PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

General Description

The MAX20360 is a highly integrated and programmable power management solution designed for ultra-low-power wearable applications. It is optimized for size and efficiency to enhance the value of the end product by extending battery life and shrinking the overall solution size. A flexible set of power-optimized voltage regulators, including multiple buck, boost and buck-boost converters, and linear regulators, provides a high level of integration and the ability to create a fully optimized power architecture. The quiescent current of each regulator is ultra-low targeted at extending battery life in always-on applications.

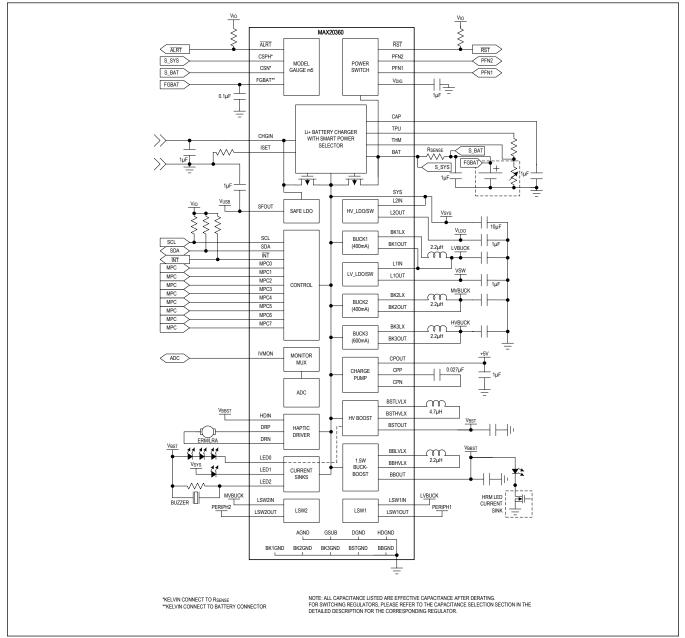
The MAX20360 includes a complete battery management solution with battery seal, charger, power path, and fuel gauge. Both thermal management and input protection are built into the charger. The device also includes a factory programmable button controller with multiple inputs that are customizable to fit specific product UX requirements.

Three integrated LED current sinks are included for indicator or backlighting functions, and an ERM/LRA driver with automatic resonance tracking is capable of providing sophisticated haptic feedback to the user. A low noise, 1.5W buck-boost converter provides a clean way to power LEDs commonly used in optical heart-rate systems. The device is configurable through an I²C interface that allows for programming various functions and reading the device status, including the ability to read temperature and supply voltages with the integrated ADC. This device is available in a 72-bump, 0.5mm pitch, 4.88mm x 4.19mm, wafer-level package (WLP) and operates over the -40°C to +85°C extended temperature range.

Applications

- Wearable Devices
- IoT

Benefits and Features


- Extend Battery-Use Time Between Battery Charging
 2 x Micro-I_Q, 400mA Buck Regulators (330nA I_Q typ each)
 - 0.550V to 1.180V in 10mV Steps
 - 0.550V to 2.125V in 25mV Steps
 - 0.550V to 3.700V in 50mV Steps
 - Micro-I_Q, 600mA Buck Regulator (330nA I_Q typ)
 - 0.550V to 1.180V in 10mV Steps
 - 0.550V to 2.125V in 25mV Steps
 - 0.550V to 3.700V in 50mV Steps
 - Micro-I_Q LV LDO/Load Switch (1µA I_Q typ)
 - 1.0V to 2.0V Input Voltage
 - 50mA Output
 - 0.5V to 1.95V Output, 25mV Steps
 - Micro-I_Q LDO/Load Switch (1µA I_Q typ)
 - 1.71V to 5.5V Input Voltage
 - 100mA Output
 - 0.9V to 4V, 100mV Steps
 - Micro-I_O Buck-Boost Regulator (2µA I_O typ)
 - 1.5W Output
 - · 2.6V to 5V in 50mV Steps
- Easy-to-Implement Li+ Battery Charging
 - Wide Fast Charge Current Range: 5mA to 500mA
 - 28V/-5.5V Tolerant Input
 - Programmable JEITA Current/Voltage Profiles
- Minimize Solution Footprint through High Integration
 - 3.3V or 5.0V Safe Output LDO
 - 15mA When CHGIN Present
 - ERM/LRA Haptic Driver
 - Automatic Braking (LRA Only)
 - Automatic Resonance Tracking (LRA only)
- Supports a Wide Variety of Display Options
 - Micro-I_Q Boost Regulator (2.4µA I_Q typ)
 - 300mW Output
 - 5V to 20V in 250mV Steps
 - 3-Channel Current Sinks
 - 20V Tolerant
 - Programmable from 0.6mA to 30mA
 - Optimize System Control
 - Programmable Push-Button Controller
 - Programmable Supply Sequencing
 - Factory Shelf Mode
 - On-Chip Voltage/Charge Current Monitor Mux and Analog-to-Digital Converter (ADC)

Ordering Information appears at end of data sheet.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Simplified Block Diagram

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

TABLE OF CONTENTS

General Description	. 1
Applications	. 1
Benefits and Features	. 1
Simplified Block Diagram	. 2
Absolute Maximum Ratings	. 9
Package Information	. 9
72 WLP	. 9
Electrical Characteristics	. 9
Typical Operating Characteristics	37
Pin Configuration	53
MAX20360	53
Pin Description	53
Detailed Description	56
Power Regulation	56
Dynamic Voltage Scaling	56
DVS Mode 0 (I ² C DVS Mode)	56
DVS Mode 1 (GPIO DVS Mode)	56
SPI DVS Mode (DVS Mode 2)	57
Dedicated DVS Interrupts.	58
Buck Converter DVS Options	59
LDOs	59
LDO Output Capacitance Selection	59
LDO1 MPC0 Control	59
Internal Switchover for LDO2 Always-On Power	59
Load Switches	59
Boost Regulator	60
Boost Inductor Selection	60
Boost Capacitor Selection	61
Inductor Peak Current Limit	61
Boost Converter and LED0 Closed Loop Operation	62
Buck-Boost Regulator	62
Buck-Boost Inductor Selection	62
Buck-Boost Output Capacitor Selection	63
Architecture and Switching Phases	63
Buck-Boost Mode	64
Buck-Only Mode.	
Inductor Peak and Valley Current Limits	
Buck Regulators	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

TABLE OF CONTENTS (CONTINUED)

Buck Inductor Selection	67
Buck Output Capacitor Selection	67
Inductor Peak and Valley Current Limits	68
Adjustments to Manipulate Buck Switching Frequency	68
High Power Buck Converter with LDO Mode	69
Charge Pump	69
Power Switch and Reset Control	69
PMIC Power Modes	82
SEAL Mode	82
OFF Mode	82
ON Mode (Versions with HrvEn = 0)	82
Battery Recovery Mode (Versions with HrvEn = 1)	82
ON Mode (Versions with HrvEn = 1)	82
Power Sequencing	82
System Load Switch	85
Smart Power Selector	86
Input Limiter	86
Invalid CHGIN Voltage Protection	86
CHGIN Input Current Limit	86
Thermal Limiting	86
Battery Charger	86
Adaptive Battery Charging	86
Fast Charge Current Setting	86
JEITA Monitoring with Charger Control	87
Step Charging	88
Battery Charger State Diagram	88
Battery or Pack Protector Presence Detection	89
SAR ADC/Monitor Mux	90
Haptic Driver	91
Eccentric Rotating Mass (ERM)	91
Linear Resonant Actuator (LRA)	91
LRA Braking	91
Automatic Level Compensation	92
Haptic UVLO	92
Driver Amplitude	92
Vibration Timeout	92
Overcurrent/Thermal Protection	92
Haptic Driver Lock	92

