

POWER QUALITY ANALYZERS, METERS & LOGGERS

Power & Energy Loggers PEL 100 Series

Models PEL 102 & PEL 103

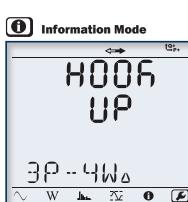
Monitor your energy usage & costs locally or from anywhere in the world!

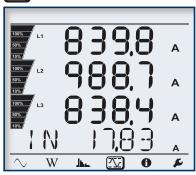
Visit the PEL 100 Series website for more information on software, specifications and more!

► SPECIFICATIONS

MODELS		PEL 102 & PEL 103						
GENERAL								
Sampling Frequency	128 samples r	per cycle; 50/60Hz (16 samples/	cycle 400Hz)					
Data Storage Rate		1 per second						
Demand Period Storage Rate	User selectable (1.	2, 3, 4, 5, 6, 10, 12, 15, 20, 30	and 60 minutes)					
Recorded Parameters		var, PF, Tan, Wh, VAh, VARh, TH						
(Single- and Poly-Phase)	Individual harmonics (from	n 1 through 50 per phase); Cres	t Factor (ĆF), Cos f / DPF					
Event Log	Tracks and records status	s changes and error messages a	long with recorded data					
Front Panel Indicator LEDs	Bluetooth active, recording in progress, phase connection reversal, overload, battery charging and SD Card status							
Storage Capacity	2GB SD card (included) is used for storage. SD cards (up to 2GB); SDHC cards (4 to 32GB) formatted FAT32 are supported							
INPUTS Voltage	3 voltage in	put channels via 4mm safety ba	nana jacks					
Current	3 current input channels via	custom 4 pin jacks that accept	AEMC [®] probes and sensors					
ELECTRICAL								
VOLTAGE MEASUREMENT	RANGE	RESOLUTION	* ACCURACY (% of Reading)					
50/60Hz	42.5 to 69Hz	-	±0.1Hz					
Single-Phase RMS Voltages	10 to 1000Vrms	0.1V	$\pm 0.2\%$ Rdg $\pm 0.2V$					
Phase-to-Phase RMS Voltages	17 to 1700Vrms	0.1 to 1V	$\pm 0.2\%$ Rdg $\pm 0.4V$					
400Hz	340 to 460Hz	-	_					
Single-Phase RMS Voltages	10 to 600Vrms	0.1V	$\pm 1\%$ Rdg $\pm 1V$					
Phase-to-Phase RMS Voltages	17 to 1200Vrms	0.1 to 1V	$\pm 1\%$ Rdg $\pm 1V$					
DC	100 to 1000V	0.1V	$\pm 1\%$ Rdg $\pm 3V$ (typical)					
PT Ratios	Programmable from 50V to 65,0000V	0.01V to 0.1V	_					
CURRENT MEASUREMENT								
Current Probe: MiniFlex. Sensor MA193***	200mA to 100Arms	1 to 100mA	±1.2% ± 50mA					
	0.8A to 400Arms	10 to 100mA	±1.2% ± 0.2A					
	4A to 2000Arms	0.1 to 1A	±1.2% ± 1A					
	20A to 10,000Arms	0.1 to 10A	±1.2%					
CT Ratios	Programmal	ole from 1:1 to 25,000:1 (probe	dependent)					
POWER MEASUREMENTS	_	· · · · · · · · · · · · · · · · · · ·	· · · ·					
Active Power (P)*	-2 to 2GW	0.001W	±0.5% Rdg ± 0.005% Pnom					
Reactive Power (Q)*	-2 to 2Gvar	0.001var	±1% Rdg ± 0.01% Qnom					
Apparent Power (S)*	0 to 2GVA	0.001VA	±0.5% Rdg ± 0.005% Snom					
Power Factor	-1 to +1	0.001	± 0.05					
Tangent ϕ (active/reactive power ratio)	-3.2 to +3.2	0.001	± 0.02					
ENERGY MEASUREMENTS								
Active Energy (EP)	0 to 4 x 1018	1Wh	±0.5% Rdg					
Reactive Energy (EQ)	0 to 4 x 10 ¹⁸	1 varh	±2% Rdg					
Apparent Energy (ES)	0 to 4 x 10 ¹⁸	1Vah	±0.5% Rdg					
THD		± 655%						
Individual Harmonics		lisplayed in percentage; 1 to 7 a						
External Supply		0V/250V (10%) @ 50/60Hz; 400						
Back-Up Power Source/Charge Time		.4V NiMH battery pack / Approxi						
Battery Life	30 m	inutes minimum, 60 minutes typ	pical					
MECHANICAL								
Communication Ports		ernet (RJ45), Wireless Bluetootl						
Dimension/Weight		.92 x 1.46" (256 x 125 x 37mm						
Case/Index of Protection	· · · · ·	r-molded, polycarbonate UL94 V	1 0					
Mounting/Security	Embedded magnets on back s	ide, keyhole slot on back side /	Kensington anti-theft system					
DISPLAY								
Display Type for Model PEL 103		55mm), four line, monochrome ljustable brightness and contras						
ENVIRONMENTAL / SAFETY								
Operating Temperature/Relative Humidity	 ፍበ°	to 122°F (10° to 50°C) / up to 8	5%					
Storage Temperature		with batteries; -4° to 158°F (-20						
Safety Rating/CE Rating	Complies with IEC 61010-1:Ed3, and IEC 6							
		1010 2 000.Eut 101 10001 0AT						
* Maximum value is current probe dependent.								

