Analog Multiplexers/ Demultiplexers with Injection Current Effect Control

Automotive Customized

These devices are pin compatible to standard HC405x and MC1405xB analog mux/demux devices, but feature injection current effect control. This makes them especially suited for usage in automotive applications where voltages in excess of normal logic voltage are common.

The injection current effect control allows signals at disabled analog input channels to exceed the supply voltage range without affecting the signal of the enabled analog channel. This eliminates the need for external diode/resistor networks typically used to keep the analog channel signals within the supply voltage range.

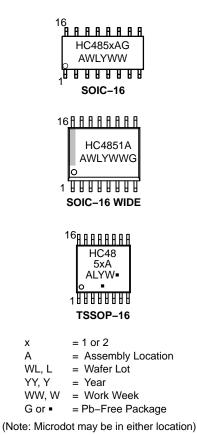
The devices utilize low power silicon gate CMOS technology. The Channel Select and Enable inputs are compatible with standard CMOS outputs.

Features

- Injection Current Cross-Coupling Less than 1 mV/mA (See Figure 9)
- Pin Compatible to HC405X and MC1405XB Devices
- Power Supply Range $(V_{CC} GND) = 2.0$ to 6.0 V
- In Compliance With the Requirements of JEDEC Standard No. 7 A
- Chip Complexity: 154 FETs or 36 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com



SOIC-16 D SUFFIX CASE 751B

SOIC-16 WIDE DW SUFFIX CASE 751G

TSSOP-16 DT SUFFIX CASE 948F

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

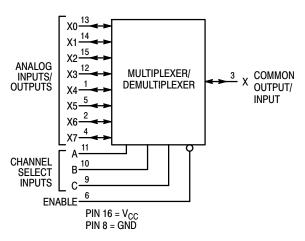


Figure 1. MC74HC4851A Logic Diagram Single–Pole, 8–Position Plus Common Off

FUNCTION TABLE - MC74HC4851A

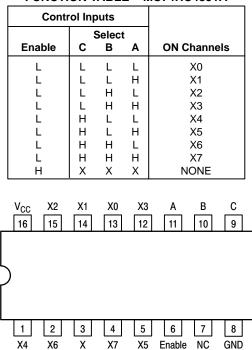


Figure 2. MC74HC4851A 16-Lead Pinout (Top View)

FUNCTION TABLE - MC74HC4852A

Control Inputs				
		ect		
Enable	В	A	ON Ch	annels
L	L	L	Y0	X0
L	L	Н	Y1	X1
L	н	L	Y2	X2
L	н	Н	Y3	X3
Н	Х	Х	NONE	

X = Don't Care

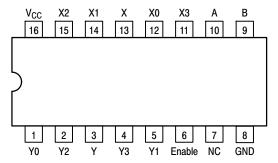
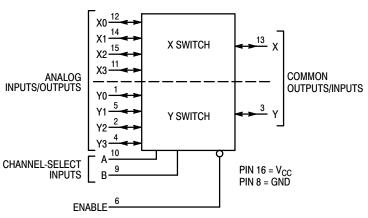
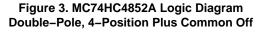




Figure 4. MC74HC4852A 16-Lead Pinout (Top View)

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage (Referenced to GND)	–0.5 to +7.0	V
V _{in}	DC Input Voltage (Any Pin) (Referenced to GND)	–0.5 to V _{CC} + 0.5	V
I	DC Current, Into or Out of Any Pin	±25	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: –7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
V _{in}	DC Input Voltage (Any Pin)	(Referenced to GND)	GND	V _{CC}	V
V _{IO} *	Static or Dynamic Voltage Across Switch		0.0	1.2	V
T _A	Operating Temperature Range, All Package Types		-55	+125	°C
t _r , t _f	Input Rise/Fall Time (Channel Select or Enable Inputs)	$V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

