NC1V Circuit Protectors

IDEC's original spring-up, fingersafe terminals enhance reliability and safety.

- Integrated electric shock protection structure (IP20).
- Auxiliary/alarm contact terminals and voltage coil terminals on the relay trip types are equipped with terminal covers.
- Spring-up, fingersafe terminals reduce wiring time.
- Ring terminals can be installed. Captive terminal screws.
- Available with inertial delay
- Available with auxiliary or alarm contacts
- Rated short-circuit capacity: 2500A
- Slim, space-saving housing

1-pole: 17.5 mm wide
2-pole: 35.0 mm wide
3 -pole: 52.5 mm wide

- Retractable actuator
- The trip-free mechanism maintains the circuit open even when the operator is turned on after tripping.

$\left.$| Applicable Standards | Mark | |
| :--- | :---: | :--- | | Certification Organization / |
| :--- |
| File No. | \right\rvert\,

Note: TÜV, CE, and CCC marks are applicable for series trip type only.
Specifications

Operator Style			Retractable actuator		
Internal Circuit			Series trip (current trip), Relay trip (voltage trip)		
Protection Method			Hydraulic magnetic tripping system, Magnetic tripping system (voltage trip)		
No. of Poles			1-pole	2-pole	3-pole
Rated Voltage (AC/DC) (Note 1)			250 V AC 50/60Hz, 65V DC	250V AC 50/60Hz, 125V DC	250V AC, $50 / 60 \mathrm{~Hz}$
Series Trip (Current Trip)		Rated Short-circuit Capacity	$\begin{aligned} & 250 \mathrm{~V} \text { AC, } 2500 \mathrm{~A} \\ & 65 \mathrm{~V} \text { DC, } 2500 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \mathrm{~V} \text { AC, } 2500 \mathrm{~A} \\ & 125 \mathrm{~V} \text { DC. } 2500 \mathrm{~A} \end{aligned}$	250 V AC, 2500A
		Rated Current	0.1A, $0.3 \mathrm{~A}, 0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 7 \mathrm{~A}, 10 \mathrm{~A}, 15 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 30 \mathrm{~A}$		
		Trip Characteristics (Note 2)	Time delay curve curve M (slow), curve A (medium), S (instantaneous) Curves M and A are avilable with inertial delay.		
Relay Trip (Voltage Trip) (Note 3)		Rated Current	30A		
		Trip Voltage	24 to 48 V DC (at $25^{\circ} \mathrm{C}$) Voltage application duration 10 sec maximum, tripping time 0.1 sec maximum (at rated voltage)		
Auxiliary Contact/ Alarm Contact		Contact Rating	125 V AC 3A (resistive load), 30V DC 2A (resistive load)		
		Minimum Applicable Load	24 V DC 1mA (resistive load, reference value)		
Insulation Resistance			$100 \mathrm{M} \Omega$ minimum (500 V DC megger)		
Dielectric Strength			2000 V AC, 1 minute (between terminals when main contacts are open, between live parts of different poles, between live and dead parts) 600V AC (between terminals when auxiliary circuits are open)		
Vibration Resistance (with rated current applied)			Damage limits: $\quad 147 \mathrm{~m} / \mathrm{s}^{2}\left(10\right.$ to 55 Hz) (1-pole, 2-pole), $78 \mathrm{~m} / \mathrm{s}^{2}$ (3-pole) Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$ (1-pole, 2-pole), $78 \mathrm{~m} / \mathrm{s}^{2}$ (3-pole)		
Shock Resistance (S time delay curve: 80% rated current, A, M time delay curve: 100% rated current)			Damage limits: $\quad 490 \mathrm{~m} / \mathrm{s}^{2}$ (1-pole, 2-pole), $297 \mathrm{~m} / \mathrm{s}^{2}$ (3-pole)Operating extremes: $196 \mathrm{~m} / \mathrm{s}^{2}$		
Electrical Life			10,000 cyles minimum (at rated curent), 10 operations per minute		
Reference Temperature			$40^{\circ} \mathrm{C}$		
Operating Tempperature			$-10 \text { to }+60^{\circ} \mathrm{C} \text { (no freezing) }$ Rated current is based on an ambient temperature of $40^{\circ} \mathrm{C}$. When the operating temperature exceeds $40^{\circ} \mathrm{C}$, derate the rated current by using the factors shown below.		
Storage Temperature			-40 to $+60^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity			45 to $85 \% \mathrm{RH}$ (no condensation)		
Storage Humidity			45 to 85\% RH (no condensation)		
Terminal Style	Main Circuit Terminal Auxiliary/Alarm Contacts, Voltage Coil Terminal		Spring-up, fingersafe terminal: M4 screw (up to 20A), M5 screw (25A and 30A)		
			M3.5 screw		
Weight (approx.)			1-pole: 90 g , 2-pole: 170 g , 3-pole: 260 g		