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

TABLE OF CONTENTS (CONTINUED)

Interface Modes.	93
Pure-PWM (PPWM)	93
Real-Time I ² C (RTI ² C).	93
External Triggered Stored Pattern (ETRG)	93
RAM Stored Haptic Pattern (RAMHP)	93
Fuel Gauge	96
MAX20361 Harvester Interaction	96
Harvester Thermistor Monitoring	97
Register Map	98
Haptic Driver and ADC Registers - SlaveID: 0xA0/0xA1	98
Register Details	00
PMIC Registers - SlaveID: 0x50/0x51 1	17
Register Details	22
Applications Information	91
I ² C Interface	91
Start, Stop, and Repeated Start Conditions 1	91
Slave Address	91
Bit Transfer	91
Single-Byte Write	91
Burst Write	92
Single Byte Read.	93
Burst Read	93
Acknowledge Bits	94
I ² C Security Functions	94
Function Locking	94
Secure Writes with Fletcher-16 Checksum 1	94
Default Bits	95
Register Defaults	98
Ordering Information	02
Revision History	03

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

LIST OF FIGURES

Figure 1. DVS Mode 1, GPIO Control	57
Figure 2. DVS Mode 2 SPI Timing	58
Figure 3. DVS Mode 2, SPI Control	58
Figure 4. Single-Byte and Burst-Mode SPI Access	58
Figure 5. Minimum Effective Capacitance for HVBOOST Stability	60
Figure 6. Optimal Peak Current vs. Voltage Lookup Table	61
Figure 7. Buck-Boost Required Minimum Output Capacitance	63
Figure 8. The Buck-Boost Regulator and Switching Phases	64
Figure 9. Buck-Boost Inductor Current in Buck-Boost Mode	64
Figure 10. Buck-Boost Inductor Current in Buck-Only Mode	65
Figure 11. Minimum BBstIPSet2 Limit for a Given BBstIPSet1 Setting	66
Figure 12. Recommended BBstIPSet1 and BBstIPSet2 Settings	66
Figure 13. Buck Required Minimum and Maximum Capacitance to Guarantee Stability	67
Figure 14. Optimal Peak Current Setting vs. Output Voltage	68
Figure 15. PwrRstCfg 0000, 0001	70
Figure 16. PwrRstCfg 0010, 0011	71
Figure 17. PwrRstCfg 0100, 0101	72
Figure 18. PwrRstCfg 0110	73
Figure 19. PwrRstCfg 0111	74
Figure 20. PwrRstCfg 1000	75
Figure 21. PwrRstCfg 1001, 1010	76
Figure 22. PwrRstCfg 1011	77
Figure 23. PwrRstCfg 1100	78
Figure 24. Boot Sequence—Harvester Mode Disabled	
Figure 25. Boot Sequence—Harvester Mode Enabled	81
Figure 26. Power Sequencing, HrvEn = 0 from OFF Mode	83
Figure 27. Power Sequencing, HrvEn = 1 from BR Mode	84
Figure 28. Power Sequencing, from SEAL Mode	
Figure 29. Sample JEITA Pre-Charge Profile	87
Figure 30. Sample JEITA Fast Charge Profile	87
Figure 31. Sample JEITA Maintain Charge Profile	88
Figure 32. Battery Charger-State Diagram	89
Figure 33. Read and Write Process for Haptic RAM	94
Figure 34. Sample Pattern Stored in RAM	96
Figure 35. Diagram of Haptic Driver Output for Sample Pattern Stored Pattern	96
Figure 36. I ² C START, STOP, and REPEATED START Conditions	191
Figure 37. Write Byte Sequence	192
Figure 38. Burst Write Sequence	192

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

LIST OF FIGURES (CONTINUED)

Figure 39. Read Byte Sequence	193
Figure 40. Burst Read Sequence	194
Figure 41. Acknowledge Bits.	194
Figure 42. I ² C Writes on PMIC Slave Address with Fletcher-16 Checksum	195

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

LIST OF TABLES

Table 1. DVS Mode 1 Voltage Selection	. 57
Table 2. LDO1 MPC0 Control	. 59
Table 3. Recommended Inductors	. 63
Table 4. Recommended Inductors Buck	. 67
Table 5. PwrRstCfg Settings	. 78
Table 6. ADC Full-Scale Range	. 91
Table 7. RAMHP Pattern Storage Format.	. 94
Table 8. Device Default Settings	195
Table 9. I ² C Direct Register Defaults	198

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Absolute Maximum Ratings

(All voltages referenced to GSUB, unless otherwise noted) CHGIN -6.0V to +30.0V SYS, BAT, SDA, SCL, TPU, IVMON, RST, INT, PFN_, HDIN, L2IN, LSW_IN, BBOUT, FGBAT -0.3V to +6.0V THM -0.3V to min(V _{FGBAT} + 0.3V, +6.0V) ALRT -0.3V to min(IV _{CHGIN} + 0.3V, +6.0V) L1IN, VDIG -0.3V to min(IV _{CHGIN} + 0.3V, +6.0V) L1IN, VDIG -0.3V to min(IV _{CHGIN} + 0.3V, +6.0V) L1N, VDIG -0.3V to +2.2V MPC_, BK_LX, BK_OUT, BBLVLX, BSTLVLX, CPN -0.3V to (V _{SYS} + 0.3V) -0.3V	BSTHVLX, BSTOUT, LED0.3V to +22.0V BK_GND, BSTGND, BBGND, HDGND, AGND, DGND0.3V to +0.3V CSN, CSPH
$eq:spectral_$	Continuous Current into Any Other Terminal±100mA Continuous Power Dissipation (Multilayer Board) ($T_A = +70^{\circ}C$, derate 32.53mW/°C above +70°C.)2602mW Operating Temperature Range

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

72 WLP

Package Code	W724A4+1			
Outline Number	<u>21-100373</u>			
Land Pattern Number	Refer to Application Note 1891			
THERMAL RESISTANCE, FOUR-LAYER BOARD				
Junction-to-Ambient (0 _{JA})	30.74°C/W			

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/</u> <u>thermal-tutorial</u>.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GLOBAL SUPPLY CURF	RENT					
CHGIN Input Current	ICHGIN	V _{CHGIN} = 5V, ON mode, Charger disabled, THM monitoring disabled, SFOUT disabled, LDO2 disabled, all other rails disabled		0.81		mA