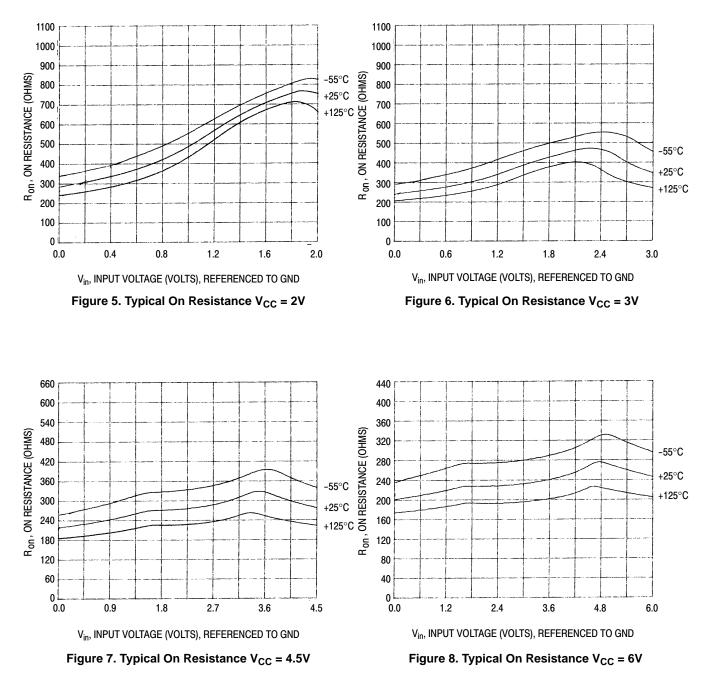
*For voltage drops across switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) V_{EE} = GND, Except Where Noted

			v _{cc}	Guara	nteed Lim	nit	
Symbol	Parameter	Condition	V	–55 to 25°C	≤85°C	≤125°C	Unit
V _{IH}	Minimum High–Level Input Voltage, Channel–Select or Enable Inputs	R _{on} = Per Spec	2.0 3.0 4.5 6.0	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	1.50 2.10 3.15 4.20	V
V _{IL}	Maximum Low–Level Input Voltage, Channel–Select or Enable Inputs	R _{on} = Per Spec	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
l _{in}	Maximum Input Leakage Current on Digital Pins (Enable/A/B/C)	$V_{in} = V_{CC}$ or GND	6.0	±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in(digital)} = V_{CC} \text{ or } GND$ $V_{in(analog)} = GND$	6.0	2	20	40	μΑ

DC CHARACTERISTICS — Analog Section

				Guaranteed Limit		nit	
Symbol	Parameter	Condition	v _{cc}	–55 to 25°C	≤85°C	≤125°C	Unit
R _{on}	Maximum "ON" Resistance	V_{in} = V_{IL} or $V_{IH}; V_{IS}$ = V_{CC} to GND; I_S \leq 2.0 mA	2.0 3.0 4.5 6.0	1700 1100 550 400	1750 1200 650 500	1800 1300 750 600	Ω
ΔR _{on}	Delta "ON" Resistance	$V_{in} = V_{IL} \text{ or } V_{IH}; V_{IS} = V_{CC}/2$ $I_S \le 2.0 \text{ mA}$	2.0 3.0 4.5 6.0	300 160 80 60	400 200 100 80	500 240 120 100	Ω
l _{off}	Maximum Off–Channel Leakage Current, Any One Channel Common Channel	V _{in} = V _{CC} or GND	6.0	±0.1 ±0.1	±0.1 ±0.1	±0.1 ±0.1	μΑ
I _{on}	Maximum On–Channel Leakage Channel–to–Channel	$V_{in} = V_{CC} \text{ or } GND$	6.0	±0.1	±0.1	±0.1	μΑ


AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

Symbol	Parameter	Vo	сс	–55 to 25°C	≤85°C	≤ 125°C	Unit
t _{PHL} ,	Maximum Propagation Delay, Analog Input to Analog Output	2.	2.0	160	180	200	ns
t _{PLH}		3.	3.0	80	90	100	
		4.	4.5	40	45	50	
		6.	6.0	30	35	40	
t _{PHL} ,	Maximum Propagation Delay, Enable or Channel-Select to A	nalog Output 2.	2.0	260	280	300	ns
t _{PHZ,PZH}		3.	3.0	160	180	200	
t _{PLH} ,		4.	1.5	80	90	100	
t _{PLZ,PZL}		6.	6.0	78	80	80	
C _{in}	Maximum Input Capacitance Digit	al Pins		10	10	10	рF
	(All Switches Off) Any Single Ana	og Pin		35	35	35	
	(All Switches Off) Common Ana	og Pin		40	40	40	
C _{PD}	Power Dissipation Capacitance	Typical 5.	5.0	20			pF

INJECTION CURRENT COUPLING SPECIFICATIONS (V_{CC} = 5V, T_A = -55° C to $+125^{\circ}$ C)

