MOSFET - SiC Power, Single **N-Channel**

NTHL020N120SC1 1200 V, 20 mΩ, 103 A

Features

- Typ. $R_{DS(on)} = 20 \text{ m}\Omega$
- Ultra Low Gate Charge (Q_{G(tot)} = 203 nC)
- Capacitance (Coss = 260 pF)
- 100% UIL Tested
- These Devices are RoHS Compliant

Typical Applications

- DC/DC Converter
- Boost Inverter

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	1200	V
Gate-to-Source Voltage			V _{GS}	-15/+25	V
Recommended Operation Values of Gate-to-Source Voltage	T _C < 175°C		V_{GSop}	-5/+20	٧
Continuous Drain Current R _{0JC}	Steady State T _C = 25°C		Ι _D	103	Α
Power Dissipation $R_{\theta JC}$] [P_{D}	535	W
Continuous Drain Current R _{0JC}	Steady State	T _C = 100°C	I _D	73	Α
Power Dissipation $R_{\theta JC}$			P_{D}	267	W
Pulsed Drain Current (Note 2)	T _A	= 25°C	I _{DM}	412	Α
Single Pulse Surge Drain Current Capability	T _A = 25°0 R _G	C, t _p = 10 μs, = 4.7 Ω	I _{DSC}	807	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	54	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 23 A, L = 1 mH) (Note 3)			E _{AS}	264	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	$R_{\theta JC}$	0.28	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	40	°C/W

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Repetitive rating, limited by max junction temperature. 3. E_{AS} of 264 mJ is based on starting $T_J=25^{\circ}C$; L = 1 mH, $I_{AS}=23$ A, $V_{DD}=25^{\circ}C$ $120 \text{ V}, \text{ V}_{GS} = 18 \text{ V}.$



ON Semiconductor®

www.onsemi.com

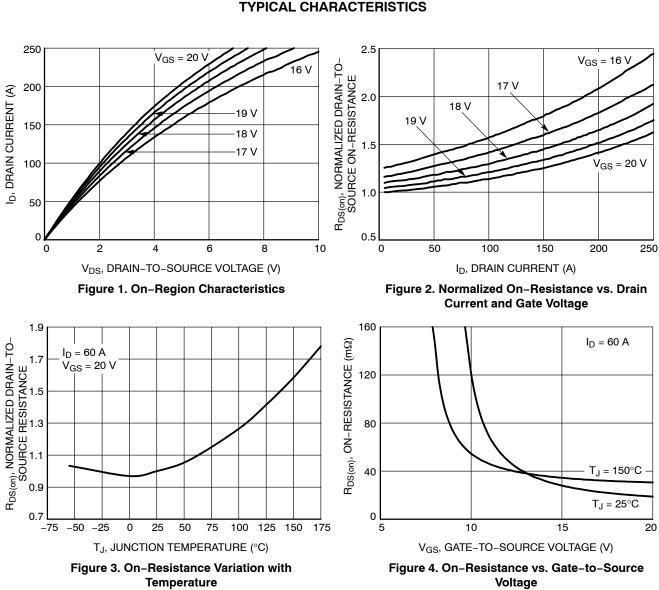

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
1200 V	28 mΩ @ 20 V	103 A

N-CHANNEL MOSFET

MARKING DIAGRAM

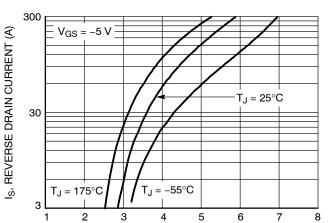
= ON Semiconductor Logo \$Y &Z = Assembly Plant Code &3 = Data Code (Year & Week)

NTHL020N120SC1 = Specific Device Code


ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1200	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C	-	900	=	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 25°C	-	-	100	μΑ
		V _{GS} = 0 V, V _{DS} = 1200 V, T _J = 175°C	-	-	250	
Gate-to-Source Leakage Current	I _{GSS}	V _{GS} = +25/-15 V, V _{DS} = 0 V	-	-	±1	μΑ
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$	1.8	2.7	4.3	V
Recommended Gate Voltage	V _{GOP}		-5	-	+20	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 20 \text{ V}, I_D = 60 \text{ A}, T_J = 25^{\circ}\text{C}$	-	20	28	mΩ
		V _{GS} = 20 V, I _D = 60 A, T _J = 175°C	-	35	50	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 60 A	-	28	-	S
CHARGES, CAPACITANCES & GATE	RESISTANCE					-
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V	-	2890	-	pF
Output Capacitance	C _{OSS}		-	260	-	
Reverse Transfer Capacitance	C _{RSS}		-	22	-	
Total Gate Charge	Q _{G(tot)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 600 \text{ V}, I_D = 80 \text{ A}$	-	203	-	nC
Threshold Gate Charge	Q _{G(th)}		-	33	-	- - -
Gate-to-Source Charge	Q_{GS}		-	66	-	
Gate-to-Drain Charge	Q_{GD}		-	47	-	
Gate Resistance	R _G	f = 1 MHz	-	1.81	-	Ω
SWITCHING CHARACTERISTICS						-
Turn-On Delay Time	t _{d(on)}	$V_{GS} = -5/20 \text{ V}, V_{DS} = 800 \text{ V},$	-	25	-	ns
Rise Time	t _r	I_D = 80 A, R_G = 2 Ω , Inductive Load	-	57	-	1
Turn-Off Delay Time	t _{d(off)}		-	45	-	
Fall Time	t _f		-	11	-	
Turn-On Switching Loss	E _{ON}		-	2718	-	μJ
Turn-Off Switching Loss	E _{OFF}		-	326	-	
Total Switching Loss	E _{TOT}		-	3040	-	
DRAIN-SOURCE DIODE CHARACTEF	RISTICS					
Continuous Drain-to-Source Diode Forward Current	I _{SD}	$V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$	-	-	54	Α
Pulsed Drain-to-Source Diode Forward Current (Note 2)	I _{SDM}	$V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$	-	-	412	Α
Forward Diode Voltage	V_{SD}	V _{GS} = -5 V, I _{SD} = 30 A, T _J = 25°C	-	3.7	-	V
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/20 \text{ V}, I_{SD} = 80 \text{ A},$	_	31	-	ns
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs	_	240	-	nC
Reverse Recovery Energy	E _{REC}	1	-	10	-	μJ
Peak Reverse Recovery Current	I _{RRM}	1	_	15	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

120 $V_{DS} = 20 V$ 100 ID, DRAIN CURRENT (A) 80 60 40 T_J = 25°C $T_J = 175^{\circ}C$ 20 $T_J = -55^{\circ}C$ 0 4 16 2 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 5. Transfer Characteristics

V_{SD}, BODY DIODE FORWARD VOLTAGE (V) Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

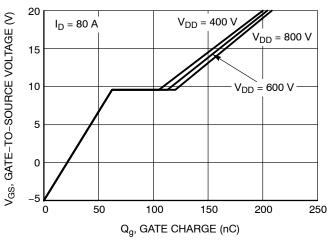


Figure 7. Gate-to-Source Voltage vs. Total Charge

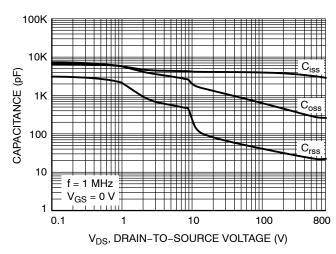


Figure 8. Capacitance vs. Drain-to-Source Voltage

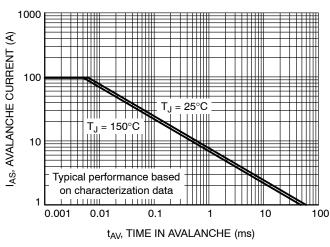


Figure 9. Unclamped Inductive Switching Capability

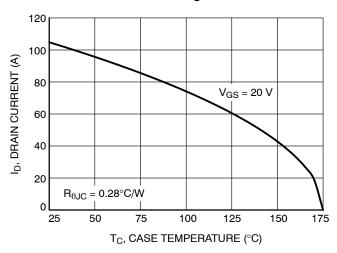


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

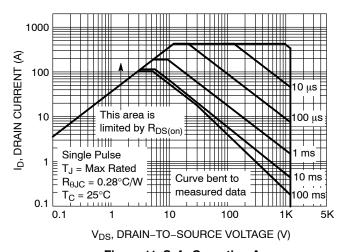


Figure 11. Safe Operating Area

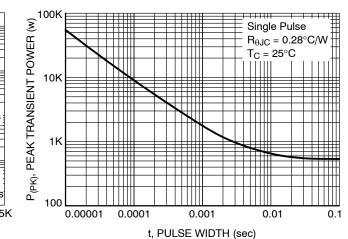
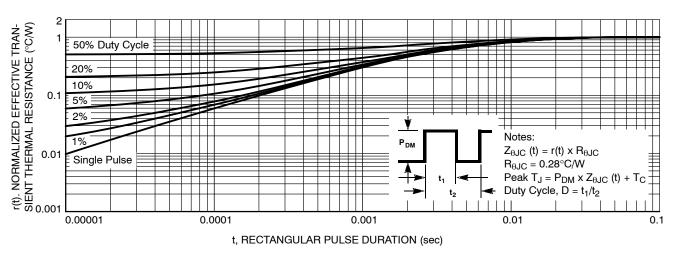
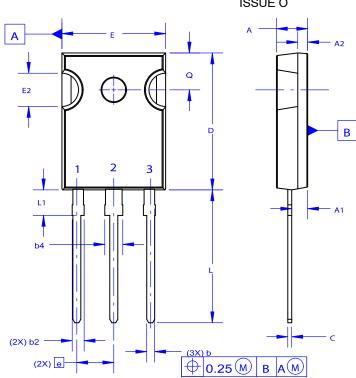


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS



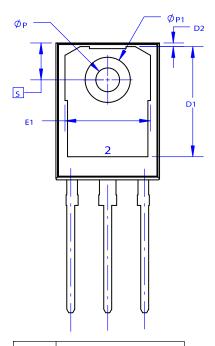

Figure 13. Junction-to-Ambient Thermal Response

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTHL020N120SC1	NTHL020N120SC1	TO-247 Long Lead	Tube	N/A	N/A	30 Units

PACKAGE DIMENSIONS

TO-247-3LD CASE 340CX ISSUE O



- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

 B. ALL DIMENSIONS ARE IN MILLIMETERS.

- C. DRAWING CONFORMS TO ASME Y14.5 2009.
 D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	13.08 ~			
D2	0.51	0.93	1.35		
E1	12.81	~	~		
ØP1	6.60	6.80	7.00		

ON Semiconductor and lill are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor products and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor pro

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative