.0	1
1.5	30 s	R2.064.0650.0	1
5	100 s	R2.064.0570.0	1
15	300 s	R2.064.0620.0	1
	1000 s	R2.064.0550.0	1
0.5	10 min	R2.064.0590.0	1
1.5	30 min	R2.064.0640.0	1
	60 min	R2.064.0670.0	1
	10 h	R2.064.0580.0	1
	30 h	R2.064.0630.0	1
5	100 h	R2.064.0560.0	1

Rated voltage

AC/DC $24-240 \mathrm{~V} 50-60 \mathrm{~Hz}$

Part No.
0.0
2.064.0650.0

R2.064.0620.0

R2.064.0590.0
R2.064.0640.0
0670.0

R2.064.0630.0
wieland
759

Timer and switching relays

 ON-delay NGZP 32-S interface
ON-delay single-range timer relay with remote potentiometer connection

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: ON-delay (AV)
- 13 time ranges available from 0.1 s to 100 h
- Remote potentiometer connection
- 2 change-over contact
- 2 LEDs for function display

in preparation: (IL)

Technical data

Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules
Weight
Accessories
Approvals
Overview of the devices/Part numbers

Type

NGZP 32-S

Rated voltage

AC/DC $24-240 \mathrm{~V} 50-60 \mathrm{~Hz}$

NGZP 32-S
EN 61812-1:1999-08
445-01-02 + 445-04-05
2 LEDs green
FD 250-4

AC/DC 24 to 240 V
3.5 VA / 1.7 W
1.6 W

70-110\%
$50-60 \mathrm{~Hz} \pm 5 \%$
\geq AC/DC 10 V ; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog (internal + external) / 16
See table "Time ranges"
$\leq 50 / \leq 50 \mathrm{~ms}$

- / - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 instantaneous and 1 timed change-over contact
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, 1$
DC-13 Ue DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-6
$1 \times 0.2-6$ or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.14 kg

Remote potentiometer FP 10 k
© (${ }^{\text {Cl }}$ us in preparation: (II)

ON-delay time		Part No.	Std. Pack
<0.1 ...	1 s	R2.064.0740.0	1
0.15 ...	3 s	R2.064.0790.0	1
0.5 ...	10 s	R2.064.0730.0	1
1.5 ...	30 s	R2.064.0780.0	1
5 ...	100 s	R2.064.0700.0	1
$15 .$.	300 s	R2.064.0750.0	1
50 ...	1000 s	R2.064.0680.0	1
0.5 ...	10 min	R2.064.0720.0	1
1.5 ...	30 min	R2.064.0770.0	1
3 ...	60 min	R2.064.0800.0	1
0.5 ...	10 h	R2.064.0710.0	1
1.5 ...	30 h	R2.064.0760.0	1
5	100 h	R2.064.0690.0	1

R2.064.0690.0

Timer and switching relays

onatank interface

ON-delay single-range timer relay with digital time setting

- Single voltage
- 1 function: ON-delay (AV)
- 1 time range with digital time selection
- 1 timed change-over contact
- 2 LEDs for function display

Time ranges

Available time ranges:
0.01 s ... 9.99 s
0.01 s ... 99.99 s
0.1 s ... 99.9 s

1 s ... 9999 s

Circuit diagram
KZD 31 K
KS 0080/2

Dimension diagram

Technical data
Function type according to IEC 60050 (445)
Function display
Function diagram

Power supply circuit

Rated voltage $U_{N} \quad \mathrm{AC} / \mathrm{DC}$
Rated consumption at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$
Rated consumption DC
Switch-on peak
Rated frequency
Operating voltage range

Time circuit

Time setting / number of time ranges
Possible setting range
Recovery time 1/2
Minimum ON time
Release value
Parallel loads permissible
Internal half-wave rectification
Mean value of the fault
Dispersion
Influence of the energizing quantity, supply voltage
Influence of the ambient temperature

Output circuit

Contact assignment
Contact material
Rated operating voltage U_{n}
Max. continuous current I_{n}
Application category according to EN 60947-5-1:1991

Permissible switching frequency

Mechanical life
Response time
Release time

General information

Creepage distances and clearances between the circuits
Rated impulse voltage
Overvoltage category
Degree of pollution
Rated voltage
Test voltage $U_{\text {eff }} 50 \mathrm{~Hz}$ according to DIN VDE 0110-1, table A. 1
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.92
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals

Overview of the devices/Part numbers	
Type	ON-delay time
KZD 31 K	$0.01 \ldots 9.99 \mathrm{~s}$
	$0.01 \ldots 99.99 \mathrm{~s}$
	0.1 ... 99.9 s
	$1 . . .9999 \mathrm{~s}$

KZD 31 K
ON-delay timer relay with digital time setting
1 green LED, 1 red LED
FD 0026
24 V
230 V

$1.9 \mathrm{VA} / 1.8 \mathrm{~W}$	$5.0 \mathrm{VA} / 1.6 \mathrm{~W}$

1.3 W
$1.5 \mathrm{~A} / 2 \mathrm{~ms}$
$0.5 \mathrm{~A} / 0.5 \mathrm{~ms}$
$50-60 \mathrm{~Hz}$
$0.80-1.1 \times U_{N}$
digital / 1
See table "Time ranges"
ca. $40 / \mathrm{ca} .80 \mathrm{~ms}$
$\geq 15 \% U_{N}$
yes
no
$\leq \pm 0.5 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.5 \%+ \pm 10 \mathrm{~ms}$
$\leq 0.02 \% / \% \Delta U_{N}$
$\leq 0.025 \% / K$
1 timed change-over contact
Ag alloy, gold-plated
230/230 V AC/DC
5 A
AC-15: Ue $230 \mathrm{VAC}, 1$
DC-13: U 24 V DC, $1{ }_{e} 2$ A
≤ 3600 switching cycles/h
20×10^{6} switching cycles
ca. 25 ms
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 30 / IP 20
Test severity 3
$-20-+60^{\circ} \mathrm{C}$
K1-8 W3
KS 0080/2
0.12 kg
-
-

Rated voltage		Part No.	Std. Pack
$A C 230 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	$R 2.054 .0270 .0$	1
AC/DC 24 V	$50-60 \mathrm{~Hz}$	$R 2.054 .0150 .0$	1
$A C / D C 24 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	$R 2.054 .0130 .0$	1
AC 230 V	$50-60 \mathrm{~Hz}$	$R 2.054 .0110 .0$	1
AC/DC 24 V	$50-60 \mathrm{~Hz}$	$R 2.054 .0050 .0$	1

Timer and switching relays

ON-delay KZTH 11

ON-delay single-range timer relay with semiconductor output (two-wire)

- Multi-voltage AC/DC 24 to 110 or 60 to 230 V
- 1 function: ON-delay (AV)
- 1 time range
- 1 semiconductor output
Function
Infinitely variable time setting is selected with a thumbwheel disc. The scale values
are absolute values related to the selected time unit.
Function diagram
KZTH $\mathbf{1 1}$

Application example

When the control contact S is closed, the KZTH 11 is energized through the load L and the countdown starts (see "Function diagram"). After the timing period has elapsed, the KZTH 11 connects the load L. The load L must be chosen so that even with lower supply voltage the holding current will not fall below $10 \mathrm{~mA}_{\text {eff }}$ and the maximum load current is $\leq 0.8 \mathrm{~A}_{\text {eff }}$. At max. load current, a voltage drop $\leq 3.5 \mathrm{~V}_{\text {eff }}$ must be considered due to the KZTH.

Time ranges

Available time ranges:
0.05 s ... 1 s
$0.15 \mathrm{~s} . . . \quad 3 \mathrm{~s}$
$0.5 \mathrm{~s} \ldots 10 \mathrm{~s}$
$1.5 \mathrm{~s} . . \quad 30 \mathrm{~s}$
$5 \mathrm{~s} \ldots 100 \mathrm{~s}$
Circuit diagram
KZTH 11
KS 0164/2

Dimension diagram

Timer and switching relays ON-delay KZTH 11

Technical data
Function type according to IEC 60050 (445)

Function display
 Function diagram

 Power supply circuit

 Power supply circuit}Rated voltage U_{N}
AC/DC
Rated consumption at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$
Rated consumption DC
Switch-on peak
Rated frequency
Operating voltage range

Time circuit

Time setting / number of time ranges
Possible setting range
Recovery time 1/2
Minimum ON time
Release value
Parallel loads permissible
Internal half-wave rectification
Mean value of the fault
Dispersion
Influence of the energizing quantity, supply voltage
Influence of the ambient temperature

Output circuit

Contact assignment
Contact material
Rated operating voltage U_{n}
Max. load current
Max. impulse current, 1 half wave 50 Hz
Holding current
Voltage drop in the device
Permissible switching frequency
Response time
Release time

General information

Creepage distances and clearances between the circuits
Rated impulse voltage
Overvoltage category
Degree of pollution
Rated voltage
Test voltage $\mathrm{U}_{\text {eff }} 50 \mathrm{~Hz}$ according to DIN VDE 0110-1, table A. 1
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.92
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals

Rated voltage		Part No.	Std. Pack
AC/DC 60-230 V	$50-60 \mathrm{~Hz}$	R2.060.0060.2	1
AC/DC $24-110 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	R2.060.0080.2	1
AC/DC $60-230 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	R2.060.0090.2	1
AC/DC $24-110 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	R2.060.0040.2	1
AC/DC $60-230 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	R2.060.0050.2	1
AC/DC 60-230 V	$50-60 \mathrm{~Hz}$	R2.060.0070.2	1
AC/DC $60-230 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	R2.060.0030.2	1

KZTH 11
ON-delay timer relay with semiconductor output for multi-voltage
FD 0034

$\mathbf{2 4 - 1 1 0}$ V	$\mathbf{6 0 - 2 3 0}$ V
-	-
-	-
-	-

$50-60 \mathrm{~Hz}$
$0.8-1.1 \times U_{N}$
analog / 1
See table "Time ranges"
ca. 50 / ca. 300 ms
-
no
no
$\leq \pm 1 \%+ \pm 10 \mathrm{~ms}$
$\leq 0.15 \% / K$

1 semiconductor
-
$0.8 \mathrm{~A}_{\text {eff }}$
$30 \mathrm{~A}_{\mathrm{s}}$
$\leq 15 \mathrm{~mA}_{\text {eff }}$
$\leq 3.5 \mathrm{mV}_{\text {eff }}$
≤ 3600 switching cycles/h
-
according to DIN VDE 0110-1:04.97

3 outside, 2 inside

IP 30 / IP 20
Test severity 3
$-20-+60^{\circ} \mathrm{C}$
K1-7
KS 0164/2
0.11 kg
-

ON-delay timer relay
Time range $1-100 \mathrm{sec}, 1-100 \mathrm{~min}$
Dimensions (mm): W x H x D
$6.2 \times 89 \times 70$

flare TIMER-A
ON-delay timer relay
Approvals: © $\mathbb{C H}_{\mathrm{Ex}}$

Type	Part No.	Std. Pack
		10
flare TIMER-A/0100-S-250V6A	81.020 .4101 .0	10
flare TMER-A/0060-S-250V6A	81.020 .4102 .0	

24 V DC +25\%/-20\%
24 V DC +25\%/-20\%
ca. 10 mA
At the front (behind the hinged identification plate holder)
Potentiometer
LED green
$\pm 1 \%$ of selected range

250 V AC / 300 V DC
6 A AC / 2 A DC
1500 VA / 48 W
$10 \mathrm{~A} ; 4 \mathrm{sec}$.
$1 \mathrm{~ms} / 5 \mathrm{~ms}$
2 ms
20 Hz
AgSnO_{2}
12 V
8 mA
2×10^{7}
6×10^{5}
8×10^{4}
$4 \mathrm{kV}_{\text {eff }}$
III (according to HD 625.1S1)
2 (according to HD 625.1S1)
$0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
IP 20 / TS35
VDE 0160; VDE 0106 T101
EN 61000-6-3; EN 61000-6-2
-
$0.14 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$
$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$

Class I, Division 2, Groups A, B, C and D
Z8.000.0200.8 10

Z4.242.5153.0
10

Timer and switching relay

Block diagram for timer relay flare TIMER-A
ON-delay

Derating: timer relays

Contact assignment: timer relay

Timer and switching relays

OFF-delay NGZ 710 interface

OFF-delay multi-range timer relay with auxiliary supply

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: OFF-delay (RV) with auxiliary supply
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 1 change-over contact
- 2 LEDs for function display

© © is being prepared: (4l)
Function
Setting the time delay
The time range is set with the RANGE selector switch and displa
next to it. The desired delay time is set with a selecting wheel.
LEDs show the state of the excitation input and the position of th
monitor the countdown on a flashing LED.
$\mathrm{t}_{\mathrm{R}}=$ returning time
$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2
$\mathrm{t}_{3}=$ time between switching on auxiliary supply and energizing
quantity, must be $>$ recovery time 1

Description of the drawing

Time ranges

Available time ranges:

<0.1	\ldots	1 s	5	\ldots	100 s	1.5	\ldots	30 min	0.5	\ldots	10 h
0.15	\ldots	3 s	15	\ldots	300 s	3	\ldots	60 min	1.5	\ldots	30 h
0.5	\ldots	10 s	50	\ldots	1000 s	5	\ldots	100 min	5	\ldots	100 h
1.5	\ldots	30 s	0.5	\ldots	10 min	0.15	\ldots	3 h	15	\ldots	300 h

Notes

- The device is designed for multi-voltage. Phase L1 or $L+$ must be connected to terminal A 1 ; neutral conductor N or M must be connected to terminal A 2 .
- You can change the delay time during operation. The change is effective immediately.

Circuit diagram

KS $250-8$

Dimension diagram

Timer and switching relays
OFF-delay NGZ 710

Technical data

Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram

Input circuit

Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (B1-A2)
Rated consumption on control connection (B1-A2)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2/3
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $I_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1

Permissible switching frequency

Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2
Response time / release time at excitation of B1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules
Weight
Accessories
Approvals

Overview of the devices/Part numbers

NGZ 710
EN 61812-1:1999-08
445-01-04 + 445-03-02
2 LEDs green
FD 250-10

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes / B1-A2 yes
A1-A2 no / B1-A2 yes
analog / 16
See table "Time ranges"
0/0/-ms
$\leq 25 /-\mathrm{ms}$
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 change-over contact
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-8
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.1 kg
©(1)is being prepared: (II)

Timer and switching relays

OFF-delay NGZ 720 interface

OFF-delay multi-range timer relay with auxiliary supply

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: OFF-delay (RV) with auxiliary supply
- Setting range from 0.1 s to 300 h divided into 16 selectable time ranges
- 2 change-over contact
- 2 LEDs for function display

being prepared: (IL)

Timer and switching relays
OFF-delay NGZ 720

Technical data

Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram

Input circuit

Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (B1-A2)
Rated consumption on control connection (B1-A2)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1/2/3
Minimum ON time 1/2
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $\mathrm{I}_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1

Permissible switching frequency

Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2
Response time / release time at excitation of B1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules
Weight
Accessories
Approvals

Overview of the devices/Part numbers

NGZ 720

EN 61812-1:1999-08
445-01-04 + 445-03-02
2 LEDs green
FD 250-11

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes / B1-A2 yes
A1-A2 no / B1-A2 yes
analog / 16
See table "Time ranges"
0/0/-ms
$\leq 25 /-\mathrm{ms}$
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002$ \%
$\leq \pm 0.002 \%$

2 change-over contacts
AgNi 90/10
AC/DC 24 to 240 V
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-9
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.13 kg
(114is being prepared: (IL)

Timer and switching relays

OFF-delay NGZ 310 interface

OFF-delay single-range timer relay with auxiliary supply

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: OFF-delay (RV)
- 13 time ranges available from 0.1 s to 100 h
- 1 change-over contact
- 2 LEDs for function display

(14) vs being prepared: (II)

Timer and switching relays OFF-delay NGZ 310

NGZ 310

EN 61812-1:1999-08
445-01-04 + 445-03-02
2 LEDs green
FD 250-10

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes / B1-A1 yes
A1-A2 no / B1-A1 yes
analog / 1
See table "Time ranges"
$0 / 0 \mathrm{~ms}$
$\leq 25 /$ - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002$ \%
$\leq \pm 0.002 \%$

1 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
$A C-15 U_{e} A C 230 \mathrm{~V}, I_{e} 3 \mathrm{~A} \quad \mathrm{DC}-13 \mathrm{U}_{\mathrm{e}} \mathrm{DC} 24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-8
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.1 kg
(div being prepared: (ll)

ON-delay time		Part No.	Std. Pack
<0.1 ...	1 s	R2.067.0320.0	1
0.15 ...	3 s	R2.067.0370.0	1
0.5 ...	10 s	R2.067.0310.0	1
1.5 ...	30 s	R2.067.0360.0	1
5 ...	100 s	R2.067.0280.0	1
$15 .$.	300 s	R2.067.0330.0	1
50 ...	1000 s	R2.067.0260.0	1
0.5 ...	10 min	R2.067.0300.0	1
1.5 ...	30 min	R2.067.0350.0	1
3 ...	60 min	R2.067.0380.0	1
0.5 ...	10 h	R2.067.0290.0	1
1.5 ...	30 h	R2.067.0340.0	1
5	100 h	R2.067.0270.0	1

R2.067.0270.0

Rated voltage

AC/DC $24-240 \mathrm{~V} 50-60 \mathrm{~Hz}$

Timer and switching relays
 OFF-delay NGZ 320 interface

OFF-delay single-range timer relay with auxiliary supply

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: OFF-delay (RV)
- 13 time ranges available from 0.1 s to 100 h
- 2 change-over contact
- 2 LEDs for function display

being prepared: (1L)

Time ranges

Notes

- The device is designed for multi-voltage. Phase L1 or L+ must be connected to terminal A 1 ; neutral conductor N or M must be connected to terminal A 2 .
- You can change the delay time during operation. The change is effective immediately.

Circuit diagram

K\$ 250-9

Dimension diagram

$k 33$

Timer and switching relays OFF-delay NGZ 320

NGZ 320
EN 61812-1:1999-08
445-01-04 + 445-03-02
2 LEDs green
FD 250-11

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes / B1-A1 yes
A1-A2 no / B1-A1 yes
analog / 1
See table "Time ranges"
$0 / 0 \mathrm{~ms}$
$\leq 25 /$ - ms
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

2 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U U_{e} AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A} \quad \mathrm{DC}-13 \mathrm{U}_{\mathrm{e}} \mathrm{DC} 24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-9
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.13 kg
c(1) us being prepared: ([1L)

ON-delay time	
<0.1	1 s
0.15	3 s
0.5	10 s
	30 s
5.	100 s
15.	300 s
50.	1000 s
0.5 .	10 min
	30 min
	60 min
0.5	10 h
1.5	30 h
	100 h

Part No.
R2.067.0450.0
R2.067.0500.0
R2.067.0440.0 1

R2.067.0490.0
R2.067.0410.0 1

R2.067.0460.0
R2.067.0390.0 1

R2.067.0430.0
R2.067.0480.0
R2.067.0510.0
R2.067.0420.0
R2.067.0470.0
R2.067.0400.0

Timer and switching relays

OFF-delay NGZ 110/NGZ 210 interface

OFF-delay single-range timer relay without auxiliary supply

- 3 single voltages AC/DC available
- 1 function: OFF-delay (RV)
- 6 time ranges available from 0.05 to 300 s
- 1 change-over contact
- 1 LED for function display
- Configuration prior to use not required

(IL)us being prepared: (IL)

Timer and switching relays OFF-delay NGZ 110 / NGZ 210

NGZ 110 NGZ 210
EN 61812-1:1999-08
445-01-03
1 LED green
FD 250-16

AC/DC	AC	AC	DC
24 V	$110-127 \mathrm{~V}$	$230-240 \mathrm{~V}$	110 V
0.1 VA	0.8 VA	1.3 VA	
0.06 W	0.5 W	0.9 W	
0.06 W			0.6 W
$0.4 \mathrm{~A} / 40 \mathrm{~ms}$	$0.1 \mathrm{~A} / 40 \mathrm{~ms}$	$0.05 \mathrm{~A} / 150 \mathrm{~ms}$	$0.06 \mathrm{~A} / 15 \mathrm{~ms}$
$80 ~$			

80-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
A1-A2 yes
A1-A2 yes
analog / 1
See table "Time ranges"
approx. 250 ms
approx. 200 / approx. 200 ms (at $300 \mathrm{~s}:$ approx. 500 / approx. 500 ms)
$\leq \pm 5 \%$
$\leq \pm 1 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.04$ \%
$\leq \pm 0.05 \%$
1 change-over contacts
AgNi $0.15+$ HVT
AC/DC 230/230 V
5 A
AC-15 U_{e} AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13 Ue DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
10×10^{6} switching cycles
1×10^{5} switching cycles at rated load
15 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-10
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.11 kg
(ㄴU) us being prepared: (11)

Timer and switching relays

 OFF-delay NGZ 110/NGZ 210 interface| Type | Rated voltage | ON-delay time | Part No. | Std. Pack |
| :---: | :---: | :---: | :---: | :---: |
| NGZ 110 | AC/DC $24 \mathrm{~V} \quad 50-60 \mathrm{~Hz}$ | $0.05 \ldots 1 \mathrm{~s}$ | R2.067.0090.0 | 1 |
| | | $0.15 \ldots 3 \mathrm{~s}$ | R2.067.0180.0 | 1 |
| | | 0.5 ... 10 s | R2.067.0060.0 | 1 |
| | | 1.5 ... 30 s | R2.067.0150.0 | 1 |
| | | $5 \ldots 100 \mathrm{~s}$ | R2.067.0030.0 | 1 |
| | | $15 \ldots 300 \mathrm{~s}$ | R2.067.0120.0 | 1 |
| | AC/DC $110-127 \mathrm{~V} 50-60 \mathrm{~Hz}$ | $0.05 \ldots 1 \mathrm{~s}$ | R2.067.0070.0 | 1 |
| | | $0.15 \ldots 3 \mathrm{~s}$ | R2.067.0160.0 | 1 |
| | | $0.5 \ldots 10 \mathrm{~s}$ | R2.067.0040.0 | 1 |
| | | $1.5 \ldots 30 \mathrm{~s}$ | R2.067.0130.0 | 1 |
| | | $5 \ldots 100 \mathrm{~s}$ | R2.067.0010.0 | 1 |
| | | $15 . . .300 \mathrm{~s}$ | R2.067.0100.0 | 1 |
| | AC/DC $230-240 \mathrm{~V} 50-60 \mathrm{~Hz}$ | $0.05 \ldots 1 \mathrm{~s}$ | R2.067.0080.0 | 1 |
| | | $0.15 \ldots 3 \mathrm{~s}$ | R2.067.0170.0 | 1 |
| | | $0.5 \ldots 10 \mathrm{~s}$ | R2.067.0050.0 | 1 |
| | | 1.5 ... 30 s | R2.067.0140.0 | 1 |
| | | $5 \ldots 100 \mathrm{~s}$ | R2.067.0020.0 | 1 |
| | | $15 . . .300 \mathrm{~s}$ | R2.067.0110.0 | 1 |
| NGZ 210 | DC 110 V | $0.05 \ldots 1 \mathrm{~s}$ | R2.067.0220.0 | 1 |
| | | $0.15 \ldots 3 \mathrm{~s}$ | R2.067.0250.0 | 1 |
| | | $0.5 \ldots 10 \mathrm{~s}$ | R2.067.0210.0 | 1 |
| | | 1.5 ... 30 s | R2.067.0240.0 | 1 |
| | | $5 \ldots 100 \mathrm{~s}$ | R2.067.0200.0 | 1 |
| | | $15 . . .300 \mathrm{~s}$ | R2.067.0230.0 | 1 |

Timer and switching relays ON-delay and OFF-delay KZT 510 K

ON-delay and OFF-delay multi-range timer relay

- Single voltage
- 2 functions: ON-delay and OFF-delay (ARV)
- Setting range from 0.05 s to 10 h divided into 10 time ranges
- 1 timed change-over contact
- 2 LEDs for function display

(4L) (1)

KZT 510 K

- ON-delay timer relay
- OFF-delay timer relay with supply voltage

1 green LED, 1 red LED
FD 0117

24 V
2.0 VA / 1.8 W

230 V
1.2 W
$1.5 \mathrm{~A} / 2 \mathrm{~ms} \quad 0.5 \mathrm{~A} / 3 \mathrm{~ms}$
ca. 13 mA
ca. 2 mA
$50-60 \mathrm{~Hz}$
$0.80-1.1 \times U_{N}$
analog / 10
See table "Time ranges"
ca. 50 /-ms
$\geq 15 \% U_{N}$
yes
no
$\leq \pm 0.5 \%+ \pm 10 \mathrm{~ms}$
$\leq 0.005 \% / \% \Delta \mathrm{U}_{\mathrm{N}}$
$\leq 0.005 \% / K$
1 timed change-over contact
Ag alloy, gold-plated
230/230 V AC/DC
5 A
AC-15: Ue $230 \mathrm{VAC}, 12 \mathrm{~A}$
DC-13: U 24 V DC, $I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
-
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 30 / IP 20
Test severity 3
$-20-+60^{\circ} \mathrm{C}$
K1-8 W3
KS 0307/1
0.12 kg
(11) (14)

R2.060.0010.1

ON-delay time	Part No.
See table "Time ranges"	R2.060.001

R2.060.0010.1
Std. Pack
See table "Time ranges"

Timer and switching relays
 Star-delta relay NGD 31

Interval ON star-delta relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: star-delta switching, interval ON (EW)
- 4 time ranges available from 0.1 s to 100 s
- 2 normally open contacts
- 2 LEDs for function display

(बix being prepared: (H1)
Function
Setting the time delay
The desired delay time is set with a selecting wheel. It can be set using a screwdriver.
Method of operation: The NGD 31 has two sequentially switching delayed outputs for
starting motors in star-delta mode. After expiration of the pre-selected acceleration
time t_{H} for the star mode and a fixed transit time t_{U} the second contact switches into
the operating position for the delta mode. When the energizing quantity switches off
the contact switches into the OFF position.
The LEDs shows the switching position of the contacts. The countdown can be
monitored on the LEDs.