Symbol	Parameter	Condition	Тур	Max	Unit
$V\Delta_{out}$	Maximum Shift of Output Voltage of Enabled Analog Channel	l _{in} * ≤ 1 mA, R _S ≤ 3,9 kΩ l _{in} * ≤ 10 mA, R _S ≤ 3,9 kΩ	0.1 1.0	1.0 5.0	mV
		$I_{in}^* \le 1 \text{ mA}, R_S \le 20 \text{ k}\Omega$	0.5	2.0	
		$I_{in}^{in*} \le 10 \text{ mA}, R_S \le 20 \text{ k}\Omega$	5.0	20	

* I_{in} = Total current injected into all disabled channels.

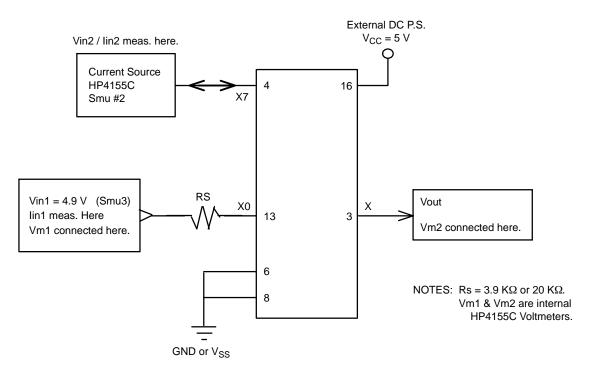


Figure 9. Injection Current Coupling Specification

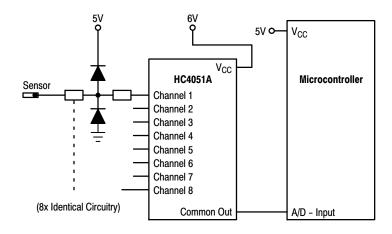


Figure 10. Actual Technology Requires 32 passive components and one extra 6V regulator to suppress injection current into a standard HC4051 multiplexer

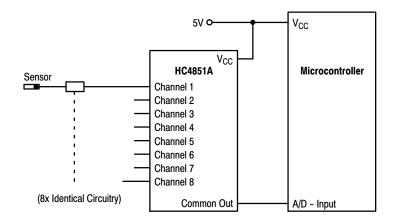
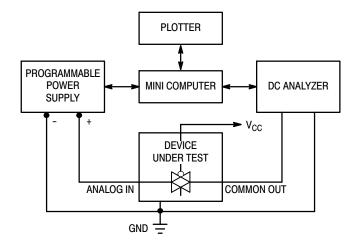
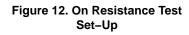




Figure 11. MC74HC4851A Solution Solution by applying the HC4851A multiplexer

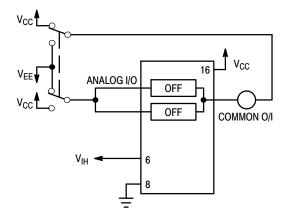


Figure 14. Maximum Off Channel Leakage Current, Common Channel, Test Set–Up

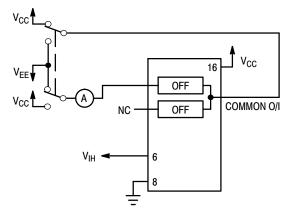
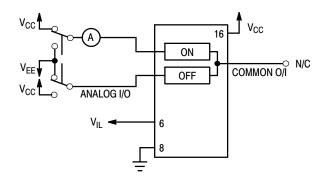
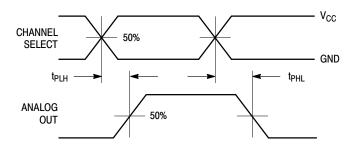
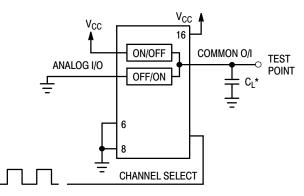
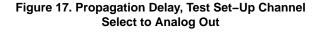
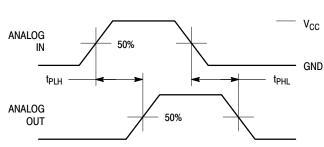
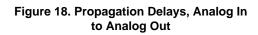


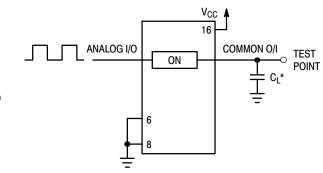
Figure 13. Maximum Off Channel Leakage Current, Any One Channel, Test Set–Up