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		V _{CHGIN} = 0V, SEAL mode, LDO2 disabled		0.25			
		V _{CHGIN} = 0V, OFF mode, LDO2 enabled, L2IN connected to BAT, Fuel Gauge contribution not included		1.50			
		V _{CHGIN} = 0V, Battery Recovery (BR) mode, LDO2 disabled, Fuel Gauge contribution not included		1.35			
BAT Input Current	IBAT	V _{CHGIN} = 0V, ON mode, LDO2 disabled, all other rails disabled, Fuel Gauge contribution not included		1.50		μΑ	
	BAI	V _{CHGIN} = 0V, ON mode, LDO2 disabled, Buck1 enabled, all other rails disabled, Fuel Gauge contribution not included		1.87			
		V _{CHGIN} = 0V, ON mode, LDO2 disabled, Buck1 enabled, Buck2 enabled, all other rails disabled, Fuel Gauge contribution not included					
		V _{CHGIN} = 0V, ON mode, LDO2 disabled, Buck1 enabled, Buck2 enabled, Buck3 enabled, all other rails disabled, Fuel Gauge contribution not included		2.69			
INTERNAL SUPPLIES, U	IVLOS, AND BA	ГОСР					
V _{CCINT} OTP OK	VOONT OTD	V _{CCINT} rising (Note 2)		2.92	3.25		
Threshold / Startup Voltage	VCCINT_OTP_ OK	V _{CCINT} falling (Note 2)	2.60	2.90		V	
V _{DIG} OTP OK	V _{DIG_OTP_OK}	V _{DIG} rising		1.52	1.62	- v	
Threshold	*DIG_OTP_OK	V _{DIG} falling	1.41	1.51		· ·	
V _{CCINT} UVLO	V _{CCINT_UVLO}	V _{CCINT} rising (Note 2)	2.20	2.45	2.75	- v	
Threshold (POR)		V _{CCINT} falling (Note 2)	2.15	2.40	2.70	· ·	
V _{CCINT} UVLO Threshold (POR) Hysteresis	V _{CCINT_UVLO}	(Note 2)		50		mV	
Internal VDIG Regulator	V _{DIG}		1.71	1.80	1.89	V	
	Maria	V _{DIG} rising	1.59		1.73	N	
V _{DIG} UVLO Threshold V	V _{DIG_UVLO}	LO V _{DIG} falling			1.61	- V	
V _{DIG} UVLO Threshold Hysteresis	VDIG_UVLO_H			100		mV	
Internal CAP Regulator	V _{CAP}	V _{CHGIN} = 4.3V to 28.0V	3.75	4.10	4.55	V	
CAD Datast Threehold	Mana	V _{CHGIN} = V _{CAP} rising	3.15	3.40	3.60		
CAP Detect Threshold	V _{CAP_DET}	V _{CHGIN} = V _{CAP} falling	2.60	2.80	3.00	V	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
CAP Detect Threshold Hysteresis	V _{CAP_DET_H}				600		mV
CHGIN Detect	Valiant PET	V _{CHGIN} rising		4.00	4.15	4.30	- V
Threshold	VCHGIN_DET	V _{CHGIN} falling		3.20	3.30	3.40	v
CHGIN Detect Threshold Hysteresis	V _{CHGIN_DET_} H				850		mV
CHGIN Detection	touonu prz	CHGIN insertion			108		ms
Debounce Time	^t CHGIN_DET	CHGIN detachment	t		100		1115
			V _{SYS} rising, VSysUvlo = 00	2.65	2.75	2.85	
			V _{SYS} falling, VSysUvlo = 00	2.60	2.70	2.80	
SYS UVLO Threshold	V _{SYS_UVLO}	Device Specific (see <u>Table 8</u>)	V _{SYS} falling, VSysUvlo = 01	2.80	2.90	3.00	V
			V _{SYS} falling, VSysUvlo = 10	2.90	3.00	3.10	
			V _{SYS} falling, VSysUvlo = 11	3.10	3.20	3.30	
SYS UVLO Threshold Hysteresis	V _{SYS_UVLO_H}				50		mV
SYS UVLO Falling Debounce Time	t _{SYS_UVLO_F}	V _{SYS} falling			20		μs
BAT OCP Threshold	IBAT_OCP_AC	I _{SYS} rising, thresho 400mA in 200mA st (see IBatOc in <u>Tabl</u>	teps, device specific	-50		+50	
Accuracy	C	I _{SYS} rising, thresho 1.6A in 200mA step IBatOc in <u>Table 8</u>)	ld from 600mA to s, device specific (see	-40		+40	- %
BAT OCP Threshold Hysteresis	IBAT_OCP_H				7		%
BAT OCP Rising Debounce Time	^t BAT_OCP_RD	I _{SYS} rising			50		ms
OVP AND INPUT CURR	ENT LIMITER		·				
CHGIN Overvoltage Threshold	V _{CHGIN_OV}	V _{CHGIN} rising		7.2	7.5	7.8	V
CHGIN Overvoltage Threshold Hysteresis	V _{CHGIN_OV_H}				200		mV
CHGIN-SYS Valid Trip Point	V _{CHGIN_SYS_} TP	V _{CHGIN} - V _{SYS} risiı	ng	30	145	290	mV
CHGIN-SYS Valid Trip Point Hysteresis	V _{CHGIN_SYS_} TP_H				275		mV

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS	
Input Overcurrent Max			Device Specific	t < t _{ILIM_BLANK} , ILimMax = 0	400	450	500	m (
Limit	LIM_MAX	(see <u>Table 8</u>)	t < t _{ILIM_BLANK} , ILimMax = 1	800	1000	1250	mA	
		ILimCntl = 000			50			
		ILimCntl = 001			90			
		ILimCntl = 010			150			
Innut Current Limit		ILimCntl = 011			200			
Input Current Limit	ILIM	ILimCntl = 100			300		mA	
		ILimCntl = 101			400			
		ILimCntl = 110		400	450	500		
		ILimCntl = 111		900	1000	1100		
		ILimBlank = 00			0.0			
Input Current-Limit		ILimBlank = 01			0.5			
Blanking Time	^t ILIM_BLANK	ILimBlank = 10			1.0		ms	
		ILimBlank = 11			10.0		1	
SYS Regulation Voltage	V _{SYS_REG}			V _{BAT_R} EG ⁺ 0.14	V _{BAT_RE} _G + 0.20	V _{BAT_R} EG ⁺ 0.26	V	
SYS Regulation-Voltage Dropout	V _{CHGIN} SYS_ REG				40		mV	
CHGIN to SYS On Resistance	R _{CHGIN_SYS}				0.37	0.66	Ω	
Input Current Soft-Start Time	tILIM_SFT				1		ms	
			TShdn = 000		50			
			TShdn = 001		60			
			TShdn = 010		70			
Thermal Shutdown	- -	Device Specific	TShdn = 011		80		*0	
Temperature	TCHG_SHDN	(see Table 8)	TShdn = 100		90		°C	
			TShdn = 101		100			
		TShdn = 110			110		1	
			TShdn = 111		120			
CHGIN Boot Retry Timeout	t _{CHG_RETRY_} TMO	ChgAlwTry = 1, De <u>Table 8</u>)	vice Specific (see		0.5		S	
BATTERY CHARGER								
BAT to SYS On Resistance	R _{BAT_SYS}	V _{BAT} = 4.2V, I _{BAT}	= 300mA		80	140	mΩ	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