Function diagram

Function code 51 = star-delta switching, interval ON

$\mathrm{t}_{\mathrm{H}}=$ acceleration time
$\mathrm{t}_{\mathrm{U}}=$ transit time 100 ms

Description of the drawing

Time ranges

Available time ranges:

<0.1	\ldots	1 s
0.5	\ldots	10 s
1.5	\ldots	30 s
5	\ldots	100 s

Notes

- The device is designed for multi-voltage. Phase L1 or $L+$ must be connected to terminal A 1 ; neutral conductor N or M must be connected to terminal A 2 .
- You can change the delay time during operation. The change is effective immediately.

Circuit diagram

Dimension diagram

Technical data
Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Permanently fixed transit time
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $\mathrm{I}_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1

Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
$\begin{array}{ll}\text { Wire ranges } & \text { stranded or solid } \\ & \text { stranded with ferrules }\end{array}$

Weight

Accessories
Approvals

Approvals
:---
Overview of the devices/Part numbers
Type 31

NGD 31

EN 61812-1:1999-08
445-01-10 + 445-01-08
2 LEDs green
FD 250-44
AC/DC 24 to 240 V
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq A C / D C 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no

analog / 1

See table "Time ranges"
$100 \mathrm{~ms} \leq \pm 2 \%$
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$
2 normally open contacts
AgNi 90/10
AC/DC 24 to 240 V
5 A
\geq AC/DC $5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3$ A
DC-13 Ue DC $24 \mathrm{~V}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-2
KS 250-21
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.11 kg

C(1) ivs being prepared: (II)

ON-delay time		Part No.	Std. Pack			
<0.1	\ldots	1	s	$	$	R2.062.0030.0
:---						

Timer and switching relays
 Signal watchdog NGW 11

Signal watchdog relay

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: Signal watchdog, with auxiliary supply
- 3 time ranges available from 0.5 s to 100 s
- 1 change-over contact
- 2 LEDs for function display

(बiv being prepared: (UL)

Abstract

Function Setting the time delay The desired delay time is set with a selecting wheel. It can be set using a screwdriver. Method of operation: On the NGW 11 when the energizing quantity (B1-A2) as well as the auxiliary supply (A1-A2) is switched on, the timed change-over contact will immediately switch into the ON position and the countdown will start. The countdown will restart whenever the energizing quantity is switched off and on during the ONdelay time. If the break or make time of the energizing quantity is longer than the ONdelay time t , the timed change-over contact will switch into the OFF position. When the energizing quantity is switched on again after the countdown, the timed changeover contact will remain in the OFF position. The timed change-over contact will immediately switch into the OFF position, when the auxiliary supply is switched off.

LEDs show the state of the excitation input and the position of the contacts. You can monitor the countdown on a flashing LED.

Function diagram
Function code 14 = Signal watchdog, with auxiliary supply

$t_{B}=$ returning time
$\mathrm{t}_{1}, \mathrm{t}_{2}=$ response time of the energizing quantity
$\mathrm{t}_{1}=$ make time, must be $>$ minimum ON time 1
$\mathrm{t}_{2}=$ make time, must be $>$ recovery time 1

Time ranges

Available time ranges
$0.5 \ldots 10 \mathrm{~s}|1.5 \ldots 30 \mathrm{~s}| 5 \ldots 100 \mathrm{~s}$

Notes

- The device is designed for multi-voltage. Phase L1 or L+ must be connected to terminal A1; neutral conductor N or M must be connected to terminal A2.
- You can change the delay time during operation. The change is effective immediately.

Circuit diagram

K5 250-23

Dimension diagram

Timer and switching relays Signal watchdog NGW 11 interface

Technical data
Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (B1-A2)
Rated consumption on control connection (B1-A2)
Parallel loads permissible
Internal half-wave rectification

Time circuit

Time setting / number of time ranges
Setting ranges for time delay
Recovery time 1
Minimum ON time 1
Setting tolerance
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)

Output circuit

Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current $\mathrm{I}_{\text {th }}$
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$
Response time / release time at excitation of A1-A2
Response time / release time at excitation of B1-A2

Other data

Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges $\begin{aligned} & \text { stranded or solid } \\ & \text { stranded with ferrules }\end{aligned}$

Weight

Accessories
Approvals

Overview of the devices/Part numbers

Type
NGW 11

Rated voltage

AC/DC $24-240 \mathrm{~V} \quad 50-60 \mathrm{~Hz}$

NGW 11

EN 61812-1:1999-08
445-01-04
2 LEDs green
FD 250-48
AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70 to 110 \%
50 to $60 \mathrm{~Hz} \pm 5$ \%
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes / B1-A2 yes
A1-A2 no / B1-A2 yes

analog / 1

See table "Time ranges"
$\leq 25 \mathrm{~ms}$
$\leq 25 \mathrm{~ms}$
$\leq \pm 5 \%$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$

1 change-over contact
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 Ue DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-23
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.1 kg
©(1)w being prepared: (II)

Timer and switching relays
Flasher relay NGB 11

Fixed time flasher relay

- Multi-voltage for AC/DC 24 to 240 V
- 1 function: symmetrical flashing, starts OFF
- Fixed time $0.5 \mathrm{~s} / 0.5 \mathrm{~s}$
- 1 change-over contact
- 2 LEDs for function display

being prepared: (UL)
Circuit diagram

Timer and switching relays

Flasher relay NGB 11 interface

NGB 11

EN 61812-1:1999-08
445-01-06
2 LEDs green
FD 250-32

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes
A1-A2 no
analog / 1 Fixed time
$0.5 \mathrm{~s} / 0.5 \mathrm{~s}$
OFF
$\leq 50 / \leq 50 \mathrm{~ms}$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$
1 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 Ue AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 U DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-1
KS 250-19
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.1 kg
(dilis being prepared: (II)

Type

Timer and switching relays
Flasher relay NGB 12

Fixed time flasher relay

- Multi-voltage for AC/DC 24 to 240 V
- 1 function: symmetrical flashing, starts OFF
- Fixed time $0.5 \mathrm{~s} / 0.5 \mathrm{~s}$
- 2 change-over contact
- 2 LEDs for function display

©(1/) us being prepared: ©(LI)
Circuit diagram

Timer and switching relays

Flasher relay NGB 12 interface

Technical data
Product standard (timer relay)
Relay function according to IEC 60050
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification
Time circuit
Time setting / number of time ranges
Setting ranges for time delay
Cycle start
Recovery time 1/2
Repeatability (to set value)
Influence of temperature (within range)
Influence of voltage (within range)
Output circuit
Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current Ith
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC 250 V, cos $\varphi=0.3$
Response time / release time at excitation of A1-A2
Other data
Creepage distances and clearances
Apcessories
Approvals
Ambise immunient temperature, operating range
Dimension diagram (housing)
Reram of the terminals
stranded or solid
stranded with ferrules

NGB 12

EN 61812-1:1999-08
445-01-06
2 LEDs green
FD 250-33

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70 to 110 \%
50 to $60 \mathrm{~Hz} \pm 5 \%$
$\geq A C / D C 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
analog / 1 Fixed time
$0.5 \mathrm{~s} / 0.5 \mathrm{~s}$
OFF
$\leq 50 / \leq 50 \mathrm{~ms}$
$\leq \pm 0.01 \%+ \pm 10 \mathrm{~ms}$
$\leq \pm 0.002 \%$
$\leq \pm 0.002 \%$
2 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq A C / D C 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3$ A
DC-13 U ${ }_{e}$ DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
-25 to $+60^{\circ} \mathrm{C}$
K 3-2
KS 250-20
1×0.2 to 6 or 2×0.2 to $2.5 \mathrm{~mm}^{2}$
1×0.4 to 4 or 2×0.2 to $1.5 \mathrm{~mm}^{2}$
0.11 kg
(16ivs being prepared: (II)

AC/DC $24-240$ V $50-60 \mathrm{~Hz}$

Timer and switching relays

Repeat cycle timers KPT 11 KD, KPT 31 KD

Multi-range repeat cycle timer

- Dual voltage
- 1 function: KPT 11 KD: repeat cycle starting with OFF (TP) KPT 31 KD: repeat cycle starting with ON (TI)
- Setting range from 0.05 s to 10 h divided into 10 time ranges
- 1 change-over contact
- 2 LEDs for function display

(IL)

Function diagram

$\mathrm{t}_{1}=\mathrm{I}_{\mathrm{p}} \quad \mathrm{t}_{\mathrm{l}}=0 \mathrm{~N}$ time $\quad \mathrm{t}_{\mathrm{p}}=$ OFF time
$t_{1}=$ break time, must be $>$ recovery time 1
$\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2

Function

Different OFF and ON times can be selected in decimal increments on the relay front by means of selector switches. The OFF and ON time within a range is set using the selector wheel.

The different supply voltages have to be connected to their respective assigned terminal.

Timer and switching relays Repeat cycle timers KPT 11 KD, KPT 31 KD interface

Technical data
Function type ac
Function display
F

Function diagram
Power supply circuit

$\begin{array}{lr}\text { Rated voltage } \mathrm{U}_{\mathrm{N}} & \text { AC/DC } \\ \text { AC }\end{array}$
Rated consumption at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$
Rated consumption at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$
Rated consumption DC
Inrush current
Rated frequency
Operating voltage range

Time circuit

Time setting / number of time ranges
Available setting range
Recovery time $1 / 2$
Minimum ON time
Release value
Repeat cycle starting with
Parallel loads permissible
Internal half-wave rectification
Mean value of the error
Dispersion
Influence of the energizing quantity, supply voltage
Influence of the ambient temperature

Output circuit

Contact assignment
Contact material
Rated operating voltage U_{n}
Max. continuous current I_{n}
Application category according to EN 60947-5-1:1991

Permissible switching frequency

Mechanical life
Response time
Release time

General information

Creepage distances and clearances between the circuits
Rated impulse voltage
Overvoltage category
Degree of pollution
Rated voltage
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1
Protection degree housing/terminal according to DIN VDE 0470 sec. 1:11.92
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals

Overview of the devices/Part numbers

Type

KPT 11 KD

KPT 31 KD

ON-delay time
See table "Time ranges"

See table "Time ranges"

KPT 11 KD
Electronic multi-range repeat cycle timer starting with OFF for dual voltage -
Repeat cycle with two different supply voltage terminals
1 LED green, 1 LED red
FD 0069

24 V	24 V		42 V		60 V
	115 V		230 V		
1.2 VA	5.5 VA	1.2 VA	7.5 VA	1.2 VA	1.5 VA
1.0 W	1.2 W	1.0 W	1.5 W	1.0 W	1.3 W
0.7 W		0.7 W	0.8 W		1.2 W
1.5/2	0.5/2	1.5/2	0.5/3	0.1 / 6	0.05 / 10

$50-60 \mathrm{~Hz}$
$0.8-1.1 \times U_{N}$
analog / 10
See table "Time ranges"
ca. 40 / ca. 80 ms
$\geq 15 \% U_{N}$
OFF
yes
no
$\leq \pm 10 \%$
$\leq \pm 0.5 \%+ \pm 10 \mathrm{~ms}$
$\leq 0.005 \% / \% \Delta U_{N}$
$\leq 0.005 \% / K$

1 change-over contacts
Ag alloy, gold-plated
230/230 V AC/DC
5 A
AC-15: $U_{\mathrm{e}} 230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: U $24 \mathrm{VDC}, 12 \mathrm{~A}$
≤ 6000 switching cycles/h
30×10^{6} switching cycles
approx. 40 ms
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 30 / IP 20
Test severity 3
$-20-+60^{\circ} \mathrm{C}$
K1-8 W3
KS 0342/2
0.12 kg
(11)

Rated voltage		Part No.	Std. Pack
AC/DC 24 V und AC 115 V	$50-60 \mathrm{~Hz}$	R2.111.0010.3	1
AC/DC 24 V und AC 230 V	$50-60 \mathrm{~Hz}$	R2.111.0020.3	1
AC/DC 42 V und AC 60 V	$50-60 \mathrm{~Hz}$	R2.111.0030.3	1
AC/DC 24 V und AC 115 V	$50-60 \mathrm{~Hz}$	R2.111.0040.1	1
AC/DC 24 V und AC 230 V	$50-60 \mathrm{~Hz}$	R2.111.0050.1	1
AC/DC 42 V und AC 60 V	$50-60 \mathrm{~Hz}$	R2.111.0060.1	1

KPT 31 KD

Electronic multi-range repeat cycle timer starting with ON for dual voltage Repeat cycle with two different supply voltage terminals

Timer and switching relays

Repeat cycle timer SPT 72 D

Multi-range repeat cycle timer

- Dual voltage
- 1 function: repeat cycle starting with OFF (TP) or repeat cycle starting with ON (TI)
- Setting range from 0.05 s to 10 h divided into 10 time ranges
- 2 change-over contact
- 2 LEDs for function display

(14) (5)

Timer and switching relays Repeat cycle timer SPT 72 D interface

SPT 72 D

Electronic multi-range repeat cycle timer for dual voltage

- Repeat cycle with two different supply voltage terminals

1 LED green, 1 LED red
FD 0069

24 V

8 VA / 1.6 W
1.0 W
$1.5 \mathrm{~A} / 2 \mathrm{~ms} \quad 0.5 \mathrm{~A} / 3 \mathrm{~ms}$
$50-60 \mathrm{~Hz}$
$0.85-1.1 \times U_{N}$
analog / 10
See table "Time ranges"
ca. 40 / ca. 80 ms

OFF / ON (selectable)
$\geq 15 \% U_{N}$
yes
no
$\leq \pm 10 \%$
$\leq \pm 0.5 \%+ \pm 10 \mathrm{~ms}$
$\leq 0.005 \% / \% \Delta U_{N}$
$\leq 0.005 \% / K$
2 change-over contacts
Ag alloy, gold-plated
230/230 V AC/DC
5 A
AC-15: $U_{\mathrm{e}} 230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: U 24 V DC, $I_{e} 2$ A
≤ 6000 switching cycles/h
30×10^{6} switching cycles
ca. 40 ms

according to DIN VDE 0110-1:04.97

4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 30 / IP 20
Test severity 3
$-20-+60^{\circ} \mathrm{C}$
S 1-6
KS 0084/6 W3
0.18 kg
(11) (18)

Overview of the devices/Part numbers

Type
SPT 72

Timer and switching relays
Pre-set pulse counter KID 31 K

Digital pre-set pulse counter

- Single voltage
- 1 function: Pre-set pulse counter
- Upward counting, digital pulse pre-selection
- 1 change-over contact
- 2 LEDs for function display

Circuit diagram

Timer and switching relays Pre-set pulse counter KID 31 K interface

Technical data	
Function type according to DIN VDE $0435 \mathrm{sec} .110: 09.86$	
Function display	
Function diagram	
Power supply circuit	
Rated voltage U_{N}	AC/DC
Rated voltage U_{N}	AC
Rated consumption at 50 Hz and UN (AC)	
Rated consumption DC	
Inrush current	
Rated frequency	
Operating voltage range	
Time circuit	
Setpoint setting / number of setting ranges	
Available setting range	
Rated current of the energizing quantity	
Recovery time 1/2	
Minimum ON time (after application of the rated voltage)	
Release value	
Parallel loads permissible	
Internal half-wave rectification	
Mean value of the error	
Dispersion	
Influence of the energizing quantity, supply voltage	
Influence of the ambient temperature	
Output circuit	
Contact assignment	
Contact material	
Rated operating voltage U_{n}	
Max. continuous current I_{n}	
Application category according to EN 60947-5-1:1991	
Permissible switching frequency	
Mechanical life	
Response time	
Release time	
Initial zero time	
Max. counting frequency	
Min. ON and OFF length	
General information	
Creepage distances and clearances between the circuits	
Rated impulse voltage	
Overvoltage category	
Degree of pollution	
Rated voltage	
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1	
Protection degree housing/terminal according to DIN VDE 0470 sec. 1:11.92	
Noise immunity according to IEC 61000-4	
Ambient temperature, operating range	
Dimension diagram	
Circuit diagram	
Weight	
Accessories	
Approvals	

KID 31 K

Electronic pre-set pulse counter for single voltage
1 LED green, 1 LED red
FD 0070

24 V

	230 V
$1.9 \mathrm{VA} / 1.8 \mathrm{~W}$	$5.3 \mathrm{VA} / 1.8 \mathrm{~W}$

1.3 W
$1.5 \mathrm{~A} / 2 \mathrm{~ms} \quad 0.5 \mathrm{~A} / 0.5 \mathrm{~ms}$
50 to 60 Hz
0.8 to $1.1 \times$ UN
digital / 1
See table "Pulse ranges"
$\leq 2 \mathrm{~mA}$
ca. $40 \mathrm{~ms} / \mathrm{ca} .80 \mathrm{~ms}$
$\geq 15 \% U_{N}$
no
yes
-
-
-

1 change-over contacts
Ag alloy, gold-plated
230/230 V AC/DC
5 A
AC-15: U $230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: $U_{e} 24 \mathrm{~V} D C, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
20×10^{6} switching cycles
ca. 20 ms
ca. 20 ms
ca. 30 ms
12.5 Hz

40 ms
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 30 /IP 20
Test severity 3
-20 to $+60^{\circ} \mathrm{C}$
K1-8 W3
KS 0226/1
0.12 kg
-
-

| Rated voltage | | Part No. |
| :--- | :--- | ---: | Std. Pack

R2.213.0010.0

Subject to change without further notice

Timer and switching relays

Pre-set pulse counter SID 32

Digital pre-set pulse counter

- Single voltage
- 1 function: Pre-set pulse counter
- Upward counting, digital pulse pre-selection
- 2 change-over contact
- 2 LEDs for function display

Timer and switching relays Pre-set pulse counter SID 32 interface

Technical data
Function type
Function display
Function diagram
Power supply circuit
Rated voltage U.
Rated consumption at 50 Hz and UN (AC)
Inrush current
Rated frequency
Operating voltage range
Time circuit
Setpoint setting / number of setting ranges
Available setting range
Rated current of the energizing quantity
Recovery time 1/2
Minimum ON time (after application of the rated voltage)
Release value
Parallel loads permissible
Internal half-wave rectification
Mean value of the error
Dispersion
Influence of the energizing quantity, supply voltage
Influence of the ambient temperature
Output circuit
Contact assignment
Contact material
Rated operating voltage U
Max. continuous current I
Application category according to EN 60947-5-1:1991
Protection degree housing/terminal according to DIN VDE 0470 sec. 1:11.92
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals
Rechanical life
Response time
Release time
Initial zero time
Max. counting frequency
Min. ON and OFF length
Min. zero time
General information
Creepage distances and clearances between the circuits
Rated impulse voltage

SID 32

Electronic pre-set pulse counter for single voltage
1 LED green, 1 LED red
FD 0039

$\mathbf{1 1 0 - 1 2 7}$ V	$\mathbf{2 2 0 - 2 4 0 ~ V}$
$2.8 \mathrm{VA} / 1.1 \mathrm{~W}$	$6.0 \mathrm{VA} / 1.6 \mathrm{~W}$

2.8 VA / 1.1 W 6.0 VA / 1.6 W
$50-60 \mathrm{~Hz}$
$0.8-1.1 \times U_{N}$
digital / 1
See table "Pulse ranges"
$\leq 2 \mathrm{~mA}$
ca. $20 \mathrm{~ms} / \mathrm{ca} .50 \mathrm{~ms}$
-
no
yes
-
-

2 change-over contacts
Ag alloy, gold-plated
230/230 V AC/DC
5A
AC-15: U $230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2$ A
DC-13: $U_{e} 24 \vee D C, I_{e} 2 A$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
$\leq 20 \mathrm{~ms}$
$\leq 20 \mathrm{~ms}$
ca. 20 ms
12.5 Hz

40 ms
20 ms
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 30 / IP 20
Test severity 3
$-20-+60^{\circ} \mathrm{C}$
S 3-18
KS 0205/2
0.18 kg

Cover Z 29

Overview of the devices/Part numbers

Type	Pulse range	Rated voltage		Part No.	Std. Pack
SID 32	1 to 99	AC 110-127 V	$50-60 \mathrm{~Hz}$	R2.213.0030.0	1
		AC 220-240 V	$50-60 \mathrm{~Hz}$	R2.213.0020.0	1
	1 to 999	AC 220-240 V	$50-60 \mathrm{~Hz}$	R2.213.0050.0	1

Timer and switching relays
 Stepping relay NGF 32

Stepping relay with auxiliary supply

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: stepping ON-OFF
- 2 change-over contacts
- 2 LEDs for function display

c(1)us being prepared: (4L)

Circuit diagram	Function diagram
	Function code 98 = stepping ON-OFF, with auxiliary supply
Dimension diagram	Description of the drawing
Function	Notes
After the auxiliary supply (A1-A2) has been switched on, the stepping relay switches its two change-over contacts into the ON position with the rising edge of the energizing quantity (B1-A2). The change-over contacts are returned into the OFF position with the next rising edge of the energizing quantity. This occurs alternately when the energizing quantity is switched on. When the auxiliary supply is switched off the change-over contacts switch into the OFF position. LEDs show the state of the excitation input and the position of the contacts.	The device is designed for multi-voltage. Phase L1 or $L+$ must be connected to terminal A 1 ; neutral conductor N or M must be connected to terminal A 2 .