Figure 15. Maximum On Channel Leakage Current, Channel to Channel, Test Set–Up







*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 19. Propagation Delay, Test Set–Up Analog In to Analog Out

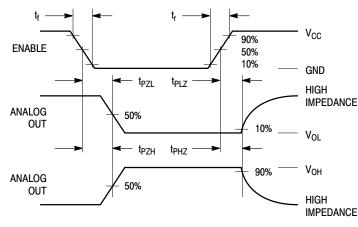


Figure 20. Propagation Delays, Enable to Analog Out

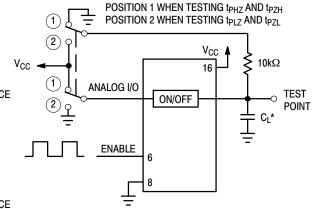
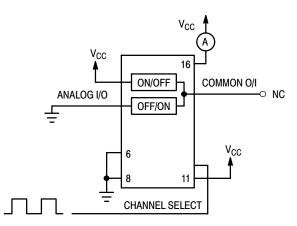



Figure 21. Propagation Delay, Test Set–Up Enable to Analog Out

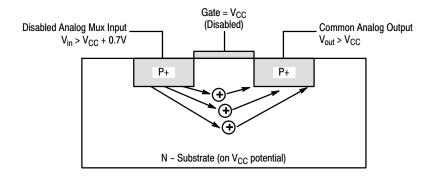


Figure 23. Diagram of Bipolar Coupling Mechanism

Appears if V_{in} exceeds V_{CC} , driving injection current into the substrate

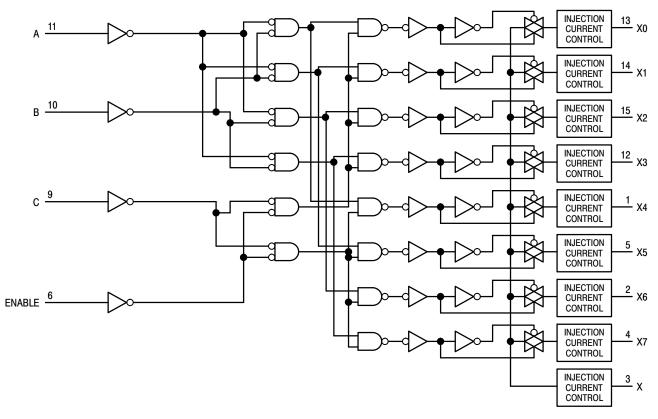
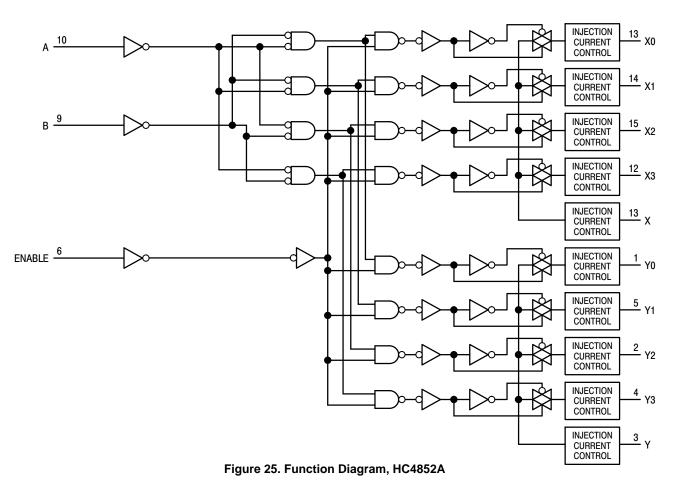
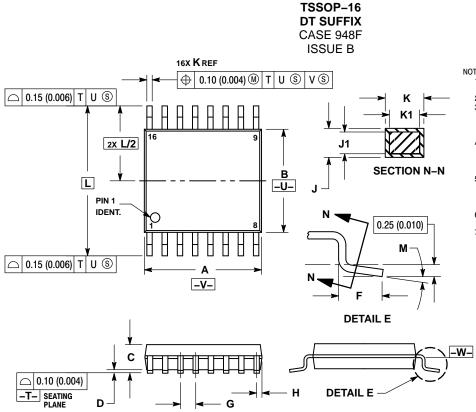