** Computers with Class II Bluetooth will restrict range to 40 ft. Computers without Bluetooth will require a Class I or Class II Bluetooth radio adapter.


*** Maximum current reduced by a factor of 2 for 400Hz fundamental frequency.

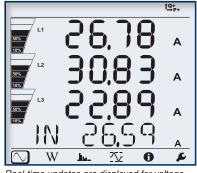

► FEATURES

- Simple to use, single-, dual (split-phase) and three-phase (Y, ∆) power & energy loggers
- Designed to work in 1000V CAT III and 600V CAT IV environments and fits in many distribution panels
- Power measurements: VA, W and var
- Energy measurements: VAh, Wh (source, load) and VARh (4 quadrants)
- DataView^o software for configuring real-time communication with a PC and report generation with pre-defined or user defined templates
- Ethernet compatible
- Minimal programming required
- Displays stored measurements display or via Bluetooth (Class 1 - communicates up to 300 ft) to a PC or the Android[™] based mobile application
- Satisfies the requirements of NEC Code 220.87
- Measures AC/DC (current probe dependent)

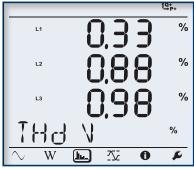
Hook up, voltage and current ratios and aggregation period can be configured from the front panel of the PEL 103.

Max Mode

Max values for voltage, current (including neutral current), power and harmonics.


Android™ App Available!

- Configure Measurements
 and Recordings
- Display Data in Real-Time
- For Use on any Device with an Android Platform


Large Functional Displays

Models PEL 102 & PEL 103

Real-time updates are displayed for voltage, current, power, frequency, power factor and tangent.

Harmonic Mode

Total Harmonic Distortion (THD) can be displayed by phase or phase to phase. Neutral current THD can also be displayed.

► PRODUCT INCLUDES

PEL 102 & PEL 103 Kit

Small classic tool bag, three MiniFlex[®] MA193-10-BK sensors, 5 ft USB cable, four black test leads and alligator clips, power cord, 12 color-coded ID markers, Multifix mounting system,

iffx mounting system, safety card, sensor compliance sheet, 2GB SD-Card with USB-SD-Card reader, quick start user guide, and USB stick supplied with DataView[®] software and user manual.