Note 1: 3-pole type is for AC voltage only.
Note 2: For S (instantaneous) tripping curve, humming sound may be caused when used in an AC sinusoidal-wave current circuit around 80% of \quad Operating Temp. Derating Factor
the rated current, however, the performance of the circuit protector will not be affected.
$50^{\circ} \mathrm{C}$
0.9

To avoid unnecessary tripping, do not use in circuits where inrush currents may be present.
$55^{\circ} \mathrm{C}$
Note 3: Relay trip (voltage trip) type is not equipped with an overcurrent trip function.
$60^{\circ} \mathrm{C}$
0.7

- Do not use the NC1V circuit protectors in environments where they are exposed to extreme temperature, humidity, dust, corrosive gases, vibration, shock, or in a circuit where inrush current may be present, otherwise unnecessary operations and damage may occur.

Part No. Development
NC1V-2 100 F - 30A A DC24V
1 Model
NC1V: Flap actuator type
DIN rail and panel mounting
2 No. of Poles
1: 1-pole
2: 2-pole
3: 3-pole
3 Internal Circuit
1: Series trip (current trip)
5: Relay trip (voltage trip)
4 Auxiliary/Alarm Contacts
00: None
11: With one auxiliary contact
12: With two auxiliary contacts
13: With three auxiliary contacts
21: With one alarm contact
31: With one auxiliary contact and one alarm contact
32: With two auxiliary contacts and one alarm contact

8 Voltage Trip Coil Voltage
DC24V: 24-48V DC

* Specified for relay trip only

7 Time Delay Curve
M: Slow
A: Medium
S: Instantaneous

* For both AC/DC.
* Specified for series trip only.

6 Rated Current
$0.1 \mathrm{~A}, 0.3 \mathrm{~A}, 0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$,
$5 \mathrm{~A}, 7 \mathrm{~A}, 10 \mathrm{~A} 15 \mathrm{~A}, 20 \mathrm{~A}, 25 \mathrm{~A}, 30 \mathrm{~A}$

* Specified for series trip only.

5 Inertial Delay
Blank: Withou
F: With

* Inertial delay is for AC voltage only.
* Available with medium and slow types (not applicable with relay trip).

Specity rated current, time delay curve, or voltage trip coil voltage in place of $6 \sqrt{7} 8$ in the Part No.