Figure 24. Function Diagram, HC4851A

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74HC4851ADG		48 Units / Rail
MC74HC4851ADR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLVHC4851ADR2G*	(2500 Units / Tape & Reel
MC74HC4851ADTR2G	TSSOP-16	2500 Units / Tape & Reel
NLVHC4851ADTR2G*	(Pb-Free)	2500 Units / Tape & Reel
MC74HC4851ADWR2G	SOIC-16 WIDE (Pb-Free)	1000 Units / Tape & Reel
MC74HC4852ADG		48 Units / Rail

MC74HC4852ADG	SOIC-16 (Pb-Free) TSSOP-16	48 Units / Rail
MC74HC4852ADR2G		2500 Units / Tape & Reel
NLV74HC4852ADR2G*		2500 Units / Tape & Reel
MC74HC4852ADTR2G		2500 Units / Tape & Reel
NLVHC4852ADTR2G*	(Pb-Free)	2500 Units / Tape & Reel

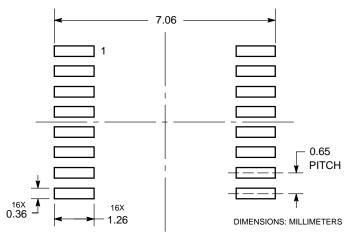
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

NOTES:

DIES:
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

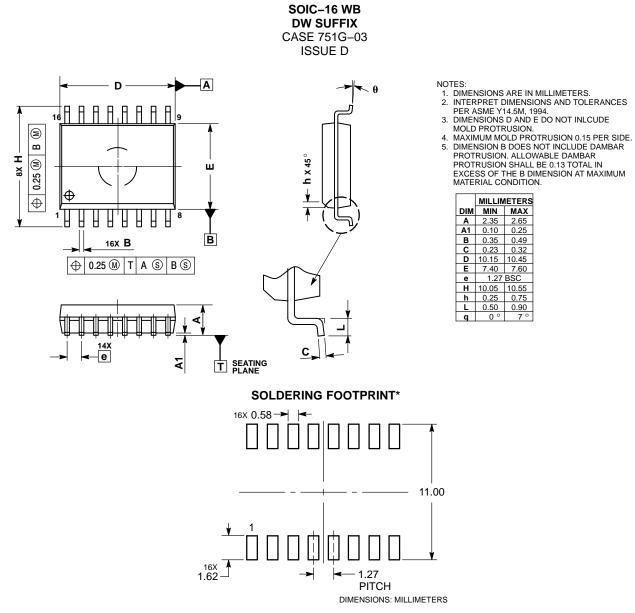

A. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE

5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 5. TERMINAL NUMBERS ARE SHOWN FOR 6. TERMINAL NUM REFERENCE ONLY.

7. DIMENSION A A DATUM PLANE -W-. DIMENSION A AND B ARE TO BE DETERMINED AT

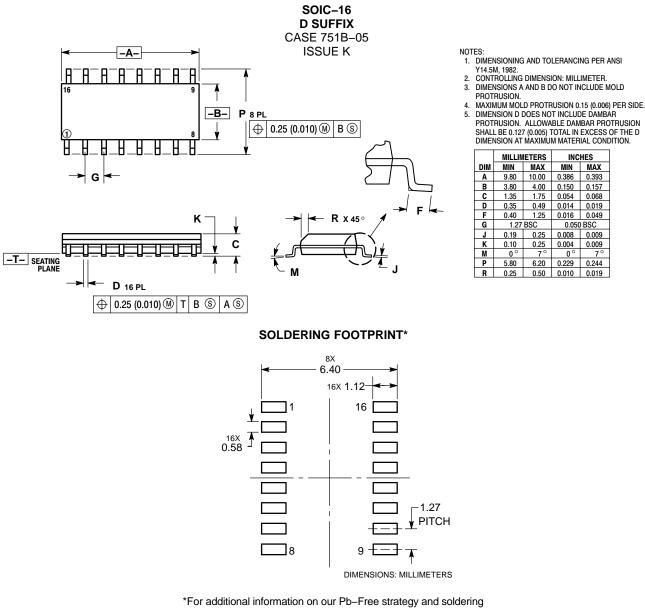
	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
в	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	BSC
н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40		0.252	BSC
М	0 °	8 °	0 °	8 °

SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


MILLIMETERS

0 ° 7

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

"For additional information on our PD—Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 🔘 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product score as alitoney represented in Structure, cost, and isofficers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative