Single Shot

Q2F Series

FEATURES

- 100\% functionally tested
- Solid state digital timing
- Time delays to 10 hours standard
- 20:1 maximum to minimum timing ratio
- Low cost
- Compact size
- Superior transient protection
- Flame-retardant and solvent-resistant polyester thermoplastic housing
- बतI ©제 File \#E65038

Operating Logic: Input voltage is applied to the timer at all times. Upon a momentary or maintained closure of a normally open isolated start switch, the load energizes and the time delay starts. At the end of the preset time delay, the load de-energizes and the timer is ready for a new timing cycle. (Start switch supplied by customer)
Note: 1) Remote start switch leads should be shielded when running close to other wires; 2) Remote potentiometer leads should be shielded when running close to other wires; 3) The minimum time setting on external resistor-adjustable time delay relays is obtained by shorting together the external resistor terminals of the relay; 4) The maximum time setting within tolerance limits is obtained by using a 1 megohm resistor; 5) Timing values between the minimum and maximum limits are linear with resistance within 10%; 6) Recommend $1 / 4 \mathrm{~W}$ minimum resistor be used.

ORDERING INFORMATION

TIME RANGE	12 VDC $\pm 10 \%$	24 VAC/DC $\pm 10 \%$	120 VAC $\pm 10 \%$	240 VAC $\pm 10 \%$
. 05 to 1 sec .	Q2F-00001-326	Q2F-00001-327	Q2F-00001-321	Q2F-00001-325
. 25 to 5 sec .	Q2F-00005-326	Q2F-00005-327	Q2F-00005-321	Q2F-00005-325
. 5 to 10 sec .	Q2F-00010-326	Q2F-00010-327	Q2F-00010-321	Q2F-00010-325
3 to 60 sec .	Q2F-00060-326	Q2F-00060-327	Q2F-00060-321	-
15 to 300 sec .	-	Q2F-00300-327	Q2F-00300-321	-
30 to 600 sec .	Q2F-00600-326	Q2F-00600-327	Q2F-00600-321	-
180 to 3600 sec .	Q2F-03600-326	Q2F-03600-327	Q2F-03600-321	-
. 25 to 5 hrs .	Q2F-18000-326	Q2F-18000-327	Q2F-18000-321	-
. 5 to 10 hrs .	Q2F-36000-326	-	Q2F-36000-321	-
Trigger time (start switch closure)	20 ms	20 ms	20 ms	20 ms
Reset time	200 ms	300 ms	300 ms	200 ms
Min. load	5 mA	5 mA	2 mA	2 mA
Max. leakage current	10 uA	10 uA	200 uA	300 uA
Voltage drop at 1 A	2.1 V	3.2 V	3.3 V	3.3 V
Power consumption	2.6 W	3.7 VA max.	4.3 VA max.	5.8 VA max.
Peak 1 cycle surge	4 A	4 A	20 A	20 A
Protection	8.8j. MOV	8.8j. MOV	30j. MOV	30j. MOV

Optional Potentiometer: Part Number ASY-0001M-450
Consult factory for any special requirements not listed in catalog (minimum order requirement may apply).
nals to mounting

LOGIC FUNCTION DIAGRAM

Single Shot Function

SPECIFICATIONS

TIME DELAY

Adjustment: External resistor factory fixed on special order (min. order requirement)
Range: 50 ms to 10 hours in 9 ranges
Repeatability: $\pm .5 \%+8 \mathrm{~ms}$ max. (0.25% typical) at constant temperature

Accuracy:

Maximum time $\pm 2 \%$ at $\mathrm{Rt}=1$ megohms
Minimum time $+0 \%,-30 \%$ at $\mathrm{Rt}=0$ ohm
INPUT
Operating Voltage: 120, 240 VAC; 12 VDC; 24
VAC/DC $\pm 10 \%$ (DC models have reverse polarity protection; unfiltered input voltage to them must be full-wave rectified)
Frequency: $50 / 60 \mathrm{~Hz}$
OUTPUT
Type: Solid state, normally open
Rating: 1 A steady state
Life: 100,000,000 operations

PROTECTION

Transient Voltage: Metal oxide varistor, see ratings below
Dielectric Breakdown: 3000 VAC, RMS, termi-

Insulation Resistance: 100 megohms min. between terminals and case MECHANICAL
Termination: . $25^{\prime \prime} \times \mathrm{x} .032$ " male fast-on terminals
Mounting: Surface mount with one \#8 screw

ENVIRONMENTAL

Storage Temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Operating Temperature: $-40^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
Humidity: 95% relative

External Resistance/Time Delay Relationship
1 megohm external resistance is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:
$\mathrm{Rt}=\frac{\text { Trequired }- \text { Tminimum }}{\text { Tmaximum }- \text { Tminimum }} \times 1,000,000$ ohms
Note: Due to component tolerances, the actual time obtained will normally be within 5% of desired time.