CATALOG NO. DESC

DESCR	PTION

2137.51	Power & Energy Logger Model PEL 102 (no LCD w/3 MA193-10-BK Sensors)
2137.52	Power & Energy Logger Model PEL 103 (with LCD w/3 MA193-10-BK Sensors)
2137.61	Power & Energy Logger Model PEL 102 (no LCD or Sensors)
2137.62	Power & Energy Logger Model PEL 103 (with LCD, no Sensors)

POWER QUALITY ANALYZERS, METERS & LOGGERS Optional Accessories

SENSOR TYPE	CL	IRRENT RANGE	ACCURACY (typical)	TYPICAL Error on Φ at 50/60HZ	MAX Conductor Size	USED WITH MODEL	LIMITED RANGE IF USED WITH MODEL
MiniFlex® MA193 *	1(DomA to 3000Aac	±1%	0°	2.75" (70mm)	PEL 102 PEL 103 8333 8336	8220 8230 8435
MR193 Battery operated		1 to 1000Aac 1 to 1300Abc	±2.5%	-0.80°	1.6" (41mm)	PEL 102 PEL 103 8333 8336	8220 8230 8435
SR193		1 to 1200Aac	±0.3%	+0.2°	2.05" (52mm)	PEL 102 PEL 103 8333 8336	8220 8230 8435
AmpFlex• 193 *	10	0mA to 12,000Aac	±1%	0°	7.64" (190mm) or 11.46" (290mm)	PEL 102 PEL 103 8333 8336	8220 8230 8435
MN93		0.5 to 240Aac	±1%	+0.8°	0.78" (20mm)	PEL 102 PEL 103 8333 8336	8220 8230 8435
MN193	100A	200mA to 120Aac	±1%	+0.75°	0.78"	PEL 102 PEL 103	8220
O_	5A 5mA to 6AAc		±1%	+1.7°	(20mm)	8333 8336	8230 8435

Optional Accessories

SENSOR TYPE	CURRENT RANGE		ACCURACY (TYPICAL)	TYPICAL Error On Φ At 50/60HZ	MAX Conductor Size	USED WITH MODEL	LIMITED RANGE IF USED WITH MODEL
SL261 **	100A	5 to 100Aac/dc	±4%	±0.5°	0.46"	PEL 102 PEL 103	8220 8230
Battery operated	10A	50mA to 10AAc/dc	±3%	±1°	(11.8mm)	8333 8336	8435
J93 Description Battery operated		50 to 3500Aac 50 to 5000Abc	±1%	±1°	2.83" (72mm) Busbar: 5 x 1.69" (127 x 43mm)	PEL 102 PEL 103 8333 8336 8435	N/A

* Maximum current reduced by a factor of 2 for 400Hz fundamental frequency.

Note: Refer to the power meter's product user manual for complete specifications.

** AC/DC Current Probe BNC Adapter

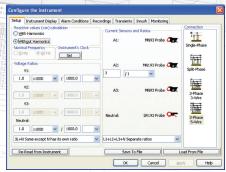
for Model SL261 only Catalog #2140.40

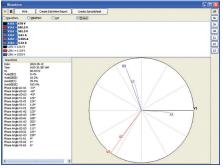
CATALOG NO.	DESCRIPTION
1201.51	AC/DC Current Probe Model SL261 (BNC)
2140.28	AC Current Probe Model MR193-BK
2140.32	AC Current Probe Model MN93-BK
2140.33	AC Current Probe Model SR193-BK
2140.34	AmpFlex*Sensor 24" Model 193-24-BK
2140.35	AmpFlex*Sensor 36" Model 193-36-BK
2140.36	AC Current Probe Model MN193-BK
2140.48	MiniFlex*Sensor 10" Model MA193-10-BK
2140.49	AC/DC Current Probe Model J93-BK

DATAVIEW[®]

Software for Power & Energy Loggers

Data Analysis and Reporting Software for Power Quality Meters




Configure all functions of the Power Quality Meters

- Display and analyze real-time data on your PC
- Configure functions and parameters from your PC
- Customize views, templates and reports to your exact needs
- Create and store a complete library of configurations that can be uploaded as needed
- Zoom in and out and pan through sections of the graph to analyze the data
- Download, display and analyze recorded data
- Display waveforms, trend graphs, harmonic spectrums, text summaries, transients, event logs and stored alarms
- Print reports using standard or custom templates you design
- Free updates are available on our website www.aemc.com

Typical DataView[®] Functional, Digital & Graphical Displays

Clear and easy setup of all functions from one tabbed dialog box.