Internal Circuit	No. of Poles	Inertial Delay	Auxiliary Contact Alarm Contact	Part No.	Code		
					6 Rated Current	7 Time Delay Curve	8 Voltage Trip Coil Voltage
Series Trip (Current Trip)	1-pole	-	-	NC1V-1100-6] 7	$\begin{gathered} 0.1 \mathrm{~A} \\ 0.3 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2 \mathrm{~A} \\ 3 \mathrm{~A} \\ 5 \mathrm{~A} \\ 7 \mathrm{~A} \\ 10 \mathrm{~A} \\ 15 \mathrm{~A} \\ 20 \mathrm{~A} \\ 25 \mathrm{~A} \\ 30 \mathrm{~A} \end{gathered}$	M (slow) A (medium) S (instantaneous)	-
			One Auxiliary Contact	NC1V-1111-6] 7			
			One Alarm Contact	NC1V-1121-67			
		With	-	NC1V-1100F-6 7			
			One Auxiliary Contact	NC1V-1111F-67			
			One Alarm Contact	NC1V-1121F-6 7			
	2-pole	-	-	NC1V-2100-67			
			One Auxiliary Contact	NC1V-2111-6] 7			
			Two Auxiliary Contacts	NC1V-2112-6]			
			One Alarm Contact	NC1V-2121-6]			
			One Auxiliary Contact and One Alarm Contact	NC1V-2131-67			
		With	-	NC1V-2100F-667			
			One Auxiliary Contact	NC1V-2111F-67			
			Two Auxiliary Contacts	NC1V-2112F-6 7			
			One Alarm Contact	NC1V-2121F-67 7			
			One Auxiliary Contact and One Alarm Contact	NC1V-2131F-6 7			
	3-pole	-	-	NC1V-3100-6] 7			
			One Auxiliary Contact	NC1V-3111-67			
			Two Auxiliary Contacts	NC1V-3112-6] 7			
			Three Auxiliary Contacts	NC1V-3113-67			
			One Alarm Contact	NC1V-3121-67			
			One Auxiliary Contact and One Alarm Contact	NC1V-3131-67			
			Two Auxiliary Contacts and One Alarm Contact	NC1V-3132-6] 7			
		With	-	NC1V-3100F-6 7			
			One Auxiliary Contact	NC1V-3111F-67			
			Two Auxiliary Contacts	NC1V-3112F-67			
			Three Auxiliary Contacts	NC1V-3113F-6 7			
			One Alarm Contact	NC1V-3121F-67			
			One Auxiliary Contact and One Alarm Contact	NC1V-3131F-67			
			Two Auxiliary Contacts and One Alarm Contact	NC1V-3132F-67			
Relay Trip (Voltage Trip)	1-pole	-	-	NC1V-1500-8	-	-	24V DC
	2-pole			NC1V-2500-8			
	3-pole			NC1V-3500-8			

Note: Inertial delay is for AC circuit. Also, time delay curve of S (instantaneous) is not available with inertial delay.

Internal Circuit

1-pole

NC1V-1100 (Without auxiliary/alarm contacts)	NC1V-1111 (With auxiliary contact)	NC1V-1121 (With alarm contact)	NC1V-1500 (Relay Trip)

2-pole

NC1V-2100 (Without auxiliary/alarm contacts)	NC1V-2111 (With auxiliary contact)	NC1V-2121 (With alarm contact)	NC1V-2500 (Relay Trip)

Note: Those with two auxiliary contacts and with one auxiliary contact and one alarm contact have been applied for UL and CCC.
3-pole

NC1V-3100 (Without auxiliary/alarm contacts)	NC1V-3111 (With auxiliary contact)	NC1V-3121 (With alarm contact)	NC1V-3500 (Relay Trip)
	One auxiliary contact. Also available with two or three auxiliary contacts.	One alarm contact. Also available with one auxiliary and one alarm contacts, and two auxiliary and one alarm contacts.	

Note: Those with two or three auxiliary contacts, with one auxiliary contact and one alarm contact, and with two auxiliary contacts and one alarm contacts have been applied for UL and CCC.