 $(V_{BAT} = V_{FGBAT} = V_{SYS_UVLO} (falling) to +5.5V, V_{CHGIN} = unconnected or V_{CHGIN_DET} to +28.0V, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_A = +25^{\circ}C, V_{BAT} = 3.7V, V_{CHGIN} = 5.0V, C_{CHGIN_EFF} = 1\muF, C_{VDIG_EFF} = 1\muF, C_{CAP_EFF} = 1\muF, C_{SYS_EFF} = 10\muF, C_{BAT_EFF} = 1\muF, C_{BK_OUT_EFF} = 10\muF, C_{L_IN} = 1\muF, C_{L_OUT_EFF} = 1\muF, C_{BBOUT_EFF} = 8.8\muF, C_{BSTOUT_EFF} = 10\muF, L_{BK_OUT} = 2.2\muH, L_{BBOUT} = 2.2\muH, L_{BSTOUT_EFT} = 4.7\muH. Limits are 100\% tested at T_A = +25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL	CO	NDITIONS	MIN	TYP	MAX	UNITS	
Thermal Regulation Temperature	T _{CHG_LIM}				T _{CHG_S} _{HDN} - 3		°C	
BAT to SYS Switch On Threshold	VBAT_SYS_ON	V_{SYS} falling, mea	asured as V_{BAT} - V_{SYS}	10	19	35	mV	
BAT to SYS Switch Off Threshold	V _{BAT_SYS_OF}	V _{SYS} rising, mea	sured as V_{BAT} - V_{SYS}	-3	-1	0	mV	
SYS to BAT Charge Current Reduction Threshold	V _{SYS_BAT_RE} G	Measured as V _{SV} 000, V _{BAT} > 3.6V	_{YS} - V _{BAT} , SysMinVIt = /		100		mV	
			SysMinVIt = 000		3.6			
			SysMinVIt = 001		3.7			
			SysMinVIt = 010		3.8			
Minimum CVC Valtage		V 2 AV	SysMinVIt = 011		3.9			
Minimum SYS Voltage	V _{SYS_LIM}	V _{BAT} < 3.4V	SysMinVIt = 100		4.0		V	
			SysMinVIt = 101		4.1		-	
			SysMinVIt = 110		4.2			
			SysMinVIt = 111		4.3			
Charger Current Soft- Start Time	^t ICHG_SFT				1		ms	
		IPChg = 00			0.05 x I _{FCHG}			
Precharge Current		IPChg = 01		0.09 x I _{FCHG}	0.10 x I _{FCHG}	0.11 x I _{FCHG}		
	IPCHG	IPChg = 10			0.20 x I _{FCHG}		- mA	
		IPChg = 11	PChg = 11		0.30 x I _{FCHG}			
			VPChg = 000		2.10			
			VPChg = 001		2.25			
			VPChg = 010		2.40			
Drochargo Throchold			VPChg = 011		2.55		v	
Precharge Threshold	V _{BAT_PCHG}	V _{BAT} rising	VPChg = 100		2.70		v	
			VPChg = 101		2.85		_	
			VPChg = 110		3.00			
			VPChg = 111		3.15			
Precharge Threshold Hysteresis	V _{BAT_PCHG_H}				90		mV	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
			ChgStepRise = 0000		3.80		
			ChgStepRise = 0001		3.85		
			ChgStepRise = 0010		3.90		
			ChgStepRise = 0011		3.95		
Step-Charge Threshold			ChgStepRise = 0100		4.00		
			ChgStepRise = 0101		4.05		
			ChgStepRise = 0110		4.10		
	VBAT_STPCHG	V _{BAT} rising	ChgStepRise = 0111		4.15		
			ChgStepRise = 1000		4.20		
			ChgStepRise = 1001		4.25		
			ChgStepRise = 1010		4.30		
			ChgStepRise = 1011		4.35		
			ChgStepRise = 1100		4.40		
			ChgStepRise = 1101		4.45		
			ChgStepRise = 1110		4.50		
			ChgStepRise = 1111		4.55		
		ChgStepHys = 000			100		
		ChgStepHys = 001			200		
Step-Charge Threshold	VBAT_STPCHG	ChgStepHys = 010			300		mV
Hysteresis	_H	ChgStepHys = 011			400		
		ChgStepHys = 100			500		
		ChgStepHys = 101			600]

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

 $(V_{BAT} = V_{FGBAT} = V_{SYS_UVLO} (falling) to +5.5V, V_{CHGIN} = unconnected or V_{CHGIN_DET} to +28.0V, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_A = +25^{\circ}C, V_{BAT} = 3.7V, V_{CHGIN} = 5.0V, C_{CHGIN_EFF} = 1\muF, C_{VDIG_EFF} = 1\muF, C_{CAP_EFF} = 1\muF, C_{SYS_EFF} = 10\muF, C_{BAT_EFF} = 1\muF, C_{BK_OUT_EFF} = 10\muF, C_{L_IN} = 1\muF, C_{L_OUT_EFF} = 1\muF, C_{BBOUT_EFF} = 8.8\muF, C_{BSTOUT_EFF} = 10\muF, L_{BK_OUT} = 2.2\muH, L_{BBOUT} = 2.2\muH, L_{BSTOUT} = 4.7\muH. Limits are 100\% tested at T_A = +25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
		ChglStep = 000		0.2 x I _{FCHG}				
Fast-Charge Current Reduction Due to Step Charge		ChglStep = 001		0.3 x I _{FCHG}				
		ChglStep = 010		0.4 x I _{FCHG}				
	IFCHG_STPCH	ChglStep = 011		0.5 x I _{FCHG}		mA		
	G	ChglStep = 100		0.6 x I _{FCHG}				
		ChglStep = 101		0.7 x I _{FCHG}				
		ChglStep = 110		0.8 x I _{FCHG}				
		ChglStep = 111		I _{FCHG}				
ISET Current Gain Factor	K _{ISET}			2000		A/A		
ISET Regulation Voltage	VISET			1		V		
		R _{ISET} = 400kΩ		5				
BAT Fast-Charge Current Set Range	IFCHG	R _{ISET} = 40kΩ	45	50	55	mA		
		R _{ISET} = 4kΩ		500		7		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
		ChgBatReg = 0000			4.0500		
		ChgBatReg = 0001			4.1000		
		ChgBatReg = 0010			4.1500		
			T _A = 25°C	4.1853	4.2000	4.2147	
		ChgBatReg = 0011	$T_A = -5^{\circ}C$ to $+50^{\circ}C$	4.1769	4.2000	4.2231	
				4.1622	4.2000	4.2378	
		ChgBatReg = 0100			4.2500		
		ChgBatReg = 0101			4.3000		
Battery-Regulation		ChgBatReg = 0110			4.3500		V
Voltage	V _{BAT_REG}		T _A = 25°C	4.3846	4.4000	4.4154	
			$T_A = -5^{\circ}C$ to $+50^{\circ}C$	4.3758	4.4000	4.4242	
				4.3604	4.4000	4.4396	
		ChgBatReg = 1000	T _A = 25°C	4.4344	4.4500	4.4656	
			$T_A = -5^{\circ}C$ to $+50^{\circ}C$	4.4255	4.4500	4.4745	
				4.4099	4.4500	4.4901	
		ChgBatReg = 1001			4.5000		
		ChgBatReg = 1010		4.5500 4.6000			
		ChgBatReg = 1011					
		ChgBatReChg = 00		70			
Battery-Recharge		ChgBatReChg = 01			120		mV
Threshold	VBAT_RECHG	ChgBatReChg = 10			170		mv
		ChgBatReChg = 11			220		
		PChgTmr = 00			30		
Maximum Precharge		PChgTmr = 01			60		
Time	^t PCHG	PChgTmr = 10			120		min
		PChgTmr = 11			240		
		FChgTmr = 00			75		
Maximum Fast-Charge	t	FChgTmr = 01		150			
Time	tFCHG -	FChgTmr = 10		300			— min
		FChgTmr = 11			600		1