Timer and switching relays Stepping relay NGF 32 interface

Product standard (timer relay)	
Relay function according to IEC 60050 (445)Function display	
Function diagram	
Input circuit	
Rated voltage A1-A2	
Rated consumption AC	
Rated consumption DC	
Rated voltage limits	
Rated frequency f_{n}	
Release value of the input voltage (line capacity approx. $150 \mathrm{pF} / \mathrm{m}$)	
Rated current on control connection (A1)	
Rated consumption on control connection (A1)	
Parallel loads permissible	
Internal half-wave rectification	
Function times	
Recovery time 1/2	
Minimum ON time 1/2	
Output circuit	
Contact assignment	
Contact material	
Rated operating voltage	
Rated value for limiting continuous current $\mathrm{I}_{\text {th }}$	
Minimum contact load	
Application category according to IEC 60947-5-1	
Permissible switching frequency	
Mechanical life	
Electrical life 20/2 A, AC $250 \mathrm{~V}, \cos \varphi=0.3$	
Response time / release time at excitation of A1-A2	
Other data	
Creepage distances and clearances	
Degree of pollution	
Overvoltage category	
Rated voltage	
Protection degree according to IEC 60529 housing / terminals	
Noise immunity according to IEC 61000-4	
Ambient temperature, operating range	
Dimension diagram (housing)	
Circuit diagram of the terminals	
$\begin{array}{ll}\text { Wire ranges } & \begin{array}{l}\text { stranded or solid } \\ \text { stranded with ferrules }\end{array}\end{array}$	
Weight	
Accessories	
Approvals	

NGF 32

EN 61812-1:1999-08
Stepping relay with auxiliary supply
2 LEDs green
FD 250-50

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70-110 \%
$50-60 \mathrm{~Hz} \pm 5 \%$
$\geq \mathrm{AC} / \mathrm{DC} 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
<0.25 W
A1-A2 yes
A1-A2 no
$0 / \leq 25 \mathrm{~ms}$
$\leq 25 /$ - ms

2 change-over contacts
AgNi 90/10
AC/DC 24-240 V
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 Ue DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 / IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-25
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.13 kg
(14iv being prepared: (IL)

Overview of the devices/Part numbers

Type

Timer and switching relays
 Stepping relay NGF 52

Stepping relay with auxiliary supply

- Multi-voltage for AC/DC 24 up to 240 V
- 1 function: stepping ON-OFF / OFF-ON
- 2 change-over contacts
- 2 LEDs for function display
being prepared: (1L)

Function

After the auxiliary supply (A1-A2) has been switched on, the stepping relay switches the first of its two change-over contacts into the ON position with the rising edge of the energizing quantity (B1-A2). With the next rising edge the first change-over contact switches into the OFF position and the second one into to ON position. This occurs alternately when the energizing quantity is switched on. When the auxiliary supply is switched off both change-over contacts switch into the OFF position.

LEDs show the state of the excitation input and the position of the contacts.

[^1]Function diagram
Function code 99 = stepping ON-OFF/OFF-ON, with auxiliary supply

$\mathrm{t}_{1}=$ time between switching on auxiliary power and

$$
\text { energizing quantity, must be }>\text { recovery time } 1
$$

$$
\mathrm{t}_{2}=\text { make time, must be }>\text { minimum ON time } 1
$$

$$
\mathrm{t}_{3}=\text { break time, must be }>\text { recovery time } 2
$$

Description of the drawing

Timer and switching relays Stepping relay NGF 52 interface

Technical data
Product standard (timer relay)
Relay function according to IEC 60050 (445)
Function display
Function diagram
Input circuit
Rated voltage A1-A2
Rated consumption AC
Rated consumption DC
Rated voltage limits
Rated frequency f_{n}
Release value of the input voltage (line capacity approx. 150 pF/m)
Rated current on control connection (A1)
Rated consumption on control connection (A1)
Parallel loads permissible
Internal half-wave rectification
Function times
Recovery time $1 / 2$
Minimum ON time 1/2
Output circuit
Contact assignment
Contact material
Rated operating voltage
Rated value for limiting continuous current Ith
Minimum contact load
Application category according to IEC 60947-5-1
Permissible switching frequency
Mechanical life
Electrical life 20/2 A, AC 250 V , cos $\varphi=0.3$
Response time / release time at excitation of A1-A2
Response time / release time at excitation of B1-A2
Other data
Creepage distances and clearances
Degree of pollution
Overvoltage category
Rated voltage
Protection degree according to IEC 60529 housing / terminals
Noise immunity according to IEC 61000-4
Ambient temperature, operating range
Dimension diagram (housing)
Circuit diagram of the terminals
Wire ranges stranded or solid
stranded with ferrules

NGF 52

EN 61812-1:1999-08
Stepping relay with auxiliary supply
2 LEDs green
FD 250-51

AC/DC $24-240 \mathrm{~V}$
3.5 VA / 1.7 W
1.6 W

70 to 110 \%
50 to $60 \mathrm{~Hz} \pm 5 \%$
$\geq A C / D C 10 \mathrm{~V}$; permissible line capacity $0.2 \mu \mathrm{~F}$
1 mA
$<0.25 \mathrm{~W}$
A1-A2 yes / B1-A2 yes
A1-A2 no / B1-A2 yes
$0 / \leq 25 \mathrm{~ms}$
$\leq 25 /$ - ms

2 change-over contacts
AgNi 90/10
AC/DC $24-240 \mathrm{~V}$
5 A
$\geq \mathrm{AC} / \mathrm{DC} 5 \mathrm{~V} / \geq 10 \mathrm{~mA}$
AC-15 U AC $230 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 3 \mathrm{~A}$
DC-13 Ue DC $24 \mathrm{~V}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
30×10^{6} switching cycles
0.12×10^{6} switching cycles AC-15
40 ms
20 ms
according to IEC 60664-1
3 outside, 2 inside
III
AC/DC 275 V
IP 40 /IP 20
Test severity 3
$-25-+60^{\circ} \mathrm{C}$
K 3-3
KS 250-26
$1 \times 0.2-6$ or $2 \times 0.2-2.5 \mathrm{~mm}^{2}$
$1 \times 0.4-4$ or $2 \times 0.2-1.5 \mathrm{~mm}^{2}$
0.13 kg
©libs being prepared: (IL)

Overview of the devices/Part numbers

Timer and switching relays Trigger action relay KSP 12

Electronic trigger action relay

- Single voltage
- 1 function: trigger action relay
- 1 change-over contact, 1 normally open contact

Function diagram

Function

Upon application of the supply voltage to terminals A2/A3 the relay contacts 11/14, $23 / 24$ are closed. After removal of the supply voltage, the contacts maintain their position.

Upon application of the supply voltage to terminals A1/A3 the relay contacts switch: $11 / 12$ closes and 23/24 opens. After removal of the supply voltage, the contacts maintain their position.

The relay can also be manually activated using the lever on the front

The simultaneous excitation of both circuits is not permissible.

Timer and switching relays

 Trigger action relay KSP 12

Timer and switching relays

Multi-function DZD 92 L

Multi-function multi-range timer relay

- Single voltage
- 8 functions
- Setting range from 0.05 s to 100 h divided into 7 time ranges
- 1 instantaneous and 1 timed change-over contact or 2 timed changeover contacts (selectable)

Timer and switching relays Multi-function DZD 92 L interface

ON-delay additive (AV)

OFF-delay additive (RV)

FD 127/2

A1/A2	Supply voltage
B1	Energizing quantity, LED (B1) red
B2	Additive operation, LED (B2) red
15/18 (25/28)	Delayed contact
15/16 (25/26)	LED (K) red
$\begin{aligned} & 21 / 24 \\ & 21 / 22 \end{aligned}$	Instantaneous change-over contact
$t_{A}=\sum_{1}^{\pi} t_{A x}$	
Program switches (1 instantaneous and 1 timed change-over contact)	
	FD 1
A1/A2	Supply voltage
B1	Energizing quantity, LED (B1) red
B2	Additive operation, LED (B2) red
15/18 (25/28)	Delayed contact
15/16 (25/26)	LED (K) red
21/24	Instantaneous change-over contact
21/22	
$\mathrm{t}_{\mathrm{h}}=$ selected returning time	
Program switches	
(1 instantaneous and 1 timed change-over contact)	

FD 127/4
$\begin{array}{ll}\text { A1/A2 } & \text { Supply voltage } \\ \text { B1 } & \text { Energizing quantity, LED (B1) red } \\ \text { B2 } & \text { Additive operation, LED (B2) red } \\ 15 / 18(25 / 28) & \text { Delayed contact } \\ 15 / 16(25 / 26) & \text { LED (K) red } \\ 21 / 24 & \text { Instantaneous change-over contact } \\ 21 / 22 & \\ t_{R}=\sum_{1}{ }_{\text {R RX }} & \\ \text { Program switches } & \\ \text { (1 instantaneous and } 1 \text { timed change-over contact) }\end{array}$

[^2]
Function diagrams

Interval OFF (AW)

ON-delay and OFF-delay (ARV)

ON-delay and OFF-delay additive (ARV)

FD 127/6
Supply voltage
Energizing quantity, LED (B1) red
Additive operation, LED (B2) red
Delayed contact
LED (K) red
Instantaneous change-over contact
$21 / 22$
$I_{W E}=\sum_{1}^{\pi} I_{\text {Wex }}$
Program switches
11 instantaneous and
(1 instantaneous and 1 timed change-over contact)
FD 127/7
$\begin{array}{ll}\text { A1/A2 } & \text { Supply voltage } \\ \text { B1 } & \text { Energizing quantity, LED (B1) red } \\ \text { B2 } & \text { Additive operation, LED (B2) red } \\ 15 / 18(25 / 28) & \text { Delayed contact } \\ 15 / 16(25 / 26) & \text { LED (K) red } \\ 21 / 24 & \text { Instantaneous change-over contac } \\ 21 / 22 & \\ \mathrm{t}_{\text {WA }}=\text { selected interval } 0 \text { off time } \\ \text { Program switches } & \\ \text { (1 instantaneous and } 1 \text { timed change-over contact) }\end{array}$

FD 127/8

A1/A2	Supply voltage
B1	Energizing quantity, LED (B1) red
B2	Additive operation, LED (B2) red
$15 / 18(25 / 28)$	Delayed contact
$15 / 16(25 / 26)$	LED (K) red
$21 / 24$	Instantaneous change-over contact
$21 / 22$	
$T_{\text {Wa }}=\sum_{1}^{n}$ wax	
Program switches	
(1 instantaneous and 1 timed change-over contact)	

FD 127/9

A1/A2	Supply voltage
B1	Energizing quantity, LED (B1) red
B2	Additive operation, LED (B2) red
$15 / 18(25 / 28)$	Delayed contact
$15 / 16(25 / 26)$	LED (K) red
$21 / 24$	Instantaneous change-over contact
$21 / 22$	
$\mathrm{I}_{\mathrm{A}}=$ selected interval OFF time	
$\mathrm{t}_{\mathrm{R}}=$ selected returning time	
Program switches 11 instantaneous and 1 timed change-over contact)	

FD 127/10

A1/A2	Supply voltage
B1	Energiging quantity, LED (B1) red
B2	Additive operation, LED (B2) red
$15 / 18(25 / 28)$	Delayed contact
$15 / 16(25 / 26)$	LED (K) red
$21 / 24$	Instantaneous change-over contact
$21 / 22$	

$t_{A}=\sum_{1}^{n} t_{A X}=t_{R}=\sum_{1}^{n} t_{R X}$
Program switches
(1 instantaneous and 1 timed change-over contact)

Timer and switching relays

Multi-function DZD 92 L

DZD 92 L

Repeat cycle starting with OFF (TP)

Repeat cycle starting with OFF additive (TP)

Repeat cycle starting with ON (TI)

Function diagrams

DZD 92 L Repeat cycle starting with ON additive (TI)

A1/A2
B1
B2
$15 / 18(25 / 28)$
$15 / 16(25 / 26)$
$21 / 24$
$21 / 22$
$\mathrm{t}_{1}=0 \mathrm{~N}$ time $\mathrm{t}_{\mathrm{p}}=$ OFF time
Program switches
(instantaneous and 1 timed change-over contact)

$=$ must be $>$ recovery time 1
$\mathrm{t}_{2}=$ must be $>$ recovery time 2 $\mathrm{t}_{3}=$ make time, must be $>$ minimum ON time

Settings

The functions, time ranges and contact assignments are set by means of a dual in-line switch with 10 ON/OFF DIP switches located at the rear of the device.

Position of the switches		1	2	3	4	5	6	7	8	9	0
Time range	Resolution										
0.05 s to 1 s	0.01 s	\bigcirc	O	\bigcirc							
0.5 s to 10 s	0.05 s	\bullet	\bigcirc	\bigcirc							
3 s to 1 min	0.5 s	\bigcirc	-	\bigcirc							
30 s to 10 min	5 s	\bullet	-	\bigcirc							
3 min to 1 h	0.5 min	\bigcirc	O	\bullet							
30 min to 10 h	5 min	\bullet	\bigcirc	\bullet							
5 h to 100 h	0.5 h	\bigcirc	\bullet	\bullet							
Function											
ON-delay time					\bigcirc	\bigcirc	\bigcirc				
OFF-delay					\bullet	\bigcirc	\bigcirc				
Interval ON					\bigcirc	\bullet	\bigcirc				
Interval OFF					\bullet	-	\bigcirc				
ON-delay and											
OFF-delay					\bigcirc	\bigcirc	\bullet				
One shot					\bullet	\bigcirc	\bullet				
Repeat cycle											
starting with OFF					\bigcirc	-	\bullet				
Repeat cycle											
starting with ON					-	-	\bullet				
Contacts											
1 timed and											
1 instantaneous change-ver contact								\bigcirc			
2 timed change-over contact								\bullet			

Timer and switching relays Multi-function DZD 92 L

Timer and switching relays

Multi-function UZD 51

Digital multi-function multi-range timer relay

- Multi-voltage for AC 100 to 240 V , single voltage for AC/DC 24 V
- 8 functions
- 2-color high-contrast LCD displays
- Setting range digital from 0.001 s to 999.9 h divided into 8 time ranges
- Protected against power failure
- 1 timed change-over contact

기

Function

The functions and the time ranges are set by means of a dual in-line switch located on the right lateral side of the device. The time is pre-set at the front. The selected setpoint is digitally indicated on a 4-digit yellow LCD display and the actual value is digitally indicated on a 4-digit red LCD display. The setpoint settings are protected against power failure and recovery.

Setting of the function, time range and pre-set time

1. Setting of the function and time range

The new settings are active after switching the supply voltage off and on.

Dual-in-line switch

	Range	Dual-in-line switch	
		OFF	ON
1	Functions	See table 1	
2			
3			
4	Minimum ON time	20 ms	1 ms
5	Setting of the countdown	additive	subtractive
6	Time ranges	See table 2	
7			
8			

Table 1: Setting the function

DIP switch no.				
Mode				
1	2	3	Monctions	
ON	ON	ON	A:	ON-delay (AV)
OFF	OFF	OFF	A2:	ON-delay (AV)
ON	OFF	OFF	B:	ON-delay (AV) caused by energizing quantity
OFF	ON	OFF	C:	OFF-delay (RV) with energizing quantity
ON	ON	OFF	D:	Interval ON (EW) with energizing quantity
OFF	OFF	ON	E:	ON-delay (AV) (pulse signal)
ON	OFF	ON	F:	Repeat cycle starting with OFF (TP)
OFF	ON	ON	G:	ON-delay (AV) (with time addition or subtraction)

Table 2: Setting the time range

DIP switch no.			Time range		
1	2	3			
ON	ON	ON	0.00 s	to	9.999 s
OFF	OFF	OFF	0.01 s	to	99.99 s
ON	OFF	OFF	0.1 s	to	999.9 s
OFF	ON	OFF	1 s	to	9999 s
ON	ON	OFF	10 s	to	99 min 59 s
OFF	OFF	ON	0.1 min	to	999.9 min
ON	OFF	ON	1 min	to	99 h 59 min
OFF	ON	ON	0.1 h	to	999.9 h

Time ranges

Setting range from 0.001 s to 999.9 h divided into:

$0.001 \mathrm{~s} \ldots . .999 .9 \mathrm{~s}$	$10 \mathrm{~s} . . .99 \mathrm{~min} 59 \mathrm{~s}$
$0.01 \mathrm{~s} . . .99 .99 \mathrm{~s}$	$0.1 \mathrm{~min} \ldots . .999 .9 \mathrm{~min}$
$0.1 \mathrm{~s} . .999 .9 \mathrm{~s}$	$1 \mathrm{~min} \ldots 99 \mathrm{~h} 59 \mathrm{~min}$
$1 \mathrm{~s} . . .9999 \mathrm{~s}$	$0.1 \mathrm{~h} \ldots 999.9 \mathrm{~h}$

Circuit diagram

UZD 51
KS 0362/1

Notes

- Set the function and time range prior to installing the device.
- Press the LOCK key to avoid unintentional modifications to the set values.
- Modifications to the setpoint value during the countdown are not permissible.
- Use gold-plated contacts to achieve proper control.
- Semiconductor input possible; see "Technical data"

Accessories

Pin holder	AT8-DF8S	for DIN-rail
Pin holder	AT8-RR	for panel mounting

Timer and switching relays
Multi-function UZD 51 interface

Function

Setting of the pre-set time
The time is pre-set using the four keys on the front.

Front view

1 - LCD display for the current actual value
2 - LCD display for the selected setpoint value
3 - LED display that flashes during countdown
4 - Indicator for energized output
5 - Indicator for controlled reset input
6 - Lock indicator
7 - Display of the selected time range
8 - UP keys, additive modification to the selected setpoint value
9 - DOWN keys, subtractive modification to the selected setpoint value 10 - RESET switch, clears the actual value and resets the output 11 - LOCK switch, locks the RESET key, the UP and DOWN keys

Dimension diagram

Cutout $\square 45^{+0.6}$
Front panel mounting requires a panel thickness

Gasket (included with module) with

Pin holder (accessory) AT8-RR

Function diagrams

FD 0239-5/4

FD 0239-5/5

FD 0239-5/6

FD 0239-5/7
Supply voltage
Energizing quantity
Reset
Delayed contact

FD 0239-5/8
Supply voltage Energizing quantity
Reset
Delayed contact

$\overrightarrow{I_{p}} \overrightarrow{i n}$

Reset through connecting terminals $3 / 1$ or pressing the RESET key on the front panel

UZD 51

Multi-function relay with 8 functions for multi-voltage or single voltage

- ON-delay timer relay
- OFF-delay timer relay with supply voltage
- Interval ON relay
- Repeat cycle

4-digit red LCD display for actual value, digit size 7 mm ,
4-digit yellow LCD display for setpoint value, digit size 5.5 mm ,
Text indications
FD 0239-5/1 bis 8

24 V
$100-240 \mathrm{~V}$
10 VA
3 W
$50-60 \mathrm{~Hz}$
$0.85-1.1 \times \mathrm{U}_{\mathrm{N}}$
$\leq 20 \%$
no
4-digit digital / 8
See table "Time ranges"
additive, subtractive
OFF
$\pm 0.005 \%+50 \mathrm{~ms}$
$\pm 0.005 \%+50 \mathrm{~ms}$
$\pm 0.005 \%+50 \mathrm{~ms}$
$20 \mathrm{~ms} / 1 \mathrm{~ms}$ (only with semiconductor input)
$\leq 100 \mathrm{~ms}$
$\mathrm{V}_{\text {CEO }} 20 \mathrm{~V}$ min., $\mathrm{I}_{\mathrm{C}} 20 \mathrm{~mA}, \mathrm{I}_{\text {CBO }} 6 \mu \mathrm{~A}$ max
$12-40$ V DC
$\leq 1 \mathrm{k} \Omega$
$\geq 100 \mathrm{k} \Omega$
$\leq 2 \mathrm{~V}$

1 timed change-over contacts
Ag alloy, gold-plated
230/30 V AC/DC
5 A
AC-15: Ue $250 \mathrm{VAC}, I_{\mathrm{e}} 0.75 \mathrm{~A}$
DC-13: U 30 V DC, $\mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
20×10^{6} switching cycles
1×10^{6} switching cycles
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
300 V AC
2.21 kV

IP 66 (only with rubber gasket) / IP 20
Test severity 3
$-10-+55^{\circ} \mathrm{C}$
U 3-1
KS 0362/1
0.11 kg

Pin holders AT8-DF8S, AT8-RR
딘

Rated voltage		Part No.	Std. Pack
$A C / D C 24 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	R2.173.0030.0	1
$A C 110-240 \mathrm{~V}$	$50-60 \mathrm{~Hz}$	$R 2.063 .0020 .0$	1

809

Timer and switching relays Pre-set pulse counter UID 51 interface

Digital multi-function pre-set pulse counter

- Device for multi-voltage AC 100 to 240 V
for single voltage AC/DC 24 V
- 5 input and 7 output modes; any combination possible
- 2-color high-contrast LCD displays
- Protected against power failure
- 1 normally open contact

Function

The functions are set by means of a dual in-line switch located on the right lateral side of the device. The setpoint value is set through four switches and is digitally indicated on a 4-digit yellow LCD display and the actual value is digitally indicated on a 4-digit red LCD display. The setpoint settings are protected against power failure and recovery.