Overcurrent-Time Delay Characteristics (sec at $40^{\circ} \mathrm{C}$) [vertical mounting]

Item	Time Delay Curve	Percent of Rated Current								
		100\%	125\%	150\%	175\%	200\%	400\%	600\%	800\%	1000\%
AC ($50 / 60 \mathrm{~Hz}$)/DC	S (instantaneous)	NO TRIP	-	$\begin{aligned} & * 0.005 \\ & \text { to } 0.1 \end{aligned}$	$\begin{aligned} & 0.003 \\ & \text { to } 0.06 \end{aligned}$	$\begin{aligned} & 0.0027 \\ & \text { to } 0.05 \end{aligned}$	$\begin{aligned} & 0.002 \\ & \text { to } 0.03 \end{aligned}$	$\begin{gathered} 0.002 \\ \text { to } 0.028 \end{gathered}$	$\begin{gathered} 0.002 \\ \text { to } 0.025 \end{gathered}$	$\begin{gathered} 0.002 \\ \text { to } 0.022 \end{gathered}$
	A (medium)	NO TRIP	*25 to 240	16 to 140	-	6 to 32	0.4 to 4	$\begin{gathered} 0.0055 \\ \text { to } 1.5 \end{gathered}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.65 \end{aligned}$
	M (slow)	NO TRIP	*60 to 600	30 to 200	-	9 to 60	0.4 to 10	$\begin{aligned} & 0.006 \\ & \text { to } 4.5 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$
AC ($50 / 60 \mathrm{~Hz}$)	With Inertial Delay A (medium)	NO TRIP	25 to 240	-	-	6 to 32	0.8 to 6	$\begin{aligned} & 0.09 \\ & \text { to } 3.5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { to } 1.0 \end{aligned}$
	With Inertial Delay M (slow)	NO TRIP	60 to 600	-	-	10 to 60	0.8 to 10	$\begin{aligned} & 0.06 \\ & \text { to } 4.5 \end{aligned}$	$\begin{gathered} 0.02 \\ \text { to } 3 \end{gathered}$	$\begin{aligned} & 0.01 \\ & \text { to } 1.75 \end{aligned}$

[^0]Time Delay Curves at $40^{\circ} \mathrm{C}$

Time Delay Curve and Ambient Temperature

NC1V circuit protectors employ an electromagnetic tripping system, where the rated current (trip current) is not affected by ambient temperatures. But the time delay may vary with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in a shorter delay, whereas at lower temperatures the delay will be longer.

Temperature Correction Curve

The time delay curves on the preceding page are measured at $40^{\circ} \mathrm{C}$. With reference to the following curves, time delays can be corrected according to ambient temperature.

The time delay is based on an ambient temperature of $40^{\circ} \mathrm{C}$. Time delays at other temperatures are corrected according to the temperature correction curve. The time delay of the instantaneous time delay curve (S) is not affected by the ambient temperature.

When operating temperature exceeds $40^{\circ} \mathrm{C}$, derate the rated current by multiplying the derating factor shown on the right.

Operating Temp.	Derating Factor
$50^{\circ} \mathrm{C}$	0.9
$55^{\circ} \mathrm{C}$	0.8
$60^{\circ} \mathrm{C}$	0.7

Impedance and Coil Resistance
Series Trip (Current Trip) (initial value) at $25^{\circ} \mathrm{C}$

Rated Current	For AC 50/60 Hz Impedance (Ω)		For DC Resistance (Ω)	
	Curve S	Curves A, M	Curve S	Curves A, M
0.1A	66.0	116.0	43.0	106.0
0.3A	6.6	11.0	4.1	10.0
0.5A	1.92	3.65	0.86	3.40
1A	0.50	0.93	0.25	0.90
2A	0.16	0.27	0.11	0.25
3A	0.07	0.12	0.050	0.11
5A	0.025	0.050	0.015	0.045
7A	0.014	0.027	0.011	0.025
10A	0.007	0.021	0.005	0.020
15A	0.006	0.010	0.005	0.009
20A	0.005	0.006	0.004	0.005
25A	0.004	0.005	0.004	0.005
30A	0.003	0.004	0.003	0.004

Tolerance: $\pm 25 \%$ (up to 20A), $\pm 50 \%$ (25 A and 30A)
Relay Trip (Voltage Trip)
at $25^{\circ} \mathrm{C}$

Tripping Voltage	For DC Resistance (Ω)
$24-48 \mathrm{~V}$	100.0

Tolerance: $\pm 25 \%$

Inertial Delay

Inertial delay is designed not to trip on a non-repeating single pulse of 20 times the rated current (peak value) for a duration of 8 ms . In addition, circuit protectors equipped with inertial delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on the subsequent overcurrents. Inertial delay is available on AC circuits, and is not available with the series trip curve S (instantaneous).