Display real-time Phasor diagrams. Includes unbalance for both voltage and current.

	PHYR	Create DataMerr Re	port O	eate Spreadsheet			
form	ORM	IMAX OUR	0	Bhasor	-		
	5.627 A 5.975 A	Peak- = -7.710 A Peak- = -8.682 A Peak- = -7.600 A	Peak+=7. Peak+=0. Peak+=7.	717 A			
		Peak- = -7,600 A Peak- = 0,1000 A			a low to display on instrumen	Ł Limit 0.1 ARMS	
Γ							15
ŀ							
ŀ	-	/					6
ſ		\checkmark					6
				,X			
	/					$\langle \rangle$	
ŕ		, de la competition de la comp	7	<i></i>			0
-			· · · · · ·				
			-		\times		\wedge .
i.				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		/	
ŀ							
							-15

Display real-time waveforms by phase, parameter or total.

Print (Treate DataView Report	Create Spreadsheet
Start Accumulati	ng Stop Acc	umulating
Time Started: Time Ended:	2010-05-12 9:01:23 AM 2010-05-12 9:08:28 AM	Phase to Display:
W Var WDC VA	= 3786 = 284 = -0 = 3798	L2
Wh to Load Wh to Source Wh DC to Load	= 450 = 0 = 0	All
Wh DC to Source varh Capacitive to Load varh Inductive to Source varh Inductive to Source Varh Inductive to Source VAh to Load	= 0 = 0 = 34 = 0 = 451	
VAh to Source PF DPF Tan Phase Angle V1-A1	= 0 = 0.997 = 0.997 = 0.075 = 4°	

Display power and energy parameters – both instantaneous and total.

Display all harmonics from 1st to 50th in bargraph form for voltage, current and power.

► II	Print	0	eate Duteil	lew Report	Create Spreadcheet	Weve as List	Viley %	■ #8	
AL RMS	136.2 V 3.357 A		HD = 2.44 HD = 29.4		r = 1.39 r = 1.51				
Harmonic	vth	VIN	Ath	Ath					
0	0.0%	Q*	0.0%	Q*					
1	100.0 %	er	100.0 %	Q*					
2	0.0%	e*	0.9%	-138*					
3	1.4%	274	25.7%	96*					
	0.0%	e*	0.9%	165*					
	1.6%	-100*	11.5 %	49*					
6	0.0%	Q*	0.7%	89*					
7	0.8%	4*	6.8%	-36*					
8	0.0%	6* ·	0.4%	32*					
9	0.3%	171*	0.5%	-160*					
10	0.0%	Q*	0.0%	Q*					
11	0.2%	41	1.9%	26*					
12	0.0%	Q*	0.4%	74*					
13	0.4%	99*	3.2%	-40*					
14	0.0%	Q*	0.6%	7*					
15	0.0%	Q*	1.5%	-104*					
16	0.0%	e*	0.3%	-42*					
17	0.2%	-167	0.3%	-175*					
10	0.0%	Q*	0.1%	112					
19	0.2%	136*	11%	-6.7*					
20	0.0%	Q*	0.4%	-19 ^o					
21	0.2%	-164*	1.0%	-100 ^m					
22	0.0%	Q*	0.4%	-73*					
23	0.1%	43*	0.8%	175*					
24	0.0%	e*	0.2%	-105*					
			0.3%	-162*					
26	0.0%	e*	0.1%	-09*					
27	0.1%	562*	0.5%	-127*					
28	0.0%	Q*	0.2%	-96*					
29	0.0%	Q*	0.5%	172*					
30	0.0%	Q*	0.3%	-136*					
31	0.0%	e*	0.4%	117*					
32	0.0%	Q*	0.2%	160°					
33	0.0%	e*	0.0%	Q*					
34	0.0%	e* .	0.0%	Q*					
35	0.0%	e*	0.1%	156*					
36	0.0%	Q*	0.1%	175*					
37	0.0%	e*	0.3%	99*					
38	0.0%	e*	0.1%	129*					
39	0.0%	5	0.1%	35*					
40	0.0%								

Display harmonics in a text table from harmonic 0 (DC) through the 50^{m} .