1. Setting of the operating modes (input and output mode)

Dual-in-line switch

	Function	Dual-in-line switch	
		OFF	ON
1	Output mode	See table 1	
2			
3			
4	Min. reset input signal width	20 ms	1 ms
5	Max. count rate	30 kHz	5 kHz
6	Input mode	See table 2	
7			
8			

Table 1: Output mode

DIP switch no.			Output mode
1	2	3	
ON	ON	ON	ON pulse, SHOT-A
OFF	OFF	OFF	ON pulse, SHOT-B
ON	OFF	OFF	ON pulse, SHOT-C
OFF	ON	OFF	ON pulse, SHOT-D
ON	ON	OFF	Holding function, HOLD-A
OFF	OFF	ON	Holding function, HOLD-B
ON	OFF	ON	Holding function, HOLD-C
OFF	ON	ON	- (DIP Err appears on the display)

Table 2: Input mode

DIP switch no.			
6	7	8	
ON	ON	ON	Additive input
OFF	OFF	OFF	Subtractive input
ON	OFF	OFF	Direction input
OFF	ON	OFF	Independent inputs
ON	ON	OFF	Phase input
OFF	OFF	ON	- (DIP Err appears on the display)
ON	OFF	ON	- (DIP Err appears on the display)
OFF	ON	ON	- (DIP Err appears on the display)

Pulse range

Available pulse ranges:
-999 to +9999

Circuit diagram

UID 51

- Notes

- Set the function prior to installing the device
- Press the LOCK key to avoid unintentional modifications to the set values.
- Modifications to the setpoint value during the counting operation are permissible.
- Use gold-plated contacts to achieve proper control.
- Semiconductor input possible; see "Technical data"

Accessories

Pin holder	AT8-DF8S	for DIN-rail
Pin holder	AT8-RR	for panel mounting

1 - LCD display for the current actual value
2 - LCD display for the selected setpoint value
3 - Indicator for energized output
4 - Indicator for controlled reset input
5 - Lock indicator
6 - UP keys, additive modification to the selected setpoint value 7 - DOWN keys, subtractive modification to the selected setpoint value 8 - RESET switch, clears the actual value and resets the output 9 - LOCK switch, locks the RESET key, the UP and DOWN keys

Dual-in-line switch

Dimension diagram

Function diagrams

Input modes

UP Addition

IN1 or IN2 mutually function as input gate for one another
IN1 counting input, IN2 input gate.
" A " must be larger than the minimum input signal width.

DOWN Subtraction

IN1 or IN2 mutually function as input gate for one another
IN2 counting input, IN1 input gate.
" A " must be larger than the minimum input signal width.

DIR Direction

IN1 is the counting input and IN2 is the direction input. IN2 adds at the low level and subtracts at the high level.
" A " must be larger than the minimum input signal width.

IND Independent
IN1 additive input, IN2 subtractive input.
IN 1 and IN2 are completely independent of one another.

PHASE Phase

The counting direction is additive if the IN1 phase is leading IN2, and subtractive if the IN2 phase is leading IN1.
" B " must be larger than the minimum input signal width.

Timer and switching relays Pre-set pulse counter UID 51 interface

Function diagrams

Output modes

HOLD-A Output holding function

The output is held after termination of the counting operation until a reset is made. The display will not change during this time.

Additive counting direction	---	n.3	n -2	$\mathrm{n}-1$	n
Subtractive counting direction	-----	3	2	1	0
Counting possible/ impossible	possible				ON
Output	OFF				

HOLD-B Output holding function / overcounting I

The output is held after termination of the counting operation until a reset is made. Continuation of the counting operation is possible nevertheless.

Additive counting direction	-----	n-2	$\mathrm{n}-1$	n	n+1	n+2	-
Subtractive counting direction	-----	2	1	0	$\cdot 1$. 2	-----
Counting possible/							
Output	OFF						

HOLD-C Output holding function / overcounting II

The output is held after termination of the counting operation until the next counting signal is present. Continuation of the counting operation is possible nevertheless.

Additive counting direction		$\mathrm{n}-2$	$\mathrm{n}-1$	n	$\mathrm{n}+1$	n+2	-----
Subtractive counting direction	-----	2	1	0	-1	- 2	-----
Counting possible/ impossible							
Output	OFF			OFF			

Function diagrams

Output modes

SHOT-A ON pulse / overcounting

The output is held for a fixed time (approx. 1 s) after termination of the counting operation. Continuation of the counting operation is possible nevertheless.

SHOT-B ON pulse / new counting I

The output is held for a fixed time (approx. 1 s) after termination of the counting operation. Continuation of the counting operation is possible nevertheless. Reset is displayed at the same time the counting operation is terminated. Restart is impossible as long as the output is held.

SHOT-C ON pulse / new counting II
The output is held for a fixed time (approx. 1 s) after termination of the counting operation. Continuation of the counting operation is possible nevertheless. Reset is displayed as soon as the output is switched off.

SHOT-D ON pulse / holding function

The output is held for a fixed time (approx. 1 s) after termination of the counting operation. Counting is interrupted during this time. Reset is displayed as soon as the output is switched off.

Timer and switching relays

ace

Technical data		
Function type		
Function display		
Function diagrams		
Power supply circuit		
Rated voltage U_{N}		AC/DC
		AC
Rated consumption set to 50 Hz and U_{N}		AC
Rated consumption		DC
Rated frequency		
Operating voltage range		
Residual ripple of the rated voltage U_{N}		
Time circuit		
Electrical isolation from power supply circuit		
Setpoint setting / number of setpoint ranges		
Possible setting range		
Setting of the counting modes		
Counting rate		
Min. counting pulse		
Reset input		
Locking input		
Input signal		
Output circuit		
Contact assignment		
Contact material		
Switching voltage U_{n}		
Max. continuous current I_{n}		
Application category in accordance with EN 60947-5-1:1991		
Permissible switching frequency		
Mechanical life		
General information		
Creepage distances and clearances between the circuits		
Rated impulse voltage		
Overvoltage category		
Degree of pollution		
Rated voltage		
Test voltage $\mathrm{U}_{\text {eff }} 50 \mathrm{~Hz}$ according to DIN VDE 0110-1, table A. 1		
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.92		
Ambient temperature, operating range		
Dimension diagram		
Circuit diagram		
Weight		
Accessories		
Approvals		
Overview of devices/part numbers		
Type	Rated voltage	
UID 51	AC 24 V	$50-60 \mathrm{~Hz}$
	AC $110-240 \mathrm{~V}$	$50-60 \mathrm{~Hz}$

UID 51
Multi-function pulse counter with 5 input and 7 output functions for multi-voltage or single voltage
4-digit red LCD display for actual value, digit size 7 mm ,
4-digit yellow LCD display for setpoint value, digit size 5.5 mm ,
Text indications
See column "Function diagrams"

24 V
100-240 V
10 VA / 3 W
3 W
$50-60 \mathrm{~Hz}$
$0.85-1.1 \times U_{N}$
≤ 20 \%

no

4-digit digital
See table "Pulse ranges"
additive, subtractive
$30 \mathrm{~Hz} / 5 \mathrm{~Hz}$ (selectable with DIP switch)
16.7 ms at $30 \mathrm{~Hz} / 0.1 \mathrm{~ms}$ at 5 kHz , ON time:OFF time $=1: 1$

Signal reset / pressing a key,
Min. input time $1 \mathrm{~ms} / 20 \mathrm{~ms}$ (selectable with DIP switch)
Min. input signal width: 20 ms
Contact or open collector input / input impedance: max. $1 \mathrm{k} \Omega$,
residual input voltage: max. 2 V ,
Open impedance: min. $100 \mathrm{k} \Omega$, max. voltage load: DC 40 V
1 normally open contacts
Ag alloy, gold-flashed
230/30 V AC/DC
5 A
AC-15: Ue $250 \mathrm{VAC}, \mathrm{I} 0.75 \mathrm{~A}$
DC-13: U $30 \mathrm{VDC}, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cycles/h
20×10^{6} switching cycles
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside, 2 inside
250 V AC
2.21 kV

IP 66 (only with rubber gasket) / IP 20
$-10-+55^{\circ} \mathrm{C}$
U 3-2
0.11 kg

Pin holders AT8-DF8S, AT8-RR

Part No.

Std. Pack
-999 bis +9999

Timer and switching relays

 Discontinued models of electronic timer and switching relays interface| Overview of devices/part numbers | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Rated voltage | | Specification | Part No. | Std. Pack | Successor type |
| DZD 31 G-189 | AC 220 V | $50-60 \mathrm{~Hz}$ | 9.99 s | R2.054.0080.0 | 1 | - |
| DZD 31 G-189 | AC 220 V | $50-60 \mathrm{~Hz}$ | 99.9 s | R2.054.0030.0 | 1 | - |
| DZD 32-S L-228 | AC $220-240 \mathrm{~V}$ | $50-60 \mathrm{~Hz}$ | 99.99 s | R2.054.0250.0 | 1 | DZD 92 L, DZD 72. |
| DZD 72 LK | AC $110-127 \mathrm{~V}$ | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0230.0 | 1 | DZD 92 L |
| | AC 220-240 V | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0040.0 | 1 | |
| | AC/DC 24 V | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0060.0 | 1 | |
| | AC/DC 48 V | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0210.0 | 1 | |
| | AC/DC 60 V | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0140.0 | 1 | |
| DZD 72-S LK | AC 110-127V | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0240.0 | 1 | DZD 92 L |
| | AC $220-240 \mathrm{~V}$ | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0010.0 | 1 | |
| | AC/DC 24 V | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0070.0 | 1 | |
| | AC/DC 48 V | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0290.0 | 1 | |
| | AC/DC 60 V | $50-60 \mathrm{~Hz}$ | 99.99 h | R2.054.0120.0 | 1 | |
| ESP 22 | DC 110 V | | - | R2.152.0180.0 | 1 | - |
| UZD 31 | AC/DC 24 V | $50-60 \mathrm{~Hz}$ | 9.99 min | R2.054.0420.0 | 1 | UZD 51 |
| | AC 110-127 V | $50-60 \mathrm{~Hz}$ | 9.99 s | R2.054.0090.0 | 1 | |
| | AC 230 V | $50-60 \mathrm{~Hz}$ | 9.99 s | R2.054.0280.0 | 1 | |
| | AC/DC 24 V | $50-60 \mathrm{~Hz}$ | 9.99 s | R2.054.0400.0 | 1 | |
| | AC 230 V | $50-60 \mathrm{~Hz}$ | 9.9 s | R2.054.0390.0 | 1 | |
| | AC 230 V | $50-60 \mathrm{~Hz}$ | 99.9 s | R2.054.0180.0 | 1 | |
| | AC/DC 24 V | $50-60 \mathrm{~Hz}$ | 99.9 s | R2.054.0380.0 | 1 | |
| | AC 230 V | $50-60 \mathrm{~Hz}$ | 99.99 s | R2.054.0370.0 | 1 | |
| | AC/DC 24 V | $50-60 \mathrm{~Hz}$ | 99.99 s | R2.054.0410.0 | 1 | |
| | AC/DC 24 V | $50-60 \mathrm{~Hz}$ | 999.9 min | R2.054.0020.0 | 1 | |
| | AC/DC 24 V | $50-60 \mathrm{~Hz}$ | 999.9 s | R2.054.0100.0 | 1 | |
| NGD 32 | AC/DC $24-240 \mathrm{~V}$ | $50-60 \mathrm{~Hz}$ | 5 s - 100 s | R2.062.0050.0 | 1 | NGM 1003 |
| | | | 0.5 s - 10 s | R2.062.0060.0 | 1 | |
| | | | $0.1 \mathrm{~s}-1 \mathrm{~s}$ | R2.062.0070.0 | 1 | |
| | | | 1.5 s - 30 s | R2.062.0080.0 | 1 | |
| NGF 31 | AC/DC $24-240 \mathrm{~V}$ | $50-60 \mathrm{~Hz}$ | - | R2.173.0010.0 | 1 | NGF 32 |
| NGY 31 | AC/DC $24-240 \mathrm{~V} 50-60 \mathrm{~Hz}$ | | $50 \mathrm{~s}-1000 \mathrm{~s}$ | R2.135.0040.0 | 1 | NGY 71 |
| | | | $5 \mathrm{~h}-100 \mathrm{~h}$ | R2.135.0050.0 | 1 | |
| | | | $5 \mathrm{~s}-100 \mathrm{~s}$ | R2.135.0060.0 | 1 | |
| | | | $0.5 \mathrm{~h}-10 \mathrm{~h}$ | R2.135.0070.0 | 1 | |
| | | | $0.5 \mathrm{~min}-10 \mathrm{~min}$ | R2.135.0080.0 | 1 | |
| | | | 0.5 s - 10 s | R2.135.0090.0 | 1 | |
| | | | 0.1 s - 1 s | R2.135.0100.0 | 1 | |
| | | | $15 \mathrm{~s}-300 \mathrm{~s}$ | R2.135.0110.0 | 1 | |
| | | | $1.5 \mathrm{~h}-30 \mathrm{~h}$ | R2.135.0120.0 | 1 | |
| | | | $1.5 \mathrm{~min}-30 \mathrm{~min}$ | R2.135.0130.0 | 1 | |
| | | | 1.5 s - 30 s | R2.135.0140.0 | 1 | |
| | | | 0.15 s - 3 s | R2.135.0150.0 | 1 | |
| | | | $3 \mathrm{~min}-60 \mathrm{~min}$ | R2.135.0160.0 | 1 | |
| NGYP 32-S | AC/DC $24-240 \mathrm{~V} 50-60 \mathrm{~Hz}$ | | $50 \mathrm{~s}-1000 \mathrm{~s}$ | R2.135.0190.0 | 1 | NGYP 72-S |
| | | | $5 \mathrm{~h}-100 \mathrm{~h}$ | R2.135.0200.0 | 1 | |
| | | | $5 \mathrm{~s}-100 \mathrm{~s}$ | R2.135.0210.0 | 1 | |
| | | | $0.5 \mathrm{~h}-10 \mathrm{~h}$ | R2.135.0220.0 | 1 | |
| | | | $0.5 \mathrm{~min}-10 \mathrm{~min}$ | R2.135.0230.0 | 1 | |
| | | | 0.5 s - 10 s | R2.135.0240.0 | 1 | |
| | | | $0.1 \mathrm{~s}-1 \mathrm{~s}$ | R2.135.0250.0 | 1 | |
| | | | $15 \mathrm{~s}-300 \mathrm{~s}$ | R2.135.0260.0 | 1 | |
| | | | $1.5 \mathrm{~h}-30 \mathrm{~h}$ | R2.135.0270.0 | 1 | |
| | | | $1.5 \mathrm{~min}-30 \mathrm{~min}$ | R2.135.0280.0 | 1 | |
| | | | 1.5 s - 30 s | R2.135.0290.0 | 1 | |
| | | | 0.15 s - 3 s | R2.135.0300.0 | 1 | |
| | | | $3 \mathrm{~min}-60 \mathrm{~min}$ | R2.135.0310.0 | 1 | |
| SZTZ 120 | AC $220-240 \mathrm{~V}$ | $50-60 \mathrm{~Hz}$ | 0.25 s | R2.057.0010.0 | 1 | - |
| | | | 0.45 s | R2.057.0020.0 | 1 | - |
| SZTZ 220 | DC 24 V | | 0.45 s | R2.057.0030.1 | 1 | - |
| UZD 1001 | AC 118 V | $50-60 \mathrm{~Hz}$ | $0.01 \mathrm{~h}-99.99 \mathrm{~h}$ | R2.054.0190.0 | 1 | UZD 51 |
| | AC 230 V | $50-60 \mathrm{~Hz}$ | | R2.054.0260.0 | 1 | |
| | AC 24 V | $50-60 \mathrm{~Hz}$ | | R2.054.0200.0 | 1 | |
| | AC 42 V | $50-60 \mathrm{~Hz}$ | | R2.054.0160.0 | 1 | - |
| UZD 1002 | DC 24 V | | $0.01 \mathrm{~h}-99.99 \mathrm{~h}$ | R2.054.0170.0 | 1 | UZD 51 |

Timer and switching relays

ON-delay SZA 52-S /SZA 52/SZAN 52-S / SZA 54-2S

ON-delay multi-range electromechanical timer relay

- Devices for single voltage
- Function: ON-delay (AV), SZAN 52-S protected against power failure
- 1 setting range divided into 6 time ranges
- Contact assignment: SZA 52-S = 1 timed and 1 instantaneous change-over contact SZAN 52-S $=1$ timed and 1 instantaneous change-over contact
SZA $52=2$ timed change-over contact
SZA 54-2S = 1 timed and 1 instantaneous normally closed contact (NC)
1 timed and 1 instantaneous normally open contact (NO)

(al)

General information

- The electromechanical timer relays are equipped with synchronous motors and solenoid clutches.
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by means of a transparent rotary switch
- The countdown indicator moves during operation from the set time value towards zero.

Function

Upon excitation of motor and solenoid the instantaneous contact is put in the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated and the motor is switched off. After de-excitation, the solenoid, time element and all contacts will switch into the OFF position. If a voltage interruption occurs during the countdown, the solenoid, instantaneous contact and time element will fall into the OFF position.

The timer relay protected against power failure SZAN 52-S has the same function as described above, but upon excitation the solenoid clutch is locked by a blocking pawl so that even in a no-volt condition the elapsed time is preserved
The countdown can be interrupted as often as desired. The instantaneous contact remains in the ON position even during voltage interruption. When the pre-set time has elapsed, the blocking pawl is released, the timed contacts are actuated and the motor is switched off.

Actuation by impulse: The timer relay protected against power failure can be actuated by an impulse applied to the clutch, as the locking action of the blocking pawl is immediate (separate motor and coil connections). The countdown starts when the motor is energized. After impulse actuation the instantaneous contact goes into the ON position until the countdown ends. When the time has elapsed, it falls back into the OFF position. The timed contact only opens for approx. 10 ms . The timed change-over contact cannot be switched into its closed position.

Accessories	
Cover 29	sealable transparent cover

Timer and switching relays
ON-delay SZA 52-S / SZA 52/SZAN 52-S / SZA 54-2S interface

Overview of the devices/Part numbers

Type	Setting range
SZA 52-S	0.1 s ... 1000 s
	$0.1 \mathrm{~s} \ldots 30 \mathrm{~h}$
	0.2 s... 60 h
SZAN 52-S	0.1 s ... 1000 s
	$0.1 \mathrm{~s} \ldots 30 \mathrm{~h}$
	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$
SZA 52	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$
SZA 54-2S	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- Except for type SZA 54-2S, the relays have separate motor and solenoid connections which makes the following operating modes possible

1. Time accumulation: By separate actuation of the solenoid clutch and the motor, elapsed time can be stored and/or various time segments accumulated.
2. Rapid start: Reduction of time dispersion to a minimum by keeping the motor constantly at operating voltage while only the solenoid clutch is de-energized and energized after the time has elapsed. Motor starting irregularities are thus avoided. For operating times above 60 s , the rapid start no longer has any effect on time dispersion.
3. Standard operation: Simultaneous excitation and de-excitation of solenoid clutch and motor. Recommended for operating times above 60 s .

- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Dimension diagram

Rated voltage		Part No.	Std. Pack
AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.026.0360.0	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0100 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0160 .0$	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0260 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0010 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0350 .0$	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0080 .0$	1
AC 42 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0090 .0$	1
AC 48 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0250 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0130 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0070 .0$	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0030 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0050 .0$	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0340 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0270 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0020 .0$	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0300 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0290 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0310 .0$	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0170 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0200 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0220 .0$	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0150 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0180 .0$	1
AC $125-127 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0060 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.026 .0330 .0$	1

Technical data	SZA 52-S	SZAN 52-S	SZA 52	SZA 54-2S
Function type according to DIN VDE 0435 sec. 110:04.89	Electromechanical timer relay for single voltage			
	Item 3.13: ON-delay timer relay	Item 3.14: ON-delay timer relay protected against power failure	Item 3.13: ON -delay timer relay	Item 3.12: ON-delay timer relay
Function display	Pointer for operating time			
Function diagram	FD 0008	FD 0033	FD 0011	FD 0040
Power supply circuit				
Rated voltage U_{N}	See "Overview of devices"			
Rated consumption: motor at 50 Hz and UN (AC)	ca. 1.3 VA/ca. 1.1 W			
Rated consumption: coil at 50 Hz and UN (AC)	ca. 1.0 VA/ca. 0.9 W			
Rated frequency	50 and 60 Hz selectable on the device			
Operating voltage range	$0.8-1.1 \times \mathrm{U}_{\mathrm{N}}$			
Time circuit				
Time setting / number of time ranges	analog/6			
Available time ranges	s. Tabelle „Time ranges"			
Recovery time	$\leq 250 \mathrm{~ms}$			
Minimum ON time	-	30 ms	-	-
Release value	$\geq 15 \% U_{N}$			
Parallel loads permissible	yes			
Internal half-wave rectification	yes			
Error (average related to the full scale value)	during standard operation:Setting range > $\quad 6 \mathrm{~s} ; \pm 1.5 \%$Setting range $\quad 6 \mathrm{~s} ; \pm 2 \%$Setting range $\quad 3 \mathrm{~s} ; \pm 3 \%$			
Dispersion	Standard operation Rapid start			
Setting range $0.3-6 \mathrm{~s}$	$\pm 0.06 \mathrm{~s}$ 仡 $\pm 0.03 \mathrm{~s}$			
Setting range 3-60 s	$\pm 0.22 \mathrm{~s}$			
Max. operating time $\geq 60 \mathrm{~s}$	± 0.3 \% related to the full scale value			
Output circuit				
Contact assignment	1 timed and 1 instantaneous change over contact	1 timed and 1 instantaneous change over contact	2 timed change-over	timed and 1 instantaneous NC, 1 timed and 1 instantaneous NO
Contact material	Ag Cu			
Rated operating voltage U_{n}	AC/DC 230 V			
Max. continuous current I_{n}	5 A			
Application category according to EN 60947-5-1:1991	$\begin{aligned} & \text { AC-15: } U_{e} 230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A} \\ & \text { DC-13: } U_{e} 24 \mathrm{VDC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A} \end{aligned}$			
Permissible switching frequency	≤ 3600 switching cyclese/h			
Mechanical life	3×10^{6} switching cycles or 10^{4} motor operation hours			
Response time	$\leq 25 \mathrm{~ms}$			
Release time	$\leq 60 \mathrm{~ms}$			
General information				
Creepage distances and clearances between the circuits	according to DIN VDE 0110-1:04.97			
Rated impulse voltage	4 kV			
overvoltage category	III			
Degree of pollution	3 outside 2 inside			
Rated voltage	AC 250 V			
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1	2.21 kV			
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.92	IP 30/IP 20			
Emitted interference	EN 50081-1:03.93, -2:03.94			
Noise immunity	EN 50082-2:1995			
Ambient temperature, operating range	$-10-+55{ }^{\circ} \mathrm{C}$			
Dimension diagram	S 3-9			
Circuit diagram	KS 5102/3	KS 5102/3	KS 5153/2	KS 5155/2
Weight	0.35 kg			
Accessories	Z 29			
Approvals	(G1) 7 (1)			

Timer and switching relays

OFF-delay SZA 521

 interface
OFF-delay multi-range electromechanical timer relay with auxiliary supply

- Device for single voltage
- Function: OFF-delay (RV)
- 1 setting range divided into 6 time ranges
- Contact assignment: 1 timed and 1 instantaneous change-over contact

(al) 제 (1)

General information

- The electromechanical timer relay is equipped with synchronous motor and solenoid clutch.
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by means of a transparent rotary switch.
- The countdown indicator moves during operation from the set time value towards zero

Function

Upon application of the supply voltage at the motor and of the energizing quantity at the coil, the timed and the instantaneous contacts will switch. When the coil is de-energized, the countdown begins and the instantaneous contact falls back into the OFF position.