Voltage Drop Due to Coil Resistance or Impedance The internal resistance or impedance of a circuit protector tends to be larger for a smaller rated current. Therefore, when circuit protectors of a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves, which should also be considered during installation.

Main Contact - Auxiliary/Alarm Contact

[Auxiliary Contact]

Main Contact	NO ontact	NC Contact
ON	closed	open
Tripped	open	closed
OFF	open	closed

[Alarm Contact]

Main Contact	NO ontact	NC Contact
ON	open	closed
Tripped	closed	open
OFF	open	closed

Dimensions

1-pole

All dimensions in mm .

NC1V-1100		
NC1V-1111 (Auxiliary Contact) NC1V-1121 (Alarm Contact)		Mounting Hole Layout (M4 Mounting Screws)
NC1V-1500 (Relay Trip)	DIN Rail (BAA, BAP, BADA)	

2-pole

2-pole

3-pole

3-pole

Accessories

Note: Cannot be used with NC1V with auxiliary or alarm contact.

Dimensions

NC9Z-MA Panel Mounting Bracket

Panel Mounting Screw Length (Dimension C in mm)
Applicable Panel Thickness: 0.8 to 3.2 mm
The outside diameter of the M3 screw (including washer) must be 7 mm maximum.

The outside diameter of the M3 screw (including washer) must be 7 mm maximum.
Panel thickness (mm)
Without washer
With plain washer (0.5 thick)
With spring washer (0.7 thick)

Tightening torque: 0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$
The screw length behind the panel must be 9 mm maximum.
Dimensions A and B

Dimension	A	B
1-pole	21.2	17.8
2-pole	38.7	35.3
3-pole	56.2	52.8

Mounting Hole Layout

NC9Z-TA1 Wiring Clip

Insulation Sleeve

When using wiring clips on 2- or 3-pole circuit protectors, install UL/CSA-rated insulation sleeves on the crimping terminals to ensure the air gap required by UL1077.
Applicable Insulation Sleeves (Example)

- Nissei Eco (V-38)
- Tokyo Dip (TP-038)
- Nichifu (TIC38)

Applicable Crimping Terminal

Tightening torque: 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$

Materials

- Panel Mounting Bracket: Steel
- Wiring Clip: Brass (terminal strip) Steel (screw, washer)

NC9Z-PW1 Marking Plate

NC9Z-LK1 Padlock Attachment

Padlock Attachment Installed

Marking Plate Installed on the Circuit Protector

Rail
35-mm-wide DIN rail and IDEC channel base

NC1V Circuit Protectors Instructions

Replacement Parts

All dimensions in mm.

Shape	Material	Part No.	Ordering No.	Package Quantity	Remarks
Terminal Cover	PA66				
WC1V-AUX-CV	NC1V-AUX-CV	1			

Instructions

Installation Angle

Tripping method is hydraulic magnetic. Minimum operating current varies with installation angle. Operating currents are influenced by the weight of movable iron core. With reference to the following figures, correct the rated current.

Minimum operating current is calculated from the following formula:
(Minimum operating current) $=($ Rated current $) \times$
(Correction factor by installation angle) \times
(Reference minimum tripping current rate)

DIN Rails

[Installation on DIN Rail]

1. Fasten the DIN rail securely.
2. With the latch facing downward, install the NC1V circuit protector on the DIN rail as shown below.
[Removal from DIN Rail]
Using a flat screwdriver, pull the latch on the circuit protector to remove from the DIN rail.