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
		IChgDone = 00		0.050 x I _{FCHG}				
Charge Done		IChgDone = 01	0.085 x I _{FCHG}	0.100 x I _{FCHG}	0.115 x I _{FCHG}			
Qualification	ICHG_DONE	IChgDone = 10		0.200 x I _{FCHG}		mA		
		IChgDone = 11		0.300 x ^I FCHG				
		MtChgTmr = 00		0				
Maximum Maintain	4	MtChgTmr = 01		15				
Charge Time	^t мтснg	MtChgTmr = 10		30				
		MtChgTmr = 11		60				
Timer Accuracy	t _{CHG_ACC}		-10		+10	%		
Fast-Charge Timer Extend Current Threshold	IFCHG_TEXT	See Figure 32		50		%I _{FCHG}		
Fast-Charge Timer Suspend Current Threshold	IFCHG_TSUS	See Figure 32		20		%I _{FCHG}		
		ChgCool/Room/WarmBatReg = 00		V _{BAT_RE} _G - 0.15				
Battery Regulation Voltage Reduction Due to Temperature	V _{BAT_REG_JT}	ChgCool/Room/WarmBatReg = 01		V _{BAT_RE} G - 0.1				
	A	ChgCool/Room/WarmBatReg = 10		V _{BAT_RE} _G - 0.05				
		ChgCool/Room/WarmBatReg = 11		V _{BAT_RE} G				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

 $(V_{BAT} = V_{FGBAT} = V_{SYS_UVLO} (falling) to +5.5V, V_{CHGIN} = unconnected or V_{CHGIN_DET} to +28.0V, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_A = +25^{\circ}C, V_{BAT} = 3.7V, V_{CHGIN} = 5.0V, C_{CHGIN_EFF} = 1\muF, C_{VDIG_EFF} = 1\muF, C_{CAP_EFF} = 1\muF, C_{SYS_EFF} = 10\muF, C_{BAT_EFF} = 1\muF, C_{BK_OUT_EFF} = 10\muF, C_{L_IN} = 1\muF, C_{L_OUT_EFF} = 1\muF, C_{BBOUT_EFF} = 8.8\muF, C_{BSTOUT_EFF} = 10\muF, L_{BK_OUT} = 2.2\muH, L_{BBOUT} = 2.2\muH, L_{BSTOUT} = 4.7\muH. Limits are 100\% tested at T_A = +25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		ChgCool/Room/WarmIFChg = 000		0.20 x I _{FCHG}		
		ChgCool/Room/WarmIFChg = 001		0.30 x I _{FCHG}		
		ChgCool/Room/WarmIFChg = 010 0.40 x IFCHG				
Fast-Charge Current Reduction Due to	IFCHG_JTA	ChgCool/Room/WarmIFChg = 011		0.50 x I _{FCHG}		mA
Temperature		ChgCool/Room/WarmIFChg = 100		0.60 x I _{FCHG}		
		ChgCool/Room/WarmIFChg = 101		0.70 x I _{FCHG}		
		ChgCool/Room/WarmIFChg = 110		0.80 x I _{FCHG}		
		ChgCool/Room/WarmIFChg = 111		IFCHG		
BAT UVLO Threshold	VBAT_UVLO	V_{BAT} rising, valid only when CHGIN is present, when $V_{BAT} < V_{BAT}_{UVLO}$ the BAT to SYS switch opens and BAT is connected to SYS through a diode	1.95	2.05	2.15	v
BAT UVLO Threshold Hysteresis	VBAT_UVLO_H			50		mV
BAT Pulldown Resistance	R _{BAT_PD}	BatPD = 1		15		kΩ
HARVESTER INTERACT	TION					
Harvester Interaction Comparator Quiescent Current	IHARV_CMP_Q	V _{BAT} = 3.7V		0.25		μA
Harvester Interaction	I _{HARV_BAT_S}	V _{BAT} = 4.2V, I _{SYS} = 0μA		0.65		μA
Ideal BAT to SYS Diode Quiescent Current	YS_DIO_Q	V _{BAT} = 4.2V, I _{SYS} = 10mA		12		
Harvester Interaction SYS to BAT Diode Drop in POR / SEAL Mode	V _{HARV_SYS_B} AT_DIO_PORS EAL	POR condition, V _{BAT} = 2.1V, I _{SYS} = -20mA		0.6		v

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

 $(V_{BAT} = V_{FGBAT} = V_{SYS_UVLO} (falling) to +5.5V, V_{CHGIN} = unconnected or V_{CHGIN_DET} to +28.0V, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_A = +25^{\circ}C, V_{BAT} = 3.7V, V_{CHGIN} = 5.0V, C_{CHGIN_EFF} = 1\muF, C_{VDIG_EFF} = 1\muF, C_{CAP_EFF} = 1\muF, C_{SYS_EFF} = 10\muF, C_{BAT_EFF} = 1\muF, C_{BK_OUT_EFF} = 10\muF, C_{L_IN} = 1\muF, C_{L_OUT_EFF} = 1\muF, C_{BBOUT_EFF} = 8.8\muF, C_{BSTOUT_EFF} = 10\muF, L_{BK_OUT} = 2.2\muH, L_{BBOUT} = 2.2\muH, L_{BSTOUT_EFF} = 4.7\muH. Limits are 100\% tested at T_A = +25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
			HrvBatReg = 0000	3.9710	4.0500	4.0723		
			HrvBatReg = 0001	4.0200	4.1000	4.1226		
			HrvBatReg = 0010	4.0691	4.1500	4.1728		
			HrvBatReg = 0011	4.1181	4.2000	4.2231		
		V _{BAT} rising, T _A =	HrvBatReg = 0100	4.1671	4.2500	4.2734	1	
Harvester Interaction	V _{HARV_BAT_R}		HrvBatReg = 0101	4.2161	4.3000	4.3237		
Battery Charging Stop Threshold	EG	-18°C,+80°C	HrvBatReg = 0110	4.2652	4.3500	4.3739	V	
			HrvBatReg = 0111	4.3142	4.4000	4.4242		
			HrvBatReg = 1000	4.3632	4.4500	4.4745		
			HrvBatReg = 1001	4.4122	4.5000	4.5248		
			HrvBatReg = 1010	4.4613	4.5500	4.5750		
			HrvBatReg = 1011	4.5103	4.6000	4.6253		
Harvester Interaction	V _{HARV_BAT_R} ECHG			HrvBatReChg = 00		V _{HARV} _ BAT_RE _G - 0.07		
		V _{BAT} falling	HrvBatReChg = 01		V _{HARV} _ BAT_RE _G - 0.12		V	
Battery Charging Restart Threshold			VBAT laning	HrvBatReChg = 10		V _{HARV} _ BAT_RE _G - 0.17		V
			HrvBatReChg = 11		V _{HARV} _ BAT_RE _G - 0.22			
		HrvCool/Room/Warr	nBatReg = 00		V _{HARV_} BAT_RE _G - 0.15			
Harvester Interaction Battery Charging Stop	VHARV_BAT_R	HrvCool/Room/Warr	nBatReg = 01		V _{HARV} _ BAT_RE _G - 0.10		V	
Threshold Reduction Due to Temperature	EG_JTA	HrvCool/Room/Warr	nBatReg = 10		V _{HARV} _ BAT_RE _G - 0.05		V	
		HrvCool/Room/Warr	nBatReg = 11		V _{HARV} _ BAT_RE G			
Harvester Interaction Ideal BAT-to-SYS Diode Regulation	V _{HARV_BAT_S} YS_DIO_REG	V _{BAT} = 4.2V, I _{SYS} = as V _{BAT} - V _{SYS}	100mA, measured		28		mV	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