The countdown can be interrupted as often as desired without clearing the elapsed time. When the pre-set time has elapsed, the time contact falls back into the OFF position.

Time accumulation: Only by actuating the motor are the resulting operating times accumulated, meaning that the elapsed times are stored.

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Time ranges

Available time ranges:
0.1 s to 1000 s
divided into 6 time ranges
0.1... 3
$0.3 \ldots 10 \mathrm{~s}$
$1 \ldots 30$ s
$3.3 \ldots 100 \mathrm{~s}$
10... 300 s
$33 \ldots 1000 \mathrm{~s}$
0.1 s to $\mathbf{3 0 h}$
divided into 6 time ranges
$0.1 \ldots 3 \mathrm{~s}$
$1 . . .30$ s
$0.1 \ldots 3 \mathrm{~min}$
1... 30 min
0.1... 3 h
$1 . .30 \mathrm{~h}$

Circuit diagram

SZA 521

Timer and switching relays OFF-delay SZA 521

Timer and switching relays

OFF-delay SZA 521
 interface

Technical data
Function type according to DIN VDE $0435 \mathrm{sec} .110: 04.8$

Function display
 Function diagram

Power supply circuit
Rated voltage U_{N}
Rated consumption: motor at 50 Hz and UN (AC
Rated consumption: coil at 50 Hz and UN (AC)
Rated frequency
Operating voltage range

Time circuit

Time setting / number of time ranges
Available time ranges
Recovery time
Minimum ON time
Release value
Parallel loads permissible
Internal half-wave rectification
Error (average related to the full scale value)

Dispersion

Setting range $0.3-6 \mathrm{~s}$
Setting range 3-60 s
Max. operating time $\geq 60 \mathrm{~s}$

Output circuit

Contact assignment
Contact material
Rated operating voltage U_{n}
Max. continuous current I_{n}
Application category according to EN 60947-5-1:1991

Permissible switching frequency
Mechanical life

Response time

Release time

General information

Creepage distances and clearances between the circuits
Rated impulse voltage
overvoltage category
Degree of pollution
Rated voltage
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.92
Emitted interference
Noise immunity
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals

SZA 521

Electromechanical timer relay for single voltage
Item 3.17: OFF-delay timer relay
Pointer for operating time
FD 0012

See "Overview of devices"
ca. 1.3 VA/ca. 1.1 W
ca. 1.0 VA/ca. 0.9 W
50 and 60 Hz selectable on the device
$0.8-1.1 \times U_{N}$

analog/6

s. Tabelle „Time ranges"

150 ms
$\geq 15 \% U_{N}$
yes
yes
during standard operation:
Setting range $6 \mathrm{~s} ; \pm 1.5 \%$
Setting range $6 \mathrm{~s} ; \pm 2 \%$
Setting range $3 \mathrm{~s} ; \pm 3 \%$
Standard operation Rapid start
$\pm 0.06 \mathrm{~s} \quad \pm 0.03 \mathrm{~s}$
$\pm 0.22 \mathrm{~s} \quad \pm 0.19 \mathrm{~s}$
$\pm 0.3 \%$ related to the full scale value

1 timed and 1 instantaneous change-over contact
Ag Cu
AC/DC 230 V
5 A
AC-15: U 230 V AC, I 2 A
DC-13: $U_{e} 24 \mathrm{~V} D C, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cyclese/h
3×10^{6} switching cycles or
10^{4} motor operation hours
$\leq 25 \mathrm{~ms}$
$\leq 60 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 30/IP 20
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$
S 3-9
KS 5125/3
0.35 kg

B 5, B 7, BT 421, DA 1, V 4, Z 1
(II) 민 (1)

Timer and switching relays

Electromechanical repeat cycle timer SPZA 52

Multi-range repeat cycle timer

- Function: Repeat cycle (TI) starting with ON
- ON and OFF times can be selected independently of one another
- 1 setting range divided into 6 time ranges
- Contact assignment: 1 normally open, 1 normally closed

General information

- The electromechanical repeat cycle timer is equipped with two independent time elements whose delay times (ON and OFF) elapse one after the other. This occurs as long as the supply voltage is applied.
- Upon de-excitation, the timer relay whose time has just elapsed, falls back into its initial state. Upon voltage recovery, the countdown will start from the beginning, meaning with the ON time.
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by means of a transparent rotary switch.

Function

After the supply voltage is supplied to terminals A1/A2 and the energizing quantity to B1/B2, the countdown of the ON timer relay starts and the output contacts (1 NO and 1 NC contact) are switched. After the time has elapsed, the OFF timer relay is energized, self-locks and lets the ON timer relay fall back into its initial position while the output contacts switch into the OFF position. After the OFF time has elapsed, the relay is no longer self-locked. The OFF timer relay falls back into the initial position and reactivates the ON timer relay.

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Time ranges

Available setting ranges for ON and OFF time (see "Overview of devices" for the possible combinations):

0.1 s to 1000 s

divided into 6 time ranges
0.1... 3 s
0.3... 10 s
$1 \ldots 30 \mathrm{~s}$
3.3... 100 s
$10 . .300 \mathrm{~s}$
33... 1000 s
0.1 s to 30 h
divided into 6 time ranges
0.1... 3 s
$1 . . .30 \mathrm{~s}$
0.1... 3 min
1... 30 min
0.1... 3 h
1... 30 h

0.2 s to 60 h

divided into 6 time ranges
0.2... 6 s
$2 . . .60 \mathrm{~s}$
0.2... 6 min
2... 60 min
$0.2 \ldots 6 \mathrm{~h}$
2... 60 h

Circuit diagram

SPZA 52

Timer and switching relays

Electromechanical repeat cycle timer SPZA 52 interface

Timer and switching relays
Electromechanical repeat cycle timer SPZA 52

Technical data
Function type according to DIN VDE 0435 Section 110:04.89
Function display
Function diagram
Power supply circuit
Rated voltage U_{N}
Rated consumption: motor at $50 / 60 \mathrm{~Hz}$ and $\mathrm{U}_{N}(\mathrm{AC})$
Rated consumption: coil at $50 / 60 \mathrm{~Hz}$ and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$
Rated frequency
Operating voltage range
Time circuit
Time setting / number of time ranges
Available time ranges
Recovery time
Minimum ON time
Release value
Parallel loads permissible
Internal half-wave rectification
Error (average related to the full scale value)
Dispersion
Setting range $0.3-6 \mathrm{~s}$
Setting range 3-60 s
Max. operating time $\geq 60 \mathrm{~s}$
Output circuit
Contact assignment
Contact material
Rated operating voltage U_{n}
Max. continuous current I_{n}
Application category according to EN 60947-5-1:1991
Permissible switching frequency
Mechanical life
Response time
Release time
General information
Creepage distances and clearances between the circuits
Rated impulse voltage
overvoltage category
Degree of pollution
Rated voltage
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.92
Emitted interference
Noise immunity
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals

SPZA 52
Electromechanical repeat cycle timer for single voltage
Item 3.9: Repeat cycle
Pointer for operating time
FD 0031

See "Overview of devices"
ca. 1.0/1.9 VA/ca. 0.9/0.8 W
ca. 1.3/1.2 VA/ca. 1.1/1.0 W
50 and 60 Hz selectable on the device
$0.8-1.1 \times U_{N}$
analog/6
See "Overview of devices"
$\leq 250 \mathrm{~ms}$
$\leq 15 \% U_{N}$
yes
yes
during standard operation
Setting range $6 \mathrm{~s} ; \pm 1.5 \%$
Standard operation Rapid start
$\pm 0.06 \mathrm{~s} \quad \pm 0.03 \mathrm{~s}$
$\pm 0.22 \mathrm{~s} \quad \pm 0.19 \mathrm{~s}$
± 0.3 \% related to the full scale value

1 normally open, 1 normally closed
Ag Cu
AC/DC 230 V
5 A
AC-15: $U_{\mathrm{e}} 230 \mathrm{VAC}, 1 \mathrm{e}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: Ue $24 \mathrm{VDC}, I_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cyclese/h
30×10^{6} switching cycles or
3×10^{4} motor operation hours
$\leq 30 \mathrm{~ms}$
$\leq 80 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
5 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 30/IP 20
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$
S 4-1
KS 5166/2
0.7 kg
-

Timer and switching relays
 Electromechanical stepping relay SSF 32 / SSF 52 /SSF 62 interface

Stepping relay

- Devices for single voltage
- Function: Stepping relay
- Contact assignment:

SSF 32 = 2 NO contacts, simultaneously switched in an ON-OFF cycle SSF $52=1$ NO contact and 1 NC contact,
reciprocally switched in an ON-OFF cycle
SSF $62=1$ NO contact and 1 NC contact,
reciprocally switched in an ON-OFF cycle

Timer and switching relays
Electromechanical stepping relay SSF 32 / SSF 52 / SSF 62

Timer and switching relays
 Electromechanical latching relays SSP 56 / SSP 72/SSP 33 / SSP 34 interface

Latching relay

- Devices for single voltage
- Function: latching relay
- Contact assignment:

SSF $56=3$ NO contacts and 3 NC contacts
SSP $72=2$ change-over contacts
SSP 33 = 3 change-over contacts
SSP 34 = 4 change-over contacts

SSP 56, SSP 72

SSP 33, SSP 34

ब

Function

The latching relays consist of two separate, mechanically interlocked solenoid systems. Upon momentary or continued excitation of the solenoid system, the contacts with which it is equipped switch into the ON position. At the same time, the pawls mounted on the relay armature will lock so that the contacts retain their ON position even in case of a voltage failure or voltage interruption. When the solenoid system that is not equipped with contacts is energized, the interlock is released and the contacts revert into their OFF position.
On the models SSP 56 and SSP 72 a lever on the front panel permits manual
adjustment of the solenoid system and indicates the position of the solenoid and/or of the contacts. On the models SSP 33 and SSP 34 there are 2 push buttons for this purpose.
The relay contacts have no standard position. If the coils are energized simultaneously, the contacts maintain their ON position.
Function diagram
SSP $\mathbf{x x}$
FD 0022a

A1/A2

E1/E2
13/14,
$\mathrm{t}_{\mathrm{A}}=$ Response time

Dimension diagrams

SSP 33, SSP 34

for DIN rail according to EN 50022
S2-1

Circuit diagrams

SSP 56 KS 5161/2

SSP 72
KS 5172/2

SSP 33
KS 5143/2

SSP 34
KS 5137/2

Technical data		
Function type according to DIN VDE 0435 Section 110:04.89		
Function display		
Function diagram		
Power supply circuit		
Rated voltage U_{N}		
Rated consumption for Re 1 at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$ switching on		
Rated consumption for Re 1 at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$ holding		
Rated consumption for Re 2 at 50 Hz and $\mathrm{U}_{N}(\mathrm{AC})$ switching on		
Rated consumption for Re 2 at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$ holding		
Rated frequency		
Operating voltage range		
Time circuit		
Time setting / number of time ranges		
Available time ranges		
Recovery time		
Minimum ON time		
Release value		
Parallel loads permissible		
Internal half-wave rectification		
Output circuit		
Contact assignment		
Contact material		
Rated operating voltage U_{n}		
Max. continuous current I_{n}		
Application category according to EN 60947-5-1:1991		
Permissible switching frequency		
Mechanical life		
Response time		
Release time		
General information		
Creepage distances and clearances between the circuits		
Rated impulse voltage		
overvoltage category		
Degree of pollution		
Rated voltage		
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1		
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.		
Emitted interference		
Noise immunity		
Ambient temperature, operating range		
Dimension diagram		
Circuit diagram		
Weight		
Accessories		
Approvals		
Overview of the devices/Part numbers		
$\begin{aligned} & \text { Type } \\ & \hline \text { SSP } 56 \end{aligned}$	Rated voltage	
	AC 24 V	50 Hz
	AC 42 V	50 Hz
	AC 48 V	50 Hz
	AC 110 V	50 Hz
	AC 110 V	60 Hz
	AC 120-131 V	60 Hz
	AC 230 V	50 Hz
	AC 230 V	60 Hz
SSP 72	AC 24 V	50 Hz
	AC 110-115 V	60 Hz
	AC 230 V	50 Hz
SSP 33	AC 24 V	50 Hz
	AC 230 V	50 Hz
SSP 34	AC 110 V	50 Hz
	AC 230 V	50 Hz

SSP 56	SSP 72	SSP 33	SSP 34
Electromechanical latching relay for single voltage Item 2.4: Bistable relays			
Adjusting lever	Adjusting lever	Push buttons	Push buttons
FD 0022a			
See "Overview of devices"			
$\begin{aligned} & \text { ca. } 13 \mathrm{VA} / \\ & \text { ca. } 4.5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { ca. } 13 \mathrm{VA} / \\ & \text { ca. } 4.5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { ca. } 18 \mathrm{VA} / \\ & \text { ca. } 6.5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { ca. } 18 \mathrm{VA} / \\ & \text { ca. } 6.5 \mathrm{~W} \end{aligned}$
ca. $4 \mathrm{VA} /$ ca. 1.5 W	ca. $4 \mathrm{VA} /$ ca. 1.5 W	ca. 5.2 VA/ ca. 1.8 W	ca. 5.2 VA/ ca. 1.8 W

ca. $10.5 \mathrm{VA} / \mathrm{ca} .3 .5 \mathrm{~W}$
ca. $3 \mathrm{VA} / \mathrm{ca} .1 \mathrm{~W}$
See "Overview of devices"
$0.8-1.1 \times U_{N}$
-/-
-
$\geq 15 \% U_{N}$
yes
no

| 3 NO contacts and |
| :--- | :--- | :--- | :--- |
| 3 NC contacts |\quad| 2 change-over |
| :--- |
| contacts |\quad| 3 change-over |
| :--- |
| contacts |\quad| 4 change-over |
| :--- |
| contacts |

Ag Cu
AC/DC 400 V
5 A
AC-15: $U_{e} 230 \mathrm{VAC}, I_{e} 2 \mathrm{~A} \quad \mathrm{DC}-13: U_{e} 24 \mathrm{VDC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cyclese/h
10×10^{6} switching cycles
$\leq 20 \mathrm{~ms}$
$\leq 25 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
5 kV
III
3 outside 2 inside
400 V AC
2.7 kV

IP $30 /$ IP 20
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$

S 3-5	S 3-5	S 2-1	S 2-1
KS 5161/2	KS 5172/2	KS 5143/2	KS 5137/2
0.5 kg	0.5 kg	0.6 kg	0.6 kg
-	-	-	-
-	-	©	©

Part No
Std. Pack
R2.153.0140.0
R2.153.0080.0
R2.153.0040.0
R2.153.0050.0 1
R2.153.0070.0 1
R2.153.0130.0 1
R2.153.0100.0 1
R2.153.0030.0 1
R2.153.0090.0 1
R2.153.0100.0 1
R2.153.0020.0 1
R2.152.0090.0 1
R2.152.0170.0 1
$\begin{array}{ll}\text { R2.152.0110.0 } & 1 \\ \text { R2.152.0070.0 } & 1\end{array}$

Timer and switching relays

 ON-delay DZ 12-S L/ DZN 12-S L interface
ON-delay single-range timer relay, electromechanical

- Devices for single voltage
- Function: ON-delay (AV), DZN 12-S L protected against power failure
- 1 time range
- Contact assignment: 1 timed and 1 instantaneous change-over contact

72×72

ब14

General information

- The electromechanical timer relays are equipped with synchronous motors and solenoid clutches.
- Infinitely variable time setting within a range is selected by means of a transparent rotary switch. The countdown indicator moves during operation from the set time towards zero.

Function

Upon excitation of motor and solenoid the instantaneous contact is actuated/put in the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated and the motor is switched off. After de-excitation, the solenoid, time element and all contacts will switch into the OFF position. If a voltage interruption occurs during the countdown, the solenoid, instantaneous contact and time element will fall into the OFF position.

The timer relay protected against power failure SZAN 12-S has the same function as described above, but upon excitation the solenoid clutch is locked by a blocking pawl so that even in a no-volt condition the elapsed time is preserved. The countdown can be interrupted as often as desired. The instantaneous contact remains in the ON position even during voltage interruption. When the pre-set time has elapsed, the blocking pawl is released and the timed contact is actuated.

Actuation by impulse: The timer relay protected against power failure can be actuated by an impulse applied to the clutch, as the locking action of the blocking pawl is immediate (separate motor and coil connections). The countdown starts when the motor is energized. After impulse actuation the instantaneous contact goes into the ON position until the countdown ends. When the time has elapsed, it falls back into the OFF position. The timed contact only opens for about 10 ms . The timed change-over contact cannot be switched into its closed position.

Resetting: Mechanical resetting to 0 is possible for these devices.

Resetting of DZN 12-S L: Electrical and mechanical resetting to 0 is only possible for this device, if the mechanical interlock is released. If resetting is necessary after an interruption of the countdown, the rotary switch must be turned to 0 .

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- The relays have separate motor and solenoid connections which makes the following operating modes possible:

1. Time accumulation: By separate actuation of the solenoid clutch and the motor, elapsed time can be stored and/or various time segments accumulated.
2. Rapid start: Reduction of time dispersion to a minimum by keeping the motor constantly at operating voltage while only the solenoid clutch is de-energized and energized after the time has elapsed. Motor starting irregularities are thus avoided. For operating times above 60 s , the rapid start no longer has any effect on time dispersion.
3. Standard operation Simultaneous excitation and de-excitation of solenoid clutch and motor. Recommended for operating times above 60 s .

- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Time ranges
Available time ranges:
0.05... 1 s
$0.1 \ldots 3 \mathrm{~s}$
0.2... s
$0.4 \ldots 12 \mathrm{~s}$
1... 30 s
2... 60 s
$3.3 . .100 \mathrm{~s}$
$0.1 \ldots 3 \mathrm{~min}$
$0.2 \ldots 6 \mathrm{~min}$
0.4... 12 min

Circuit diagram
DZ 12-S L, DZN 12-S L

1... 30 min
2... 60 min
4... 120 min
$0.1 \ldots 3 \mathrm{~h}$
$0.2 \ldots 6 \mathrm{~h}$
0.4... 12 h
1... 30 h
2... 60 h
4... 120 h

Timer and switching relays
ON-delay DZ 12-S L/ DZN 12-S L
Function diagrams

Overview of	ers					
Type	Setting range	1	Rated voltage		Part No.	Std. Pack
DZ 12-S L	$0.05 \ldots 1 \mathrm{~s}$		AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1020.0	1
	$0.1 \ldots 3 \mathrm{~s}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0100.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1760.0	1
	$0.2 \ldots 6 \mathrm{~s}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0620.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0830.0	1
	$0.4 \ldots 12 \mathrm{~s}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.1950.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1000.0	1
		(18)	AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0420.0	1
	$1 \ldots 30 \mathrm{~s}$		AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.024.0810.0	1
			AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0090.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1010.0	1
		(11)	AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	R2.024.1660.0	1
	$2 \ldots 60$ s		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0780.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1220.0	1
	$3.3 \ldots 100 \mathrm{~s}$		AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0440.0	1
	$0.1 \ldots 3 \mathrm{~min}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0530.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0120.0	1
		(11)	AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0060.0	1
	$0.2 \ldots 6 \mathrm{~min}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0790.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0900.0	1
		(11)	AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0020.0	1
	$0.4 \ldots 12 \mathrm{~min}$		AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.024.0840.0	1
			AC 48 V	$50 / 60 \mathrm{~Hz}$	R2.024.1520.0	1
			AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0540.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0850.0	1
		(11)	AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.1650.0	1
		(1)	AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0040.0	1
	$1 \ldots 30 \mathrm{~min}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0520.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1160.0	1
		(11)	AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	R2.024.0960.0	1
	$2 \ldots 60 \mathrm{~min}$		AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	R2.024.0550.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0390.0	1
		(11)	AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	R2.024.0010.0	1
	$4 \ldots 120 \mathrm{~min}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0340.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1120.0	1
	$0.1 \ldots 3 \mathrm{~h}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.1070.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1890.0	1
	$0.2 \ldots 6 \mathrm{~h}$		AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	R2.024.1060.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0720.0	1
		(11)	AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	R2.024.1590.0	1
	$0.4 \ldots 12 \mathrm{~h}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.1510.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1080.0	1
		(61)	AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.1580.0	1
	$1 \ldots 30 \mathrm{~h}$		AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	R2.024.1630.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0700.0	1
	$2 \ldots 60 \mathrm{~h}$		AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.024.0370.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0800.0	1
	$4 \ldots 120 \mathrm{~h}$		AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.1130.0	1
DZN 12-S L	$0.4 \ldots 12 \mathrm{~min}$		AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.024.1490.0	1
			AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.024.0970.0	1

[^3]| Technical data |
| :--- |
| Function type acc |
| |
| Function display |
| Function dian |

Function diagram
Power supply circuit
Rated voltage U_{N}
Rated consumption: motor at 50 Hz and UN (AC)
Rated consumption: coil at 50 Hz and UN (AC)
Rated frequency
Operating voltage range

Time circuit

Time setting / number of time ranges
Available time ranges
Recovery time
Minimum ON time
Release value
Parallel loads permissible
Internal half-wave rectification
Error (average related to the full scale value)

Dispersion

Setting range $0.03-1 \mathrm{~s}$
Setting range $0.3-10 \mathrm{~s}$
Setting range $3.3-100 \mathrm{~s}$
Max. operating time ≥ 3 min

Output circuit

Contact assignment
Contact material
Rated operating voltage U_{n}
Max. continuous current I_{n}
Application category according to EN 60947-5-1:1991
Permissible switching frequency
Mechanical life

Response time

Release time

General information

Creepage distances and clearances between the circuits
Rated impulse voltage
overvoltage category
Degree of pollution
Rated voltage
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1
Protection degree housing/terminals according to DIN VDE 0470 sec. 1:11.92
Emitted interference
Noise immunity
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals

DZ 12-S L
Electromechanical timer relay for single voltage
Item 3.13: ON-delay timer relay protected against power failure Pointer for operating time FD 0008

DZN 12-S L
Electromechanical timer relay for single voltage Item 3.14: ON-delay timer relay protected against power failure Pointer for operating time FD 0033

See "Overview of devices"
ca. 1.3 VA/ca. 1.1 W
ca. 4.5 VA/ca. 3.8 W
50 and 60 Hz selectable on the device
$0.8-1.1 \times U_{N}$
analog / 1
See table "Time ranges"
$\leq 250 \mathrm{~ms}$
$\geq 15 \% U_{N}$
yes
yes
during standard operation:
Setting range > $6 \mathrm{~s} ; \pm 1.5 \%$
Setting range $6 \mathrm{~s} ; \pm 2 \%$
Setting range $3 \mathrm{~s} ; \pm 3 \%$
Setting range $1 \mathrm{~s} ; \pm 8 \%$
Standard operation Rapid start
$\pm 0.045 \mathrm{~s} \quad \pm 0.015 \mathrm{~s}$
$\pm 0.09 \mathrm{~s} \quad \pm 0.06 \mathrm{~s}$
$\pm 0.54 \mathrm{~s} \quad \pm 0.51 \mathrm{~s}$
$\pm 0.5 \%$ related to the full scale value

1 timed and 1 instantaneous change-over contact
Ag Cu
AC/DC 230 V
5 A
AC-15: $U_{\mathrm{e}} 230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: $U_{e} 24 \mathrm{~V} D C, I_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cyclese/h
30×10^{6} switching cycles or
3×10^{4} motor operation hours
$\leq 30 \mathrm{~ms}$
$\leq 60 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 30/IP 20
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$
D 1-18
KS 5102/3
0.6 kg

B 5, B 7, BT 421, DA 1, V 4, Z 1
(11)
\square
\square
\square
wiv wieland

Timer and switching relays ON-delay DZ 52-S G interface

ON-delay multi-range electromechanical timer relay

- Device for single voltage
- Function: ON-delay (AV)
- 1 setting range divided into 5 or 6 time ranges
- Contact assignment: 1 timed change-over contact and 1 instantaneous NO contact

General information

- The electromechanical timer relay is equipped with synchronous motor and solenoid clutch.
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by means of a transparent rotary switch.
- The countdown indicator moves during operation from the set time value towards zero.

Function

Upon excitation of motor and solenoid the instantaneous contact is actuated/put in the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated. After de-excitation, the solenoid, time element and instantaneous contact will switch into the OFF position. If a voltage interruption occurs during the countdown, the solenoid, time element and instantaneous contact will fall into the OFF position.

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching

Time ranges

Available time ranges
0.03 s to 100 s
divided into 5 time ranges
0.03... 1 s
$0.1 \ldots 3 \mathrm{~s}$
$0.3 \ldots 10$ s
$1 \ldots 30 \mathrm{~s}$
3.3... 100 s
0.1 s to 1000 s
divided into 6 time ranges
0.1... 3
0.3... 10 s
$1 \ldots 30$ s
3.3... 100 s
$10 . .300$ s
$33 . .1000$ s
0.1 s to 30 h
divided into 6 time ranges
$0.1 \ldots 3$ s
$1 . .30 \mathrm{~s}$
0.1... 3 min
1... 30 min
0.1... 3 h
$1 . .30 \mathrm{~h}$

0.2 s to 60 h

divided into 6 time ranges
$0.2 \ldots 6 \mathrm{~s}$
2... 60 s
$0.2 \ldots 6 \mathrm{~min}$
2... 60 min
$0.2 \ldots 6 \mathrm{~h}$
2... 60 h

Circuit diagram

Dimension diagram

DZ 52-S G
Electromechanical timer relay for single voltage
Item 3.12: ON-delay timer relay
Pointer for operating time
FD 0040
See "Overview of devices"
ca. 1.3 VA/ca. 1.1 W
ca. 4.5 VA/ca. 3.8 W
50 and 60 Hz selectable on the device
$0.8-1.1 \times U_{N}$
analog/6 or 5
See table "Time ranges"
$\leq 250 \mathrm{~ms}$
$\geq 15 \% U_{N}$
yes
yes
Setting range $>6 \mathrm{~s} ; \pm 1.5 \%$
Setting range $6 \mathrm{~s} ; \pm 2 \%$
Setting range $3 \mathrm{~s} ; \pm 3 \%$
± 0.045 s
$\pm 0.09 \mathrm{~s}$
$\pm 0.54 \mathrm{~s}$
± 0.5 \% related to the full scale value

1 timed change-over contact and 1 instantaneous NO contact
Ag Cu
AC/DC 230 V
5 A
AC-15: Ue $230 \mathrm{VAC}, I_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: $U_{e} 24 V D C, I_{e} 2 \mathrm{~A}$
≤ 3600 switching cyclese/h
30×10^{6} switching cycles or
3×10^{4} motor operation hours
$\leq 30 \mathrm{~ms}$
$\leq 60 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 55/IP 20/IP 00
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$
D 1-17
KS 5025/3
0.6 kg

B 4, DA 1, V 4, Z 1
(1)

Rated voltage		Part No.	Std. Pack
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.021 .0070 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.021 .0010 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.021 .0060 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.021 .0050 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.021 .0080 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.021 .0030 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.021 .0090 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.021 .0020 .0$	1

Timer and switching relays ON-delay DZ 52-S L/ DZN 52-S L interface

ON-delay multi-range electromechanical timer relay

- Devices for single voltage
- Function: ON-delay (AV), DZN 52-S L protected against power failure
- 1 setting range divided into 5 or 6 time ranges
- Contact assignment: 1 timed and 1 instantaneous change-over contact

72×72

General information

- The electromechanical timer relays are equipped with synchronous motors and solenoid clutches.
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by a transparent rotary switch.
- The countdown indicator moves during operation from the set time towards zero.

Function

Upon excitation of motor and solenoid the instantaneous contact is put in the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated and the motor is switched off. After de-excitation, the solenoid, time element and all contacts will switch into the OFF position. If a voltage interruption occurs during the countdown, the solenoid, instantaneous contact and time element will fall into the OFF position.

The timer relay protected against power failure DZN 52-S L has the same function as described above, but upon excitation the solenoid clutch is locked by a blocking pawl so that even in a no-volt condition the elapsed time is preserved. The countdown can be interrupted as often as desired. The instantaneous contact remains in the ON position even during voltage interruption. When the pre-set time has elapsed, the blocking pawl is released, the timed contacts are actuated and the motor is switched off.

Actuation by impulse: The timer relay protected against power failure can be actuated by an impulse applied to the clutch, as the locking action of the blocking pawl is immediate (separate motor and coil connections). The countdown starts when the motor is energized. After impulse actuation the instantaneous contact goes into the ON position until the countdown ends. When the time has elapsed, it falls back into the OFF position. The timed contact only opens for about 10 ms . The timed change-over contact cannot be switched into its closed position.

Resetting: Mechanical resetting to 0 is possible for these devices
Resetting of DZN 52-S L: Electrical and mechanical resetting to 0 is only possible for this device, if the mechanical interlock is released. If resetting is necessary after an interruption of the countdown, the rotary switch must be turned to 0 .

Circuit diagram

DZ 52-S L, DZN 52-S L
KS 5102/3

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- The relays have separate motor and solenoid connections which makes the following operating modes possible:

1. Time accumulation: By separate actuation of the solenoid clutch and the motor, elapsed time can be stored and/or various time segments accumulated.
2. Rapid start: Reduction of time dispersion to a minimum by keeping the motor constantly at operating voltage while only the solenoid clutch is de-energized and energized after the time has elapsed. Motor starting irregularities are thus avoided. For operating times above 60 s , the rapid start no longer has any effect on time dispersion.
3. Standard operation: Simultaneous excitation and de-excitation of solenoid clutch and motor. Recommended for operating times above 60 s .

- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Time ranges

Available setting ranges

0.03 s to 100 s

divided into 5 time ranges

$0.03 \ldots 1 \mathrm{~s}$
$0.1 \ldots 3 \mathrm{~s}$
$0.3 \ldots 10 \mathrm{~s}$
1 ... 30 s
$3.3 \ldots 100 \mathrm{~s}$

0.1 s to 1000 s

divided into 6 time ranges
$0.1 \ldots 3 \mathrm{~s}$
$0.3 \ldots \quad 10 \mathrm{~s}$
$1 \ldots 30 \mathrm{~s}$
$3.3 \ldots 100 \mathrm{~s}$
$10 \ldots 300 \mathrm{~s}$
$33 \ldots 1000$ s

0.1 s to 30 h

divided into 6 time ranges

$$
\begin{array}{rlr}
0.1 & \ldots & 3 \mathrm{~s} \\
1 & \ldots & 30 \mathrm{~s} \\
0.1 & \ldots & 3 \mathrm{~min} \\
1 & \ldots & 30 \mathrm{~min} \\
0.1 & \ldots & 3 \mathrm{~h}
\end{array}
$$

0.2 s to 60 h
divided into 6 time ranges
$0.2 \ldots 6 \mathrm{~s}$
$2 \ldots 60 \mathrm{~s}$
$0.2 \ldots 6 \mathrm{~min}$
2 ... 60 min
$0.2 \ldots 6 \mathrm{~h}$
$2 \ldots 60 \mathrm{~h}$

Timer and switching relay ON-delay DZ 52-S L/ DZN 52-S L
Function diagrams

Dimension diagram

Panel cutout $\square 688^{+0.7}$

Accessories

Female connector plate B5 for panel and surface mounting
Pin holder B 7
Adapter BT 421 for rail mounting of the female connector plate B 5
DA 1
V4
Z 1 for panel mounting

Overview of devices/part numbers

Type	Setting range	Rated voltage	Part No.	Std. Pack
DZ 52-S L	$0.03 \mathrm{~s} . . .100 \mathrm{~s}$	AC $24 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.0640.0	1
		AC $110-115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.1940.0	1
		AC $230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1110.0	1
	$0.1 \mathrm{~s} . . .1000 \mathrm{~s}$	AC $110-115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.1210.0	1
		AC $230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1140.0	1
	$0.1 \mathrm{~s} \ldots . .30 \mathrm{~h}$	AC $24 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.0080.0	1
		AC $110-115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.1960.0	1
		AC $116-120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.1700.0	1
		AC $230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.0630.0	1
	$0.2 \mathrm{~s} \ldots .60 \mathrm{~h}$	AC $24 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1900.0	1
		AC $42 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.0950.0	1
		AC $110-115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.0580.0	1
		AC 116-120 V $50 / 60 \mathrm{~Hz}$	R2.024.0360.0	1
		AC $125-127 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.1640.0	1
		AC $230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1170.0	1
DZN 52-S L	$0.03 \mathrm{~s} \ldots 100 \mathrm{~s}$	AC $24 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.0990.0	1
		AC $110-115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.1790.0	1
		AC $230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1550.0	1
	0.1 s... 1000 s	AC $24 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1690.0	1
		AC $110-115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.1670.0	1
		AC $230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1340.0	1
	$0.1 \mathrm{~s} . . . \quad 30 \mathrm{~h}$	AC $24 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.0600.0	1
		AC $110-115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.0480.0	1
		AC $230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1030.0	1
	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$	AC $24 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.1450.0	1
		AC $110-115 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	R2.024.1330.0	1
		AC $230 \mathrm{~V} \quad 50 / 60 \mathrm{~Hz}$	R2.024.0930.0	1

Timer and switching relay

 ON-delay DZ 52-S L/ DZN 52-S L $\square \square$| Technical data | DZ 52-S L | DZN 52-S L |
| :---: | :---: | :---: |
| Function according to DIN VDE $0435 \mathrm{sec} .110: 04.89$ | Electromechanical timer relay for single voltage Item 3.13: ON-delay timer relay | Electromechanical timer relay for single voltage Item 3.14: ON-delay timer relay protected against power failure |
| Function display | Pointer for operating time | Pointer for operating time |
| Function diagram | FD 0008 | FD 0033 |
| Power supply circuit | | |
| Rated voltage U_{N} | See "Overview of devices" | |
| Rated consumption: motor at 50 Hz and UN (AC) | ca. 1.3 VA/ca. 1.1 W | |
| Rated consumption: coil at 50 Hz and UN (AC) | ca. 4.5 VA/ca. 3.8 W | |
| Rated frequency | 50 and 60 Hz selectable on the device | |
| Operating voltage range | $0.8-1.1 \times U_{N}$ | |
| Time circuit | | |
| Time setting / number of time ranges | analog/5 or 6 | |
| Available time ranges | See table "Time ranges" | |
| Recovery time | $\leq 250 \mathrm{~ms}$ | |
| Minimum ON time | - | 30 ms |
| Release value | $\geq 15 \% U_{N}$ | |
| Parallel loads permissible | yes | |
| Internal half-wave rectification | yes | |
| Error (average related to the full scale value) | during standard operation: | |
| | Setting range $>$ $6 \mathrm{~s} ; \pm 1.5 \%$
 Setting range $6 \mathrm{~s} ; \pm 2 \%$
 Setting range $3 \mathrm{~s} ; \pm 3 \%$
 Setting range $1 \mathrm{~s} ; \pm 8 \%$ | |
| Dispersion | Standard operation Rapid start | |
| Setting range 0.03-1 s | $\pm 0.045 \mathrm{~s} \quad \pm 0.015 \mathrm{~s}$ | |
| Setting range $0.3-10 \mathrm{~s}$ | | |
| Setting range $3.3-100 \mathrm{~s}$ | | |
| Max. operating time $\geq 3 \mathrm{~min}$ | ± 0.5 \% related to the full scale value | |
| Output circuit | | |
| Contact assignment | 1 timed and 1 instantaneous change-over contact | |
| Contact material | Ag Cu | |
| Rated operating voltage U_{n} | AC/DC 230 V | |
| Max. continuous current I_{n} | 5 A | |
| Application category according to EN 60947-5-1:1991 | AC-15: $U_{e} 230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$ | |
| | DC-13: U 24 V DC, $\mathrm{I}_{e} 2 \mathrm{~A}$ | |
| Permissible switching frequency | ≤ 3600 switching cyclese/h | |
| Mechanical life | 30×10^{6} switching cycles or 3×10^{4} motor operation hours | |
| Response time | $\leq 30 \mathrm{~ms}$ | |
| Release time | $\leq 60 \mathrm{~ms}$ | |
| General information | | |
| Creepage distances and clearances between the circuits | according to DIN VDE 0110-1:04.97 | |
| Rated impulse voltage | 4 kV | |
| overvoltage category | III | |
| Degree of pollution | 3 outside 2 inside | |
| Rated voltage | AC 250 V | |
| Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1 | 2.21 kV | |
| Protection degree housing/terminals in according with DIN VDE 0470 sec. 1:11.92 | IP 30/IP 20 | |
| Emitted interference | EN 50081-1:03.93, -2:03.94 | |
| Noise immunity | EN 50082-2:1995 | |
| Ambient temperature, operating range | $-10-+55^{\circ} \mathrm{C}$ | |
| Dimension diagram | D 1-18 | |
| Circuit diagram | KS 5102/3 | |
| Weight | 0.6 kg | |
| Accessories | B 5, B 7, BT 421, DA 1, V 4, Z 1 | |
| Approvals | (1) | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

Timer and switching relays ON-delay DZ 72-S, DZ 74-2S

ON-delay multi-range electromechanical timer relay

- Devices for single voltage
- Function: ON-delay (AV)
- 1 setting range divided into 5 or 6 time ranges
- Contact assignment: DZ 72-S = 1 timed and 1 instantaneous
change-over contact
DZ 74-2S = 1 instantaneous and
1 timed NC contact,
1 instantaneous and 1 timed NO contact
96×96

General information

- The electromechanical timer relays are equipped with synchronous motors and solenoid clutches.
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by a transparent rotary switch.
- The countdown indicator moves during operation from the set time value towards zero.

Function

Upon excitation of motor and solenoid the instantaneous contact is put into the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated and the motor is switched off. After de-excitation, the solenoid, time element and all contacts will switch into the OFF position. If a voltage interruption occurs during the countdown, the solenoid, instantaneous contact and time element will fall into the OFF position.

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz
- Model DZ 72-S has separate motor and coil connection, which makes the following operating modes possible:

1. Time accumulation: By separate actuation of the solenoid clutch and the motor, elapsed time can be stored and/or various time segments accumulated.
2. Rapid start:

Reduction of time dispersion to a minimum by keeping the motor constantly at operating voltage while only the solenoid clutch is de-energized and energized after the time has elapsed. Motor starting irregularities are thus avoided. For operating times above 60 s , the rapid start no longer has any effect on time dispersion
3. Standard operation: Simultaneous excitation and de-excitation of solenoid clutch and motor. Recommended for operating times above 60 s .

- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Time ranges

Available setting ranges
 0.03 s to 100 s
 0.1 s to 30 h

divided into 5 time ranges

$0.03 \ldots$	1 s
$0.1 \ldots$	3 s
$0.3 \ldots$	10 s
$1 \ldots$	30 s
$3.3 \ldots$	100 s

0.1 s to 1000 s

divided into 6 time ranges

0.1	\ldots	3 s
$0.3 \ldots$	10 s	
$1 \ldots$	30 s	
$3.3 \ldots$	100 s	
10	\ldots	300 s
33		1000 s

s
300 s
1000 s
divided into 6 time ranges
$0.1 \ldots 3 \mathrm{~s}$
1 ... 30 s
$0.1 \ldots 3 \mathrm{~min}$
1 ... 30 min
$0.1 \ldots 3 \mathrm{~h}$
1 ... 30 h
0.2 s to 60 h
divided into 6 time ranges
$0.2 \ldots 6 \mathrm{~s}$
$2 \ldots 60 \mathrm{~s}$
$0.2 \ldots 6 \mathrm{~min}$
$2 \ldots 60 \mathrm{~min}$
$0.2 \ldots 6$ h
2 ... 60 h

Circuit diagrams

DZ 72-S

DZ 74-2S

Timer and switching relays ON-delay DZ 72-S, DZ 74-2S interface

DZ 72-S
Electromechanical timer relay for single voltage Item 3.13: ON-delay timer relay

Pointer for operating time
FD0008

See "Overview of devices"
ca. 1.3 VA/ca. 1.1 W
ca. 4.5 VA/ca. 3.8 W
50 and 60 Hz selectable on the device
$0.8-1.1 \times U_{N}$
analog/6 or 5
See table "Time ranges"
$\leq 250 \mathrm{~ms}$
$\geq 15 \% U_{N}$
yes
yes
during standard operation:
Setting range > $6 \mathrm{~s} ; \pm 1.5 \%$
Setting range $\quad 6 \mathrm{~s} ; \pm 2 \%$
Setting range $\quad 3 \mathrm{~s} ; \pm 3 \%$
Setting range $1 \mathrm{~s} ; \pm 8 \%$
Standard operation Rapid start
$\pm 0.045 \mathrm{~s} \quad \pm 0.015 \mathrm{~s}$
$\pm 0.09 \mathrm{~s} \quad \pm 0.06 \mathrm{~s}$
$\pm 0.54 \mathrm{~s} \quad \pm 0.51 \mathrm{~s}$
$\pm 0.5 \%$ related to the full scale value

1 timed and 1 instantaneous change-over contact
1 instantaneous and 1 timed NC contact,
1 instantaneous and 1 timed NO contact
Ag Cu
AC/DC 230 V
5 A
AC-15: $U_{\mathrm{e}} 230 \mathrm{~V} \mathrm{AC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: U 24 V DC, $I_{e} 2$ A
≤ 3600 switching cyclese/h
30×10^{6} switching cycles or
3×10^{4} motor operation hours
$\leq 30 \mathrm{~ms}$
$\leq 60 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 55/IP 20/IP 00
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$
D 2-6
KS 5102/6 \mid KS 5063/3
0.6 kg

V2, Z 2
-

Timer and switching relays

ON-delay DZ 74-2S L interface

ON-delay multi-range electromechanical timer relay

- Device for single voltage
- Function: ON-delay (AV)
- 1 setting range divided into 6 time ranges
- Contact assignment: 1 instantaneous and 1 timed NC contact, 1 instantaneous and 1 timed NO contact

96×96

General information

- The electromechanical timer relays are equipped with synchronous motors and solenoid clutches
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by a transparent rotary switch
- The countdown indicator moves during operation from the set time value towards zero.

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Function

Upon excitation of motor and solenoid the instantaneous contact is put into the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated and the motor is switched off. After de-excitation, the solenoid, time element and all contacts will switch into the OFF position. If a voltage interruption occurs during the countdown, the solenoid, instantaneous contact and time element will fall into the OFF position

Circuit diagram

KS 5155/2

Dimension diagram

Function diagram DZ 74-25 L

Energizing quantity
FD 0040
Instantaneous contact

Delayed contact
operating time
break time, must be > recovery time 1
break time, must be $>$ recovery time 2

Time ranges

Available setting ranges:
0.01 s to $\mathbf{3 0 h}$
divided into 6 time ranges

0.1	3
1	30
0.1	
1	30
0.1	3
1	30

0.02 s to 60 h

divided into 6 time ranges

0.2	\ldots	6 s
2	\ldots	60 s
0.2	\ldots	6 min
2	\ldots	60 min
0.2	\ldots	6 h
2	\ldots	60 h

Accessories

Female connector plate	B 5 or B9	for panel and surface mounting
Pin holder	B 7 or B8	for panel mounting
Adapter	BT 421	for rail mounting of the female connector plate B 5
Cover	DA 1	for panel cutout
Lockable cover V 2 Seal Z 2 for panel mounting		

Timer and switching relays
 ON-delay DZA 52-S L / DZA 53-S L / DZAN 52-S L/ DZA 52 L interface

ON-delay multi-range electromechanical timer relay

- Devices for single voltage
- Function: ON-delay (AV), DZAN 52-S L protected against power failure
- 1 setting range divided into 6 time ranges
- Contact assignment: DZA 52-S L = 1 timed and 1 instantaneous change-over contact DZAN 52-S L = 1 timed and 1 instantaneous change-over contact
DZA 53-S L = 2 timed change-over contacts and
1 instantaneous NO contact
DZA 52 L = 2 timed change-over contacts

72×72

(1) 민 (1)

General information

- The electromechanical timer relays are equipped with synchronous motors and solenoid clutches
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by a transparent rotary switch.
- The countdown indicator moves during operation from the set time towards zero.

Function

Upon excitation of motor and solenoid the instantaneous contact is put into the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated and the motor is switched off. After de-excitation, the solenoid, time element and all contacts will switch into the OFF position. If a voltage interruption occurs during the countdown, the solenoid, instantaneous contact and time element will fall into the OFF position

The timer relay protected against power failure DZAN 52-S \mathbf{L} has the same function as described above, but upon excitation the solenoid clutch is locked by a blocking pawl so that even in a no-volt condition the elapsed time is preserved. The countdown can be interrupted as often as desired. The instantaneous contact remains in the ON position even during voltage interruption. When the pre-set time has elapsed, the blocking pawl is released, the timed contacts are actuated and the motor is switched off.

Actuation by impulse: The timer relay protected against power failure can be actuated by an impulse applied to the clutch, as the locking action of the blocking pawl is immediate (separate motor and coil connections). The countdown starts when the motor is energized. After impulse actuation the instantaneous contact goes into the ON position until the countdown ends. When the time has elapsed, it falls back into the OFF position. The timed contact only opens for approx. 10 ms . The timed changeover contact cannot be switched into its closed position.

Resetting: Mechanical resetting to 0 is possible for these devices.

Resetting of DZAN 52-S L: Electrical and mechanical resetting to 0 is only possible for this device, if the mechanical interlock is released. If resetting is necessary after an interruption of the countdown, the resetting lever located on the front (right hand top corner) must be turned in the direction of the arrow.

Accessories

Female connector plate	B 5	for panel and surface mounting
Pin holder	B 7	for panel mounting
Adapter	BT 421	for rail mounting of the female connector plate B 5
Cover	DA 1	for panel cutout
Lockable cover Seal	V 4	

Circuit diagrams

DZA 52-S L, DZAN 52-S L

DZA 53-S L KS 5151/2

DZA 52 L
KS 5153/2

Time ranges

Available setting ranges:

0.1 s to 1000 s

divided into 6 time ranges
$0.1 \ldots 3 \mathrm{~s}$
$0.3 \ldots \quad 10 \mathrm{~s}$
1 ... 30 s
$3.3 \ldots 100 \mathrm{~s}$
$10 \ldots 300$ s
$33 \ldots 1000$ s

0.1 s to 30 h

divided into 6 time ranges
$0.1 \ldots \quad 3 \mathrm{~s}$
$1 \ldots 30 \mathrm{~s}$
$0.1 \ldots 3 \mathrm{~min}$
$1 \ldots 30 \mathrm{~min}$
$0.1 \ldots 3 \mathrm{~h}$
$1 \ldots 30 h$

0.2 s to 60 h

divided into 6 time ranges
$0.2 \ldots 6 \mathrm{~s}$
$2 \ldots 60 \mathrm{~s}$
$0.2 \ldots 6 \mathrm{~min}$
$2 \ldots 60 \mathrm{~min}$
$0.2 \ldots 6$ h
$2 \ldots 60 \mathrm{~h}$

Timer and switching relays
ON-delay DZA 52-S L / DZA 53-S L / DZAN 52-S L/ DZA 52 L

Function diagrams

DZA 53-S L

A1/A2
Energizing quantity
FD 0040
B1/B2 Instantaneous contact

15/18, 25/28 Delayed contact
15/16, 25/26
$\tau_{A}=\quad$ operating time
$t_{\mathrm{a}}=$ break time, must be $>$ returning time of the time element $s_{s}=$ closing time, must be $>$ minimum excitation time opening time, refers only to the NC contact, the NO
contact is not switched contact is not switched
operating time $\mathrm{t}_{\mathrm{A}}=\Sigma \mathrm{t}_{\mathrm{x}}$

$\mathrm{A} 1 / \mathrm{A} 2$	Supply voltage
$\mathrm{B} 1 / \mathrm{B} 2$	Energizing quantity
$15 / 18,25 / 28$	Delayed contact
$21 / 22,25 / 26$	

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- The relays have separate motor and solenoid connections which makes the following operating modes possible:

1. Time accumulation: By separate actuation of the solenoid clutch and the motor, elapsed time can be stored and/or various time segments accumulated.
2. Rapid start: Reduction of time dispersion to a minimum by keeping the motor constantly at operating voltage while only the solenoid clutch is de-energized and energized after the time has elapsed. Motor starting irregularities are thus avoided. For operating times above 60 s , the rapid start no longer has any effect on time dispersion.
3. Standard operation: Simultaneous excitation and de-excitation of solenoid clutch and motor. Recommended for operating times above 60 s .

- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching

Overview of devices/part numbers	
Type	Setting range
DZA 52-S L	$0.1 \mathrm{~s} \ldots 1000 \mathrm{~s}$
	$0.1 \mathrm{~s} \ldots 30 \mathrm{~h}$
	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$
DZAN 52-S L	$0.1 \mathrm{~s} \ldots 1000 \mathrm{~s}$
	$0.1 \mathrm{~s} \ldots 30 \mathrm{~h}$
	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$
DZA 53-S L	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$
DZA 52 L	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$

Rated voltage		Part No.	Std. Pack
AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.027.0210.0	1
AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.027.0030.0	1
AC 125-127 V	$50 / 60 \mathrm{~Hz}$	R2.027.0040.0	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.027.0090.0	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.027.0320.0	1
AC 110-115 V	$50 / 60 \mathrm{~Hz}$	R2.027.0270.0	1
AC 125-127 V	$50 / 60 \mathrm{~Hz}$	R2.027.0300.0	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.027.0070.0	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.027.0330.0	1
AC 42 V	$50 / 60 \mathrm{~Hz}$	R2.027.0170.0	1
AC 48 V	$50 / 60 \mathrm{~Hz}$	R2.027.0220.0	1
AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.027.0250.0	1
AC 125-127 V	$50 / 60 \mathrm{~Hz}$	R2.027.0240.0	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.027.0050.0	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.027.0280.0	1
AC 110-115 V	$50 / 60 \mathrm{~Hz}$	R2.027.0230.0	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.027.0190.0	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.027.0110.0	1
AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.027.0120.0	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.027.0080.0	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.027.0140.0	1
AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.027.0180.0	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.027.0020.0	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.027.0260.0	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	R2.027.0200.0	1
AC 110-115V	$50 / 60 \mathrm{~Hz}$	R2.027.0130.0	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	R2.027.0060.0	1

Timer and switching relays
 ON-delay DZA 52-S L / DZA 53-S L/DZAN 52-S L/ DZA 52 L interface

ON-delay single-range electromechanical timer relay for burner control system with TÜV Test Certificate

- Device for single voltage
- Function: ON delay (AV) for burner control system with TÜV Test Certificate
- 1 time range
- Contact assignment: 1 timed and 1 instantaneous change-over contact
72×72

General information

- Infinitely variable time setting within a range is selected by a transparent rotary switch.
- The countdown indicator moves during operation from the set time value towards zero.

Notes

- The jumper marked on the circuit diagram with a dotted line between terminals 16 and 24 must be connected by the user
- The use of this device version is permitted for safety times that may not be prolonged in case of device failure

Function

Upon excitation of motor and solenoid the geared axis is coupled with the time element, the instantaneous contact is put into the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated.

After de-excitation, the solenoid, time element and all contacts will switch into the OFF position.
If a voltage interruption occurs during the countdown, the solenoid, instantaneous contact and time element will fall into the OFF position.

Under the precondition that the timed and instantaneous contacts are switched in series, the electromechanical timer relay is permitted for use in steam tank control circuits designed according to the specification of the VdTÜV Direction Sheet No. 452. The function of the relay then corresponds to that of a long-time interval ON relay

Function diagram

DZR 12-S L

A1/A2 Energizing quantity Instantaneous contact

Delayed contact
15/16
perating time
$\mathrm{t}_{\mathrm{A}}=\quad$ break time, must be $>$ recovery time 1
$1_{1}=$ break time, must be $>$ recovery time 1

Circuit diagram

Dimension diagram

Accessories

Female connector plate	B 5		for panel and surface mounting for panel mounting
Pin holder	B 7		
Adapter	BT 421		for rail mounting of the female connector plate B 5
Cover	DA 1		for panel cutout
Lockable cover	$\vee 4$		
Seal	Z 1		for panel mounting
Time ranges			
Available setting ranges:			
0.03... 1 s		1	... 30 min
$0.1 \ldots 3 \mathrm{~s}$		2	... 60 min
$0.2 \ldots 6 \mathrm{~s}$		4	... 120 min
$0.4 \ldots 12 \mathrm{~s}$		0.1	... 3 h
$1 \ldots 30 \mathrm{~s}$		0.2	... 6 h
$2 \ldots 6 \mathrm{~h}$		0.4	.. 12 h
3.3 ... 100 s		0.8	... 24 h
$0.1 \ldots 3 \mathrm{~min}$		1	... 30 h
$0.2 \ldots 6 \mathrm{~min}$		2	... 60 h
$0.4 \ldots 12 \mathrm{~min}$			

Timer and switching relays

DZR 12-S L
Electromechanical timer relay for single voltage
Item 3.12: ON-delay timer relay according to the requirements of VdTÜV Direction
Sheet
No. 452 for limitation of the safety time
Pointer for operating time
FD 0040

See "Overview of devices"
ca. 3.2 VA / ca. 2.9 W
50 or 60 Hz
$0.8-1.1 \times \mathrm{U}_{\mathrm{N}}$
analog / 1
See "Overview of devices"
$\geq 250 \mathrm{~ms}$
$\geq 15 \% U_{N}$
yes

Setting range $1 \mathrm{~s} ; \pm 8 \%$
Setting range $3 \mathrm{~s} ; \pm 3 \%$
Setting range $6 \mathrm{~s} ; \pm 2 \%$
Setting range $\geq 10 \mathrm{~s} ; \pm 1.5 \%$
$\pm 0.045 \mathrm{~s}$
$\pm 0.09 \mathrm{~s}$
$\pm 0.54 \mathrm{~s}$
± 0.5 \% related to the full scale value
1 timed and 1 instantaneous change-over contact

Ag Cu

AC/DC 230 V
5 A
AC-15: $U_{e} 230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: U 24 V DC, $I_{e} 2$ A
≤ 3600 switching cyclese/h
30×10^{6} switching cycles or
3×10^{4} motor operation hours
$\leq 30 \mathrm{~ms}$
$\leq 60 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 55/IP 20/IP 00
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$
D 1-18
KS 5120/2
0.6 kg

B 5, B 7, BT 421, DA 1, V 4, Z 1

Timer and switching relays

interface

ON-delay multi-range electromechanical timer relay for burner control system with TÜV Test Certificate

- Device for single voltage
- Function: ON delay (AV) for burner control system with TÜV Test Certificate
- 1 setting range divided into 5 or 6 time ranges
- Contact assignment: 1 timed and 1 instantaneous change-over contact

Function

Upon excitation of motor and solenoid the geared axis is coupled with the time element, the instantaneous contact is put into the ON position and the countdown starts. When the pre-set time has elapsed, the time contact is actuated.

After de-excitation, the solenoid, time element and all contacts will switch into the OFF position. If a voltage interruption occurs during the countdown, the solenoid, instantaneous contact and time element will fall into the OFF position.

Under the precondition that the timed and instantaneous contacts are switched in series, the electromechanical timer relay is permitted for use in steam tank control circuits designed according to the specification of the VdTÜV Direction Sheet No. 452 The function of the relay then corresponds to that of a long-time interval ON relay.

Notes

- The jumper marked on the circuit diagram with a dotted line between terminals 16 and 24 must be connected by the user
- The use of this device version is permitted for safety times that may not be prolonged in case of device failure

Time ranges

Available setting ranges

0.3 s to 100 s

divided into 5 time ranges
$0.03 \ldots 1$
$0.1 \ldots 3 \mathrm{~s}$
$0.3 \ldots \quad 10 \mathrm{~s}$
$1 \ldots 30 \mathrm{~s}$
$3.3 \ldots 100 \mathrm{~s}$

0.1 s to 1000 s

divided into 6 time ranges

0.1	\ldots	3 s
0.3	\ldots	10 s
1	\ldots	30 s
3.3	\ldots	100 s
10	\ldots	300 s
33	\ldots	1000 s

0.1 s to 30 h
divided into 6 time ranges
$0.1 \ldots 3 \mathrm{~s}$
$1 \ldots 30 \mathrm{~s}$
1 ... 30 min
$0.1 \ldots 3 \mathrm{~h}$
$1 \ldots 30 h$

0.2 s to 60 h

divided into 6 time ranges
$0.2 \ldots 6 \mathrm{~s}$
$2 \ldots 60$ s
$0.2 \ldots 6 \mathrm{~min}$
60 min
6 h
60 h

Circuit diagram

General information

- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by a transparent rotary switch.
- The countdown indicator moves during operation from the set time value towards zero.

Timer and switching relays

ON-delay DZR 52-S L

Function diagram		Dimension diagram		
	A1/A2 Energizing quantity FD 0040 $21 / 24$ Instantaneous contact $21 / 22$ $15 / 18$ Delayed contact $15 / 16$ $\mathrm{t}_{\mathrm{A}}=$ operating time $\mathrm{t}_{1}=$ break time, must be $>$ recovery time 1 $\mathrm{t}_{2}=$ break time, must be $>$ recovery time 2			D 1-18
Overview of devices/part numbers				
Type	Setting range	Rated voltage	Part No.	Std. Pack
DZR 52-S L	$0.03 \mathrm{~s} \ldots 100 \mathrm{~s}$	AC 110-115 V 50 Hz	R2.024.1740.0	1
		AC $230 \mathrm{~V} \quad 50 \mathrm{~Hz}$	R2.024.0070.0	1
	0.1 s ... 1000 s	AC $110-115 \mathrm{~V} \quad 50 \mathrm{~Hz}$	R2.024.1820.0	1
		AC 230 V , 50 Hz	R2.024.1310.0	1
	$0.1 \mathrm{~s} \ldots 30 \mathrm{~h}$	AC $24 \mathrm{~V} \quad 50 \mathrm{~Hz}$	R2.024.1400.0	1
		AC $110-115 \mathrm{~V} \quad 50 \mathrm{~Hz}$	R2.024.1880.0	1
		AC $110-115 \mathrm{~V} \quad 60 \mathrm{~Hz}$	R2.024.0200.0	1
		AC $230 \mathrm{~V} \quad 50 \mathrm{~Hz}$	R2.024.0860.0	1
	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$	AC 24 V , 50 Hz	R2.024.1570.0	1
		AC 110-115 V 50 Hz	R2.024.1730.0	1
		AC $110-115 \mathrm{~V} \quad 60 \mathrm{~Hz}$	R2.024.0110.0	1
		AC 230 V , 50 Hz	R2.024.1150.0	1

Timer and switching relays

ON-delay DZR 52-S L interface

DZR 52-S L

Electromechanical timer relay for single voltage
Item 3.12: ON-delay timer relay according to the requirements of VdTÜV Direction Sheet
No. 452 for limitation of the safety time
Pointer for operating time
FD 0040
See "Overview of devices"
ca. 3.2 VA/ca. 2.9 W
50 or 60 Hz
$0.8-1.1 \times U_{N}$
analog / 6 or 5
See table "Time ranges"
$\geq 250 \mathrm{~ms}$
$\geq 15 \% U_{N}$
yes
Setting range $1 \mathrm{~s} ; \pm 8 \%$
Setting range $3 \mathrm{~s} ; \pm 3 \%$
Setting range $6 \mathrm{~s} ; \pm 2 \%$
Setting range $\geq 10 \mathrm{~s} ; \pm 1.5 \%$
± 0.045 s
$\pm 0.09 \mathrm{~s}$
$\pm 0.54 \mathrm{~s}$
$\pm 0.5 \%$ related to the full scale value

1 timed and 1 instantaneous change-over contact
Ag Cu
AC/DC 230 V
5 A
AC-15: $U_{\mathrm{e}} 230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: U 24 V DC, $I_{e} 2$ A
≤ 3600 switching cyclese/h
30×10^{6} switching cycles or
3×10^{4} motor operation hours
$\leq 30 \mathrm{~ms}$
$\leq 60 \mathrm{~ms}$

according to DIN VDE 0110-1:04.97

4 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 55/IP 20/IP 00
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$
D 1-18
KS 5120/2
0.6 kg

B 5, B 7, BT 421, DA 1, V 4, Z 1

Timer and switching relays

 OFF-delay DZ 521
OFF-delay multi-range electromechanical timer relay

- Device for single voltage
- Function: OFF-delay (RV)
- 1 setting range divided into 5 or 6 time ranges
- Contact assignment: 1 timed and 1 instantaneous change-over contact
72×72

(1)

General information

- The electromechanical timer relay is equipped with synchronous motor and solenoid clutch.
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by a transparent rotary switch.
- The countdown indicator moves during operation from the set time value towards zero.

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Function

Upon application of the supply voltage at the motor and of the energizing quantity at the coil, the timed and the instantaneous contacts will switch. When the coil is de-energized, the countdown begins and the instantaneous contact falls back into the OFF position.

The countdown can be interrupted as often as desired without clearing the elapsed time. When the pre-set time has elapsed, the time contact falls back into the OFF position.

Time accumulation: Only by actuating the motor are the resulting operating times accumulated, meaning that the elapsed times are stored.

Resetting: If resetting is necessary after an interruption of the countdown, the time selector must be turned beyond the 0 marking to the end stop.

Circuit diagram

Time ranges
Available setting ranges:
0.3 s to 100 s
divided into 5 time ranges
$0.03 \ldots 1$ s
$0.1 \ldots 3 \mathrm{~s}$
$0.3 \ldots 10 \mathrm{~s}$
$1 \ldots 30 \mathrm{~s}$
$3.3 \ldots 100 \mathrm{~s}$

0.1 s to 1000 s

divided into 6 time ranges
$0.1 \ldots 3 \mathrm{~s}$
$0.3 \ldots 10 \mathrm{~s}$
1 ... 30 s
$3.3 \ldots 100 \mathrm{~s}$
10 ... 300 s
$33 \ldots 1000$ s
0.1 s to 30 h
divided into 6 time ranges
0.1 ... 3 s
$1 \ldots 30 \mathrm{~s}$
1 ... 30 min
$0.1 \ldots 3 \mathrm{~h}$
$1 \ldots 30 \mathrm{~h}$

0.2 s to 60 h

divided into 6 time ranges
$0.2 \ldots 6 \mathrm{~s}$
$2 \ldots 60 \mathrm{~s}$
$0.2 \ldots 6 \mathrm{~min}$
60 min
6 h
60 h

851

Timer and switching relays

OFF-delay DZ 521 L

 interface

Timer and switching relays OFF-delay DZ 521 L

Technical data
Function type according to DIN VDE 0435 sec. 110:04.89
Function display
Function diagram
Power supply circuit
Rated voltage U
Rated consumption: motor at 50 Hz and UN (AC)
Rated consumption: coil at 50 Hz and UN (AC)
Rated frequency
Operating voltage range
Time circuit
Time setting / number of time ranges
Available setting ranges
Recovery time
Minimum ON time
Release value
Parallel loads permissible
Internal half-wave rectification
Error (average related to the full scale value)
Protection degree housing/terminal according to DIN VDE 0470 sec. 1:11.92
Emitted interference
Noise immunity
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals
Dispersion
Setting range $0.03-1 \mathrm{~s}$
Setting range $0.3-10 \mathrm{~s}$
Setting range $3.3-100 \mathrm{~s}$
Rested impulse voltage
Response time of pollution
Release time
Creepage distances and clearances between the circuits
Contact assignment
Contact material
Rated operating voltage Un
Max. continuous current I_{n}
Application category according to EN 60947-5-1:1991
Permissible switching frequency
Mechanical life

DZ 521 L

Electromechanical timer relay for single voltage
Item 3.17: OFF-delay additive timer relay
Pointer for operating time
FD 0012

See "Overview of devices"
ca. 1.3 VA / ca. 1.1 W
ca. 4.5 VA / ca. 3.8 W
50 and 60 Hz selectable on the device
$0.8-1.1 \times U_{N}$
analog / 6 or 5
See "Overview of devices"

250 ms

$\geq 15 \% U_{N}$
yes
yes
during standard operation
Setting range > $6 \mathrm{~s} ; \pm 1.5 \%$
Setting range $6 \mathrm{~s} ; \pm 2 \%$
Setting range $3 \mathrm{~s} ; \pm 3 \%$
Standard operation Rapid star
$\pm 0.045 \mathrm{~s} \quad \pm 0.015$
$\pm 0.09 \mathrm{~s} \quad \pm 0.06 \mathrm{~s}$
$\pm 0.54 \mathrm{~s} \quad \pm 0.51 \mathrm{~s}$
$\pm 0.5 \%$ related to the full scale value
1 timed and 1 instantaneous change-over contact
AgCu
Un AC/DC 230 V
In 5 A
AC-15: $U_{\mathrm{e}} 230 \mathrm{VAC}, I_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: U 24 V DC, $I_{e} 2$ A
≤ 3600 switching cyclese/h
30×10^{6} switching cycles or
3×10^{4} motor operation hours
$\leq 30 \mathrm{~ms}$
$\leq 60 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 30/IP 20
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
-10 to $+55^{\circ} \mathrm{C}$
D 1-18
KS 5125/3
0.6 kg

B 5, B 7, BT 421, DA 1, V 4, Z 1
(1)

Timer and switching relays

OFF-delay DZA 521 L

 interface
OFF-delay multi-range electromechanical timer relay

- Device for single voltage
- Function: OFF-delay (RV)
- 1 setting range divided into 6 time ranges
- Contact assignment: 1 timed and

1 instantaneous change-over contact
72×72

(G1) (1)

General information

- The electromechanical timer relay is equipped with synchronous motor and solenoid clutch.
- The time ranges are set on the front through selector switches. Infinitely variable time setting within a range is selected by a transparent rotary switch
- The countdown indicator moves during operation from the set time towards zero.

Function

Upon application of the supply voltage at the motor and of the energizing quantity at the coil, the timed and the instantaneous contacts will switch. When the coil is de-energized, the countdown begins and the instantaneous contact falls back into the OFF position. The countdown can be interrupted as often as desired without clearing the already elapsed time. When the pre-set time has elapsed, the time contact falls back into the OFF position.
Time accumulation: Only by actuating the motor are the resulting operating times accumulated, meaning that the elapsed times are stored.
Resetting: If resetting is necessary after an interruption of the countdown, the time selector must be turned beyond the 0 marking to the end stop.

Notes

- With a frequency switch located at the bottom of the housing the relay can be adapted to the relevant frequency (50 or 60 Hz). The factory pre-setting is 50 Hz .
- Maximum repeatability is achieved with multi-range models by selecting the shortest possible time range.
- The time range on the devices has to be selected in the OFF position to avoid possible timing errors and incorrect contact switching.

Time ranges

Available setting ranges:
0.1 s to 30 h
divided into 6 time ranges
0.1... 3 s
$1 . .30 \mathrm{~s}$
0.1... 3 min
1... 30 min
0.1.. 3 h
$1 \ldots 30 \mathrm{~h}$
0.2 s to 60 h
divided into 6 time ranges
$0.2 \ldots 6 \mathrm{~s}$
$2 \ldots 60 \mathrm{~s}$
0.2... 6 min
2... 60 min
0.2... 6 h
$2 \ldots 60 \mathrm{~h}$

Circuit diagram

Dimension diagram

Technical data

Function type according to DIN VDE 0435 sec . 110:04.89

Function display
 Function diagram

Power supply circuit
Rated voltage U_{N}
Rated consumption: motor at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$
Rated consumption: coil at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$
Rated frequency
Operating voltage range

Time circuit

Time setting / number of time ranges
Available setting ranges
Recovery time
Minimum ON time
Release value
Parallel loads permissible
Internal half-wave rectification
Error (average related to the full scale value)

Dispersion

Setting range $0.03-1 \mathrm{~s}$
Setting range $0.3-10 \mathrm{~s}$
Setting range $3.3-100 \mathrm{~s}$
Max. operating time $\geq 3 \mathrm{~min}$

Output circuit

Contact assignment
Contact material
Rated operating voltage Un
Max. continuous current I_{n}
Application category according to EN 60947-5-1:1991
Permissible switching frequency
Mechanical life

Response time

Release time

General information

Creepage distances and clearances between the circuits
Rated impulse voltage
overvoltage category
Degree of pollution
Rated voltage
Test voltage Ueff 50 Hz according to DIN VDE 0110-1, table A. 1
Protection degree housing/terminals in according with DIN VDE 0470 sec. 1:11.92
Emitted interference
Noise immunity
Ambient temperature, operating range
Dimension diagram
Circuit diagram
Weight
Accessories
Approvals

Overview of devices/part numbers	Setting range	
Type	$0.1 \mathrm{~s} \ldots 30 \mathrm{~h}$	
DZA 521 L		
	$0.2 \mathrm{~s} \ldots 60 \mathrm{~h}$	

DZA 521 L
Electromechanical timer relay for single voltage
Item 3.17: OFF-delay additive timer relay
Pointer for operating time
FD 0012
See "Overview of devices"
ca. 1.3 VA/ca. 1.1 W
ca. 1.0 VA/ca. 0.9 W
50 and 60 Hz selectable on the device
$0.8-1.1 \times U_{N}$
analog/5 or 6
See table "Time ranges"
$\leq 250 \mathrm{~ms}$
150 ms
$\geq 15 \% U_{N}$
yes
yes
during standard operation:
Setting range > $6 \mathrm{~s} ; \pm 1.5 \%$
Setting range $6 \mathrm{~s} ; \pm 2 \%$
Setting range $3 \mathrm{~s} ; \pm 3 \%$
Standard operation Rapid start
$\pm 0.045 \mathrm{~s} \quad \pm 0.015 \mathrm{~s}$
$\pm 0.09 \mathrm{~s} \quad \pm 0.06 \mathrm{~s}$
$\pm 0.54 \mathrm{~s} \quad \pm 0.51 \mathrm{~s}$
$\pm 0.5 \%$ related to the full scale value
1 timed and 1 instantaneous change-over contact
Ag Cu
AC/DC 230 V
5 A
AC-15: $U_{\mathrm{e}} 230 \mathrm{VAC}, \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
DC-13: U 24 V DC, $1 \mathrm{I}_{\mathrm{e}} 2 \mathrm{~A}$
≤ 3600 switching cyclese/h
30×10^{6} switching cycles or
3×10^{4} motor operation hours
$\leq 25 \mathrm{~ms}$
$\leq 80 \mathrm{~ms}$
according to DIN VDE 0110-1:04.97
4 kV
III
3 outside 2 inside
AC 250 V
2.21 kV

IP 30/IP 20
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
$-10-+55^{\circ} \mathrm{C}$
D 1-25
KS 5125/3
0.4 kg

B 5, B 7, BT 421, DA 1, V 4, Z 1
(ㄷ) 딛

Rated voltage		Part No.	Std. Pack
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.027 .0290 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.027 .0310 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.027 .0100 .0$	1
AC 24 V	$50 / 60 \mathrm{~Hz}$	$R 2.027 .0160 .0$	1
AC $110-115 \mathrm{~V}$	$50 / 60 \mathrm{~Hz}$	$R 2.027 .0150 .0$	1
AC 230 V	$50 / 60 \mathrm{~Hz}$	$R 2.027 .0010 .0$	1

Timer and switching relays

 Discontinued models of electromechanical timer and switching relays interface| Discontinued types | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Rated voltage | | Specification | Part No. | Std. Pack | Successor type |
| DZR 12-S L-231 | AC 24 V | 50 Hz | 30 min | R2.024.1610.0 | 1 | - |
| DZR 13-S L-189/1 | AC 230 V | 50 Hz | 60 min | R2.024.1840.0 | 1 | - |
| DZR 13-S L-189/2 | AC 230 V | 50 Hz | 120 min | R2.024.1270.0 | 1 | - |
| DZR 13-S L-196/1 | AC 230 V | 50 Hz | 600 min | R2.024.1230.0 | 1 | - |
| DZR 13-S L-196/2 | AC 230 V | 50 Hz | 120 min | R2.024.1290.0 | 1 | - |
| DZR 13-S L-196/3 | AC 230 V | 50 Hz | 24 h | R2.024.1240.0 | 1 | - |
| DZR 13-S L-196/5 | AC 230 V | 50 Hz | 26 h | R2.024.1260.0 | 1 | - |
| DZR 13-S L-196/8 | AC 230 V | 50 Hz | 72 h | R2.024.1250.0 | 1 | - |
| MSP 33 | AC 24 V | 50 Hz | - | R2.152.0010.0 | 1 | - |
| | AC 230 V | 50 Hz | - | R2.152.0130.0 | 1 | - |
| MSP 34 | AC 230 V | 50 Hz | - | R2.152.0020.0 | 1 | SSP |
| MZ 54 | AC 24 V | $50 / 60 \mathrm{~Hz}$ | 60 h | R2.011.0050.0 | 1 | - |
| | AC 110-115V | $50 / 60 \mathrm{~Hz}$ | 60 h | R2.011.0030.0 | 1 | - |
| | AC 230 V | $50 / 60 \mathrm{~Hz}$ | 60 h | R2.011.0020.0 | 1 | - |
| MZ 54 F | AC 110-115V | $50 / 60 \mathrm{~Hz}$ | 60 h | R2.011.0040.0 | 1 | - |
| | AC 230 V | $50 / 60 \mathrm{~Hz}$ | 60 h | R2.011.0010.0 | 1 | - |
| PSW 82 | AC 110 V | $50 / 60 \mathrm{~Hz}$ | 29 s, 615 s | R2.073.0010.0 | 10 | - |
| PSW 84 | AC 110 V | $50 / 60 \mathrm{~Hz}$ | 25 s, 357 s | R2.073.0020.0 | 10 | - |
| SSP 43 | DC 24 V | - | - | R2.152.0100.0 | 1 | KSP 12 |
| | DC 60 V | - | - | R2.152.0150.0 | 1 | |
| | DC 110 V | - | - | R2.152.0160.0 | 1 | |
| | DC 220 V | - | - | R2.152.0120.0 | 1 | |
| SSP 64 | DC 24 V | - | - | R2.153.0060.0 | 1 | KSP 12 |
| | DC 60 V | - | - | R2.153.0120.0 | 1 | |
| | DC 110 V | - | - | R2.153.0150.0 | 1 | |
| | DC 220 V | - | - | R2.153.0110.0 | 1 | |

Dimensions in mm
Dimensions in mm

Pin holder AT8-DF8S Std. Pack		Female connector plate B 5	Std. Pack
Function	Pin holder for DIN-rail mounting	Function	Female connector for panel and surface mounting
		Material	Noryl, glass fiber reinforced (PPO mod.)
Degree of protection according to DIN VDE 0470 sec . 1:11.92	Front: IP 20 Terminals: IP 10	Flammability	according to UL Standard 94 V-0
		Degree of protection according to DIN VDE 0470 sec . 1:11.92	Front: IP 20 Terminals: IP 10
Connections	Tab connector with self-lifting connection washer Conductor cross section		
		Connections	Screw terminals Tab connector with self-lifting connection washer
Conductor cross section solid fine-stranded with ferrules	$\begin{aligned} & 1 \text { or } 2 \times 0.75-2.5 \mathrm{~mm}^{2} \\ & 1 \text { or } 2 \times 0.5-1.5 \mathrm{~mm}^{2} \end{aligned}$		
		Conductor cross section solid fine-stranded with ferrules	$\begin{aligned} & 1 \text { or } 2 \times 0.75-2.5 \mathrm{~mm}^{2} \\ & 1 \text { or } 2 \times 0.5-1.5 \mathrm{~mm}^{2} \end{aligned}$
Weight	0.1 kg		
Part No.	R9.211.0060.0 1	Weight	0.075 kg
		Part No.	R9.211.0080.0 1

Dimensions in mm
Dimensions in mm

| Pin holder AT8-RR | Pin holder, connectable on both sides |
| :--- | :--- |$|$| Function | Front: IP 20 |
| :--- | :--- |
| Degree of protection
 according to DIN VDE 0470 sec. 1:11.92 | Terminals: IP 10 |
| Connections | Screw terminals
 Tab connector with self-lifting
 connection washer |
| Conductor cross section
 solid
 fine-stranded with ferrules | 1 or $2 \times 0.75-2.5 \mathrm{~mm}^{2}$
 1 or $2 \times 0.5-1.5 \mathrm{~mm}^{2}$ |
| Weight | 0.1 kg |

Pin holder B 7	Pin holder for panel mounting
Function	Nackl
Material	according to UL Standard 94 V-0
Flammability	Front: IP 20
Degree of protection according to DIN VDE 0470 sec. 1:11.92	
Terminals: IP 10	
Connections	Screw terminals Tab connector with self-lifting connection washer
Conductor cross section solid fine-stranded with ferrules	1 or $2 \times 0.75-2.5 \mathrm{~mm}^{2}$ 1 or $2 \times 0.5-1.5 \mathrm{~mm}^{2}$
Weight	0.05 kg
Part No.	R9.211.0200.0

Timer and switching relays
 Accessories interface

Dimensions in mm
Dimensions in mm

Dimensions in mm

Remote potentiometer FP 10k Std. Pack		Sealable cover V 5 Function	Std. Pack
Function	Remote potentiometer for time setting		Lockable cover, transparent
Material	Polybutylenterephthalate (PBT)	Material	Polycarbonate (PC)
Flammability	according to UL Standard 94 V-0	Flammability	according to UL Standard 94 V-0
Degree of protection according to DIN VDE 0470 sec. 1:11.92	Front: IP 54	Weight	0.07 kg
	Terminals: IP 10	Part No.	R9.211.0300.0 1
Connections	Screw terminals Tab connector with self-lifting connection washer		
Conductor cross section solid fine-stranded with ferrules	$\begin{aligned} & 1 \text { or } 2 \times 0.75-2.5 \mathrm{~mm}^{2} \\ & 1 \text { or } 2 \times 0.5-1.5 \mathrm{~mm}^{2} \end{aligned}$		
Weight	0.025 kg		
Part No.	R9.211.0010.0 1		

Timer and switching relays

Accessories

Dimensions in mm
Dimensions in mm

Dimensions in mm

Timer and switching relays
 Accessories interface

Dimensions in mm

Female connector plate B 4	Std. Pack	Pin holder B 7	Std. Pack
Function	Female connector for panel and surface mounting	Function	Pin holder for panel mounting
Material	Polybutylenterephthalate (PBT)	Material	Noryl, glass fiber reinforced (PPO mod.)
Flammability	according to UL Standard 94 V-0	Flammability	according to UL Standard 94 V-0
Degree of protection	Front: IP 20	Degree of protection	Front: IP 20
according to DIN VDE 0470 sec. 1:11.92	Terminals: IP 10	according to DIN VDE 0470 sec. 1:11.92	Terminals: IP 10
Connections	Screw terminals	Connections	Screw terminals
	Tab connector with self-lifting connection washer		Tab connector with self-lifting connection washer
Conductor cross section		Conductor cross section	
solid	1 or $2 \times 0.75-2.5 \mathrm{~mm}^{2}$	solid	1 or $2 \times 0.75-2.5 \mathrm{~mm}^{2}$
fine-stranded with ferrules	1 or $2 \times 0.5-1.5 \mathrm{~mm}^{2}$	fine-stranded with ferrules	1 or $2 \times 0.5-1.5 \mathrm{~mm}^{2}$
Weight	0.055 kg	Weight	0.05 kg
Part No.	R9.211.0290.0 1	Part No.	R9.211.0200.0 1

Female connector plate B 5	Std. Pack	Pin holder B 8	Std. Pack
Function	Female connector for panel and surface mounting	Function	Pin holder for panel mounting
Material	Noryl, glass fiber reinforced (PPO mod.)	Material	Noryl, glass fiber reinforced (PPO mod.)
Flammability	according to UL Standard 94 V-0	Flammability	according to UL Standard 94 V-0
Degree of protection	Front: IP 20	Degree of protection	Front: IP 20
according to DIN VDE 0470 sec. 1:11.92	Terminals: IP 10	according to DIN VDE 0470 sec. 1:11.92	Terminals: IP 10
Connections	Screw terminals	Connections	Screw terminals
	Tab connector with self-lifting connection washer		Tab connector with self-lifting connection washer
Conductor cross section	connection washer	Conductor cross section	
solid	1 or $2 \times 0.75-2.5 \mathrm{~mm}^{2}$		1 or $2 \times 0.75-2.5 \mathrm{~mm}^{2}$
fine-stranded with ferrules	1 or $2 \times 0.5-1.5 \mathrm{~mm}^{2}$	fine-stranded with ferrules	1 or $2 \times 0.5-1.5 \mathrm{~mm}^{2}$
Weight	0.075 kg	Weight	0.05 kg
Part No.	R9.211.0080.0 1	Part No.	R9.211.0250.0 1

wieland

Timer and switching relays

Accessories

Female connector plate B 9	Std. Pack	Cover DA 1	Std. Pack
Function Material Flammability Degree of protection according to DIN VDE 0470 sec. 1:11.92 Connections Conductor cross section solid fine-stranded with ferrules Weight Part No.	Female connector for panel and surface mounting Noryl, glass fiber reinforced (PPO mod.) according to UL Standard 94 V-0 Front: IP 20 Terminals: IP 10 Screw terminals Tab connector with self-lifting connection washer 1 or $2 \times 0.75-2.5 \mathrm{~mm}^{2}$ 1 or $2 \times 0.5-1.5 \mathrm{~mm}^{2}$ 0.055 kg R9.211.0240.0	Function Material Flammability Weight Standard pack Part No.	Cover for panel cutout Polycarbonate (PC) according to UL Standard 94 V-0 0.03 kg 10 pieces R9.211.0230.0

Dimensions in mm

Dimensions in mm

Adapter BT 421	Std. Pack	Sealable cover V 2	Std. Pack
Function Standard pack Part No.	Adapter for rail mounting of the female connector plates B 5 and B 9 10 pieces R9.211.0260.0	Function Material Flammability Weight Part No.	Lockable cover Polycarbonate (PC) according to UL Standard 94 V-0 0.11 kg R9.211.0270.0

Timer and switching relays
 Accessories interface

Dimensions in mm
Dimensions in mm

Sealable cover V 3 Std. Pack		Gasket $\mathbf{Z} \mathbf{1}$	
Function Material Flammability Weight Part No.	Lockable cover Polycarbonate (PC) according to UL Standard 94 V-0 0.1 kg R9.211.0280.0	Function Standard pack Part No.	Gasket for panel mounting 5 pieces R9.211.0190.0

* Cutout in the frame

Sealable cover V 4	Std. Pack	Gasket Z 2		Std. Pack		
Function Material Flammability	Lockable cover Polycarbonate (PC) according to UL Standard 94 V-0 0.11 kg R9.211.0170.0	Function Part No.		Gasket for panel mounting R9.211.0180.0		1
Weight		Accessories for discontinued types				
Part No.		Discontinued type	Part No. S	Std. Pack	Successor type	
		DA 1-101	R9.211.0030.0	10	-	
		K 1-5/5	R9.210.0020.0	1	NGG housings	
		SN 18	R9.216.0010.0	1	-	
		V 4-101	R9.211.0020.0	1	-	

Timer and switching relays
Electronic contactors

Electronic three-phase contactor
The semiconductor relays can also switch inductive field devices such as motors with zero voltage feed-through on or off

Dimensions (mm): W $\times \mathrm{H} \times \mathrm{D}$
$45 \times 75 \times 110$

cemos-SSAC3-400 V-2 A Electronic three-phase contactor

Description	Type	Part No.	Std. Pack
Electronic three phase contactor			
Electronic reversing contactor	cemos-SSAC3-400V-2A	80.020.6000.0	1
Input			
Operating voltage	24 V AC/DC +10\%/-15\%		
Nominal input current AC/DC	ca. $44 / 21 \mathrm{~mA}$		
Nominal input power	ca. $1 \mathrm{VA} / 0.5 \mathrm{~W}$		
Voltage range for "OFF"	$0 . .10 \mathrm{~V}$ AC/DC		
Interlocking of control inputs			
Reversing time (delay) left/right			
Protection circuit of input	Overvoltage protection		
Status display	Green LED		
Output			
Nominal switching voltage	400 V AC		
Maximum switching voltage	500 V AC		
Minimum switching voltage	100 V AC		
Peak reverse voltage	1200 Vs		
Critical rate of rise voltage	$500 \mathrm{~V} / \mathrm{\mu s}$		
Critical on-state voltage	1.1 V		
Maximum current	2 A		
Minimum current	150 mA		
Maximum peak current (10 ms)	230 A		
Typical residual current	6 mA		
Power factor $\cos \varphi$	≥ 0.5		
Zero-sequence voltage switch	yes		
$1^{2} \mathrm{t}$ value	$265 \mathrm{~A}^{2} \mathrm{~s}$		
Semiconductor fuse	FF		
Maximum motor power	0.75 W		
Protection circuit of output	RCV circuit		
Maximum pickup delay	10 ms		
Maximum dropout delay	10 ms		
Maximum switching frequency, resistive	10 Hz		
Maximum switching frequency, inductive	5 Hz		
Isolation voltage between input/output	$4 \mathrm{kV}_{\text {eff }}$		
Ambient temperature	$0^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}$		
Storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C}$		
Type of protection/mounting rail	IP 20/TS 35		
Wire range			
finely stranded	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$		
single core	$0.5 \mathrm{~mm}^{2}-4 \mathrm{~mm}^{2}$		
Position of mounting rail	horizontal		
Norms/specifications	VDE 0160		
Emitted interference	EN 50081		
Interference immunity	EN 50082		

Timer and switching relays
 Electronic contactors interface

Electronic reversing contactor

The electronic reversing contactor switches three-phase motors on or off and also reverses the direction of rotation.

It also provides characteristics such as mutual ON interlock as well as a fixed minimum change-over time between clockwise and counterclockwise rotation

Dimensions (mm): W x H x D
$45 \times 75 \times 110$

cemos-SSPHC-400 V - 2.5 A Electronic reversing contactor

Description	Type	Part No.	Box Oty
Electronic reversing contactor	cemos-SSPHC-400V-2.5A	80.020.6003.0	1
Input			
Operating voltage	24 V AC/DC +10\%/-15\%		
Nominal input current AC/DC	ca. 23 mA		
Nominal input power	ca. 0.6 W		
Voltage range for "OFF"	$0 . .10 \mathrm{~V}$ DC		
Interlocking of control inputs	yes		
Reversing time (delay) left/right	ca. 100 ms		
Protection circuit of input	Overvoltage protection		
Status display	Green LED		
Output			
Nominal switching voltage	400 V AC		
Maximum switching voltage	500 V AC		
Minimum switching voltage	100 V AC		
Peak reverse voltage	1200 Vs		
Critical rate of rise voltage	$500 \mathrm{~V} / \mu \mathrm{s}$		
Critical on-state voltage	1.1 V		
Maximum current	2.5 A		
Minimum current	150 mA		
Maximum peak current (10 ms)	230 A		
Typical residual current	6 mA		
Power factor $\cos \varphi$	≥ 0.5		
Zero-sequence voltage switch	yes		
${ }^{2} \mathrm{t}$ value	$265 \mathrm{~A}^{2} \mathrm{~s}$		
Semiconductor fuse	FF		
Maximum motor power	1.1 kW		
Protection circuit of output	RCV circuit		
Maximum pickup delay	10 ms		
Maximum dropout delay	10 ms		
Maximum switching frequency, resistive	10 Hz		
Maximum switching frequency, inductive	2 kHz		
Isolation voltage between input/output	4 kV eff		
Ambient temperature	$0^{\circ} \mathrm{C}-+50{ }^{\circ} \mathrm{C}$		
Storage temperature	$-25^{\circ} \mathrm{C}-+55^{\circ} \mathrm{C}$		
Type of protection/mounting rail	IP 20/TS 35		
Wire range			
finely stranded single core	$\begin{aligned} & 0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} \\ & 0.5 \mathrm{~mm}^{2}-4 \mathrm{~mm}^{2} \end{aligned}$		
Position of mounting rail	horizontal		
Norms/specifications	VDE 0160		
Emitted interference	EN 50081		
Interference immunity	EN 50082		

Timer and switching relays

Electronic contactors

Electronic contactors

Circuit diagrams and Derating curves

Electronic three-phase contactor

Derating of three phase-contactor

Electronic three-phase contactor and Electronic reversing contactor

Electronic reversing contactor

Reversing contactor in static mode

Reversing contactor in dynamic mode

(1) Curve dependent on motor torque

[^0]: Overview of devices / Part numbers
 Type
 NGM 1003

 ## Rated voltage

 \square

[^1]: ## Notes

 The device is designed for multi-voltage. Phase L1 or L+ must be connected to terminal A 1 ; neutral conductor N or M must be connected to terminal A 2 .

[^2]: A1/A2
 B1
 B2
 15/18 (25/28)
 15/16 (22/26)
 $21 / 24$
 21/22
 Supply voltage
 Energizing quantity, LED (B1) red
 Additive operation, LED (B2) red Delayed contact
 LED (K) red
 Instantaneous change-over contact
 $\mathrm{t}_{\mathrm{WE}}=$ selected interval 0 N time
 Program switches
 (1 instantaneous and 1 timed change-over contact)

[^3]: ${ }^{1}$ Devices with (\$1) approvals