Applicable Wire and Crimp Terminal

Terminal	Terminal Screw	$\begin{array}{\|c} \hline \text { Connectable } \\ \text { Wire Size } \\ \left(\mathrm{mm}^{2}\right) \end{array}$	Applicable Crimping Terminal	Tightening Torque (N-m)
Main Circuit Terminals	Spring-up, fingersafe, slotted Phillips screw with square washer (up to 20A)	0.25 to 1.65	R1.25-4	1 to 1.4
		1.04 to 2.63	R2-4	
		2.63 to 6.64	R5.5-4	
	Spring-up fingersafe terminal (25A and 30A)	0.25 to 1.65	R1.25-5	1.8 to 2.2
		1.04 to 2.63	R2-5	
		2.63 to 6.64	R5.5-5	
Auxiliary Contact Alarm Contact Voltage Coil Terminals	Slotted Phillips screw with square washer	0.25 to 1.65	R1.25-3.5	0.7 to 0.9
		1.04 to 2.63	R2-3.5	

- For wiring the main circuit terminal, use the applicable crimp terminals and tighten to the recommended tightening torque.
- When using the NC1V circuit protector as CSA-certified product, use with CSA-certified crimp terminal.
- When using the NC1V circuit protector as UL-listed product, use with UL-listed crimp terminal.

Panel Mounting Screw (not supplied)

Screw Size	Tightening Torque	Shape
M4	0.8 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$	Spring Washer Plain Washer

Product Markings (Example: NC1V-1111-30AA)

Installation of Auxiliary/Alarm Terminal Cover

After wiring the terminals, install the terminal cover by aligning the terminal cover with the circuit protector as shown below.

Instructions

Installing Auxiliary/Alarm Terminal Cover

Connect the terminal before installing the terminal cover.

Installing

Attach the latch on TOP side and install the terminal cover as shown below.

Installing NC9Z-MA Panel Mounting Brackets

1. Insert the wiring clip into the terminal of the circuit protector, and tighten.

- Tightening torque to the main circuit terminal

20A max. (M4): 1 to $1.4 \mathrm{~N} \cdot \mathrm{~m}$
25A, 30A (M5): 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$
2. Insert the panel mounting bracket to the circuit protector.
3. Install the rear of the panel mounting bracket into the DIN rail recess on the circuit protector and push in the clamp.

Note: NC1V circuit protectors with auxiliary/alarm contacts cannot be used with mounting brackets.

Installing the NC9Z-PW1 Marking Plate

Available for 2-pole circuit protectors only.
For use on 1-pole circuit protectors, break the marking plate into two halves.

Marking Range

Installing the NC9Z-LK1 Padlock Attachment

(1) Pull down the retractable actuator, and install the padlock attachment on the circuit protector.
1-pole: Insert the pin into the holes under the retractable actuator.
2- or 3-pole: Insert the pin into the holes in the center of the circuit protector.

Padlock

- The padlock is not supplied with the padlock attachment and must be supplied by the user.
- The total weight of the padlock can be a maximum of 45 g . Make sure the padlock weight does not exceed 45 g , otherwise the NC1V circuit protector may be damaged.
- Applicable Padlock Size

(A)	(B)	C	D	E	(F)	G
19 to 25	35 to 42	9 to 11.5	4 to 4.5	11 to 15	8 to 10	7.5 to 9.0

Note: (A) (B) (F) are for reference only.

Recommended Padlock

Manufacturer	Part No.
Alpha	$1000-25$
Master Lock	4120

Safety Precautions

- When using the padlock, do not use the NC1V circuit protector where it is subject to vibration or shock, otherwise failure or damage may result.
- Do not apply a force of more than 50 N on the retractable actuator, otherwise the actuator will be damaged.
- When using three or more 1-pole NC1V circuit protectors adjacently, facilitate installing the padlock attachment by providing a clearance of 6 mm minimum between the protectors, or by using the tweezers or flat screwdriver.

[^0]: *: MAY TRIP on DC