 $(V_{BAT} = V_{FGBAT} = V_{SYS_UVLO} (falling) to +5.5V, V_{CHGIN} = unconnected or V_{CHGIN_DET} to +28.0V, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_A = +25^{\circ}C, V_{BAT} = 3.7V, V_{CHGIN} = 5.0V, C_{CHGIN_EFF} = 1\muF, C_{VDIG_EFF} = 1\muF, C_{CAP_EFF} = 1\muF, C_{SYS_EFF} = 10\muF, C_{BAT_EFF} = 1\muF, C_{BK_OUT_EFF} = 10\muF, C_{L_IN} = 1\muF, C_{L_OUT_EFF} = 1\muF, C_{BBOUT_EFF} = 8.8\muF, C_{BSTOUT_EFF} = 10\muF, L_{BK_OUT} = 2.2\muH, L_{BBOUT} = 2.2\muH, L_{BSTOUT} = 4.7\muH. Limits are 100\% tested at T_A = +25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Harvester Interaction Ideal BAT-to-SYS Diode Load Transient	VHARV_BAT_S YS_DIO_LOAD TRAN	V _{BAT} = 4.2V, I _{SYS} = 1µs, measured as V	from -20mA to 1A in _{BAT} - V _{SYS}		165		mV
Harvester Interaction Ideal BAT-to-SYS Diode Release Delay	^t HARV_BAT_S YS_DIO_REL	V_{BAT} = 4.2V, I_{SYS} = 1µs, measured as th I_{BAT} goes negative t -50µA			110		μs
SFOUT LDO							
		SFOUTVSet = 0 (5V I _{SFOUT} = 0mA), V _{CHGIN} = 6V,	4.85	5.00	5.15	
SFOUT LDO Voltage	N	SFOUTVSet = 0 (5V I _{SFOUT} = 15mA), V _{CHGIN} = 5V,		4.90		
	V _{SFOUT}	SFOUTVSet = 1 (3.3 I _{SFOUT} = 0mA		3.15	3.30	3.45	
		SFOUTVSet = 1 (3.3 I _{SFOUT} = 15mA	3V), V _{CHGIN} = 5V,		3.29		
SFOUT OVP Voltage	V _{SFOUT_OV}	SFOUT LDO is turne above V _{CHGIN_OV} th			V _{CHGIN} _ OV		v
SFOUT Thermal Limit	T _{SFOUT_LIM}			150		°C	
THERMISTOR MONITOR	2						
THM Monitoring Quiescent Current	ITHM_Q	VDIG to TPU switch measurement runnin	-		190		μA
Harvester Interaction	Vhrv_thm_h	Device Specific	V _{THM} falling, JEITASet = 0, HrvEn = 1 and Harvester Actively Charging	12.51	14.51	16.51	9/ 1/
THM Hot Threshold	ŌT ¯	(see JEITASet and HrvEn in <u>Table 8</u>)	V _{THM} falling, JEITASet = 1, HrvEn = 1 and Harvester Actively Charging	21.53	23.53	25.53	- %V _{DIG}
THM Hot Throohold	N	Device Specific	V _{THM} falling, JEITASet = 0, No Harvester mode	21.53	23.53	25.53	9/) /
THM Hot Threshold V _{THM_HOT}	(see JEITASet in <u>Table 8</u>)	V _{THM} falling, JEITASet = 1, No Harvester mode	30.94	32.94	34.94	- %V _{DIG}	
THM Warm Threshold		Device Specific (see JEITASet in	V _{THM} falling, JEITASet = 0	30.94	32.94	34.94	%\/p+c
	V _{THM_WARM} (see JEITASet in <u>Table 8</u>)		V _{THM} falling, JEITASet = 1	48.20	50.20	52.20	%V _{DIG}
THM Cool Threshold	V _{THM_COOL}	V _{THM} rising		62.31	64.31	66.31	%V _{DIG}

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
THM Cold Threshold	V _{THM_COLD}	V _{THM} rising, No Har	vester mode	71.73	73.73	75.73	%V _{DIG}
Harvester THM Cold Threshold	VHRV_THM_C OLD	Device Specific (see HrvEn in <u>Table 8</u>)	V _{THM} rising, HrvEn = 1 and Harvester Actively Charging	79.57	81.57	83.57	%V _{DIG}
THM Disable Threshold	V _{THM_DIS}	V _{THM} rising		90.94	92.94	94.94	%V _{DIG}
THM Threshold Hysteresis	V _{THM_H}				60		mV
THM Input Leakage	ITHM_LK	V _{THM} = 0V to 5.5V, contribution not inclu	Fuel Gauge ded	-1		+1	μA
TPU Input Leakage	ITPU_LK	VDIG to TPU switch to 5.5V	VDIG to TPU switch disabled, V _{TPU} = 0V			+1	μA
V _{DIG} -to-TPU Switch Resistance	R _{VDIG_TPU}	3mA through the switch			3	10	Ω
IVMON MULTIPLEXER		1					1
		No load on IVMON pin. Inputs:	IVMONRatioConfig = 00		100.0		
IVMON Multiplexer Output Ratio	VIVMON_DIV_	BAT, SYS, BK10UT, BK20UT, BK30UT, L10UT, L20UT, SF0UT,	IVMONRatioConfig = 01		50.0		
	RT		IVMONRatioConfig = 10		33.3		%
			IVMONRatioConfig = 11		25.0		
IVMON Multiplexer		10µA load on IVMON pin. Inputs Charger Current, BAT, SYS, BK1OUT, BK2OUT, BK3OUT, L1OUT, L2OUT, SFOUT, BBOUT	IVMONRatioConfig = 00		5.5		- κΩ
Output Impedance	RIVMON_DIV	1µA load on IVMON pin. Inputs	IVMONRatioConfig = 01		31.0		- K22
		Charger Current, BAT, SYS,	IVMONRatioConfig = 10		28.0]
	BK1OUT, BK2OUT, BK3OUT, L1OUT, L2OUT, SFOUT, BBOUT	IVMONRatioConfig = 11		24.0			
IVMON Input Leakage	I _{IVMON_LK}	IVMON multiplexer of resistance disabled,	lisabled, pulldown V _{IVMON} = 0V to 5.5V	-1		+1	μA

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN T	YP MAX	UNITS	
IVMON Multiplexer Off- State Pulldown Resistance	RIVMON_OFF	IVMON multiplexer disabled, pulldown resistance enabled	5	9.0	kΩ	
SAR ADC						
ADC Quiescent Current	I _{ADC_Q}	Conversion running	g	30	μA	
ADC HDIN Divider Resistance	R _{ADC_HDIN_D}	HDIN conversion running	2	.20	MΩ	
ADC IVMON Divider Resistance	RADC_IVMON_ DIV	IVMON conversion running	2	.20	MΩ	
ADC CHGIN Divider Resistance	R _{ADC_CHGIN_} DIV	CHGIN conversion running	1	.10	MΩ	
ADC CPOUT Divider Resistance	R _{ADC_CPOUT} _DIV	CPOUT conversion running	0	.82	MΩ	
ADC BSTOUT Divider Resistance	RADC_BSTOU T_DIV	BSTOUT conversion running	0	.89	MΩ	
ADC HDIN Least Significant Bit	V _{ADC_HDIN_L} SB		21	.57	mV	
ADC IVMON Least Significant Bit	V _{ADC_IVMON_} LSB		21	.57	mV	
ADC CHGIN Least Significant Bit	V _{ADC_CHGIN_} LSB		32	2.35	mV	
ADC CPOUT Least Significant Bit	VADC_CPOUT _LSB		32	2.35	mV	
ADC BSTOUT Least Significant Bit	VADC_BSTOU T_LSB		82	2.35	mV	
ADC HDIN Absolute	V _{ADC_HDIN_A}	V _{HDIN} = 2.6V	-65	+65		
Sensing Worst-Case Accuracy	200_11011_0	V _{HDIN} = 5.5V	-123	+123	mV	
ADC IVMON Absolute		V _{IVMON} = 1.0V	-34	+34		
Sensing Worst-Case Accuracy	VADC_IVMON_ ACC	V _{IVMON} = 5.5V	-123	+123	mV	
ADC CHGIN Absolute		V _{CHGIN} = 3.0V	-79	+79		
Sensing Worst-Case Accuracy	VADC_CHGIN_ ACC	V _{CHGIN} = 8.0V	-178	+178	_ mV	
ADC CPOUT Absolute	VADC CPOUT	V _{CPOUT} = 5.0V	-118	+118		
Sensing Worst-Case Accuracy	ADC_CPOUT	V _{CPOUT} = 6.6V	-150	+150	mV	
ADC BSTOUT Absolute	VADC BSTOU	V _{BSTOUT} = 3.0V	-115	+115		
Sensing Worst-Case Accuracy	T_ACC	V _{BSTOUT} = 21.0V	-465	+465	mV	
ADC Conversion Time	^t ADC_CONV	1.1ms (typ) additional delay prior to each 1 st conversion	1	32	μs	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
HAPTIC DRIVER	1					
Input Voltage	V _{HDIN}		2.6		5.5	V
Quiescent Current	I _{HD_Q}	V _{DRP} / V _{DRN} = 0V to V _{HDIN}		1.25		mA
		V _{HDIN} rising	2.65	2.75	2.85	
HDIN UVLO Threshold	V _{HDIN_UVLO}	V _{HDIN} falling	2.60	2.70	2.80	V
HDIN UVLO Threshold Hysteresis	V _{HDIN_UVLO_} H			50		mV
H-Bridge PWM Output Frequency	fhd_pwm_out		22.5	25.0	27.5	kHz
H-Bridge PWM Output Duty-Cycle Resolution	D _{HD_PWM_OU} T	7 bits		V _{HDIN} / 128		%V _{HDIN}
H-Bridge Output-		HptOffImp = 1		15		kΩ
Impedance in Off State	R _{HD_OFF}	HptOffImp = 0		R _{HD_ON} _LS		Ω
H-Bridge Output Leakage in High-Z State	I _{HD_LK}	During back EMF detection, V _{DRP} / V _{DRN} = 0V to V _{HDIN}	-1		+1	μA
H Bridge On Desistence	R _{HD_ON_HS}	High-side pMOS switch on, 300mA load	0.04	0.18	0.50	Ω
H-Bridge On Resistance	R _{HD_ON_LS}	Low-side nMOS switch on, 300mA load	0.04	0.18	0.50	
H-Bridge Overcurrent- Protection Threshold	IHD_OCP	Rising current through high-side or low- side switch	600	1000	1500	mA
H-Bridge Overcurrent- Protection Threshold Hysteresis	IHD_OCP_H			130		mA
H-Bridge Thermal- Shutdown Temperature Threshold	T _{HD_SHDN}	Rising temperature		150		°C
H-Bridge Thermal- Shutdown Temperature Threshold Hysteresis	THD_SHDN_H			25		°C
PPWM Mode Input Frequency	fhd_ppwm_in		10		250	kHz
LRA Resonance Frequency Tracking Range	^f HD_LRA	See the <u>Haptic Driver</u> section	max(200 k/ IniGss[1 1:0],100)		min(800 k/ IniGss[1 1:0],100 0)	Hz
Startup Latency	thd_start	Time from enabling to vibration response		6.5	7.5	ms
BUCK1&2						
Input-Voltage Range	V _{IN}	Input voltage = V _{SYS}	2.7		5.5	V

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		10mV step resolution	0.55		1.18	
Output-Voltage Range	V _{BK OUT}	25mV step resolution	0.55		2.125	V
	_	50mV step resolution	0.55		3.7	
Quiescent-Supply	I _{Q_BK}	I _{BK_OUT} = 0, V _{SYS} = 3.7V, V _{BK_OUT} = 1.2V, Buck_VStep = 25mV, Buck_FPWM = 0		0.35	0.70	μA
Current	IQ_BK_PWM	I _{BK_OUT} = 0, V _{SYS} = 3.7V, V _{BK_OUT} = 1.2V, Buck_FPWM = 1, L = 2.2µH, Buck_ISet = 175mA		2		mA
Shutdown Supply Current with Active Discharge Enabled	^I SD_ВК	Buck disabled, Buck_ActDsc = 1		60		μA
Output Average Voltage Accuracy	ACC_BK	Buck_IntegDis = 0, CCM operation, $V_{BK_OUT} \le 3.4V$	-2.5		+2.5	%
Peak-to-Peak Voltage Ripple	V _{RPP_BK}	$\begin{array}{l} C_{BK_OUT_EFF} \geq 4\mu\text{F}, \ I_{BK_OUT} = 1\text{mA}, \ L\\ = 2.2\mu\text{H}, \ Buck_lset = 150\text{mA}, \ V_{OUT} = \\ 1.2V, \ V_{SYS} = 3.7V \end{array}$		10		mV
Nominal Peak Current Set Range	IPSET_BK	25mA step resolution	0		375	mA
Load Transient Response	V _{LOAD_TRANS} _BK	10μA to 300mA at 1A/μs, C _{BK_EFF} = 9μF, V _{BK_OUT} = 1.2V		70		mV
Load Regulation Error	V _{LOAD_REG_B} K_	Buck_IAdptDis = 0, Buck_IntegDis = 0 I _{BK_OUT} = 500mA		-0.5		%
Line Regulation Error	V _{LINE_REG_B} K_	V_{BK_OUT} = 1.2V, V_{SYS} from 2.7V to 5.5V, I_{BK_OUT} = 200mA, C_{BK_OUT} > 9µF		±5		mV
Maximum Operative Output Current	I _{BK_MAX}	Load regulation error = -5%, Buck_IntegDis = 0	400			mA
Valley Current Limit During Short-Circuit to GND	I _{SHRT_BK}	V _{BK_OUT} = 0V		1		A
Valley Current Limit During Startup	IVLY_BK_STUP	During startup before PGOOD = 1 condition is achieved		250		mA
BKLX Leakage Current	ILK_BKLX	Buck disabled	-1		+1	μA
Active Discharge Current	IACTD_BK	V _{BK_OUT} = 0.7V	8	16	28	mA
Passive Discharge Resistance	R _{PSV_BK}		6	10	14	kΩ
Full Turn-On Time	^t оn_вк	Time from enable to PGOOD and full current capability. No load. 1 Murata GRM155R60J226ME11 22µF output capacitor		10		ms

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

 $(V_{BAT} = V_{FGBAT} = V_{SYS_UVLO} (falling) to +5.5V, V_{CHGIN} = unconnected or V_{CHGIN_DET} to +28.0V, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_A = +25^{\circ}C, V_{BAT} = 3.7V, V_{CHGIN} = 5.0V, C_{CHGIN_EFF} = 1\muF, C_{VDIG_EFF} = 1\muF, C_{CAP_EFF} = 1\muF, C_{SYS_EFF} = 10\muF, C_{BAT_EFF} = 1\muF, C_{BK_OUT_EFF} = 10\muF, C_{L_IN} = 1\muF, C_{L_OUT_EFF} = 1\muF, C_{BBOUT_EFF} = 8.8\muF, C_{BSTOUT_EFF} = 10\muF, L_{BK_OUT} = 2.2\muH, L_{BBOUT} = 2.2\muH, L_{BSTOUT} = 4.7\muH. Limits are 100\% tested at T_A = +25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Efficiency	EFFIC_BK	Buck_VSet = 1.2V, I _{BK_OUT} = 10mA, Inductor: Murata DFE201610E-2R2M		86		%
BKLX Rising/Falling	SLW_BK	Buck_LowEMI = 0		3		Mag
Slew Rate	SLW_BK_L	Buck_LowEMI = 1		0.6		V/ns
Thermal Shutdown Threshold	Т _{SHDN_} ВК			140		°C
BUCK3			•			
Input-Voltage Range	V _{IN}	Input voltage = V _{SYS}	2.7		5.5	V
		10mV step resolution	0.55		1.18	
Output-Voltage Range	V _{BK3OUT}	25mV step resolution	0.55		2.125	V
		50mV step resolution	0.55		3.7]
Quiescent Currhy	I _{Q_BK3}	I _{BK3OUT} = 0, V _{SYS} = 3.7V, V _{BK3OUT} = 3.3V, Buck3FPWM = 0		0.5	0.8	μA
Quiescent-Supply Current	I _{Q_BK3_PWM}	I _{BK3OUT} = 0, V _{SYS} = 3.7V, V _{BK3OUT} = 3.3V, Buck3FPWM = 1, L = 2.2µH, Buck3ISet = 175mA		1.5		mA
Shutdown Supply Current with Active Discharge Enabled	I _{SD_ВКЗ}	Buck3 disabled, Buck3ActDsc = 1		60		μΑ
Output Average-Voltage Accuracy	ACC_BK3	Buck3IntegDis = 0, CCM operation, $V_{BK3OUT} \le 3.4V$	-2.5		+2.5	%
Peak-to-Peak Voltage Ripple	V _{RPP_BK3}	C _{BK3OUT_EFF} ≥ 4µF, I _{BK3OUT} = 1mA; L = 2.2µH; Buck3Iset = 150mA, V _{OUT} = 1.2V, V _{SYS} = 3.7V		10		mV
Nominal Peak Current Set Range	IPSET_BK3	25mA step resolution	0		375	mA
Load Transient Response	VLOAD_TRANS _BK3	10μA to 300mA at 1A/μs, C _{BK3EFF} = 9μF, V _{BK3OUT} = 1.2V		70		mV
Load Regulation Error	V _{LOAD_REG_B} K3	Buck3IAdptDis = 0, Buck3IntegDis = 0, I _{BK3OUT} = 500mA		-0.5		%
Line Regulation Error	V _{LINE_REG_B} K3	V _{BK3OUT} = 3.3V, V _{SYS} from 5.5V to 3.4V, I _{BK3OUT} = 300mA, C _{BK3OUT} > 4μF, LDO mode assistant enabled		±100		mV
Maximum Operative Output Current	I _{ВК3_МАХ}	Load regulation error = -5%, Buck3IntegDis = 0	600			mA
Valley Current Limit During Short-Circuit to GND	ISHRT_BK3	V _{BK3OUT} = 0V		1.8		A
Valley Current Limit During Startup	IVLY_BK3_STU P	During startup before PGOOD = 1 condition is achieved		250		mA
BK3LX Leakage Current	ILK_BK3LX	Buck3 disabled			1	μA

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Active Discharge Current	I _{ACTD_BK3}	V _{BK3OUT} = 0.7V	8	16	28	mA
Passive Discharge Resistance	R _{PSV_BK3}		6	10	14	kΩ
Full Turn-On Time	^t on_вкз	Time from enable to PGOOD and full current capability. No load. 1 Murata GRM155R60J226ME11 22µF output capacitor		10		ms
Efficiency	EFFIC_BK3	Buck3VSet = 3.3V, I _{BK3OUT} = 250mA, Inductor: Murata DFE201610E-2R2M		95		%
BK3LX Rising/Falling	SLW_BK3	Buck3LowEMI = 0		3		
Slew Rate	SLW_BK3_L	Buck3LowEMI = 1		0.6		V/ns
Thermal Shutdown Threshold	Т _{SHDN_BK3}			140		°C
Supply vs. BOUT Dropout threshold	VIN_BOUT_DR POUT_TH_F	Supply falling, Buck3VSet = 3.3V	250	330	400	mV
LDO1 (TYPICAL VALUE	S ARE AT VL1IN	=1.2V, V _{L1OUT} =1V)				
lanut) (altaga		LDO mode	1		2	2V
Input Voltage	VIN_LDO1	Switch mode	0.7		2	
		LDO enabled, I _{L1OUT} = 0		1.0	2.2	
Quiescent-Supply	IQ_LDO1	LDO enabled, I _{L1OUT} = 0, switch mode		0.35	0.90	μA
Current	·Q_LDOT	LDO enabled, I _{L1OUT} = 0, LDO1_MPC0CNT = 1, MPC0 high		0.7	1.5	μ, τ
Quiescent-Supply Current in Dropout	IQ_LDO1_D	I _{L1OUT} = 0, V _{L1IN} = 1.2V, LDO1VSet = 0x1D (1.225V)		2.4	4.2	μA
Output Leakage	ILK_L1OUT	V _{L1OUT} = GND, LDO1 disabled		0.015	2.5	μA
Shutdown Supply Current with Active Discharge Enabled	ISD_LDO1	LDO1 disabled, LDO1ActDsc = 1		50		μA
Maximum Output Current	IL1OUT_MAX		50			mA
Output-Voltage Range	V _{L1OUT}	25mV step resolution	0.50		1.95	V
Output-Voltage Accuracy	ACC_LDO1	$(V_{L1OUT} + 0.2V) \le V_{L1IN} \le 2V, I_{L1OUT} =$ 1mA	-3.25		+3.25	%
Dropout Voltage	V _{DROP_LDO1}	V _{L1IN} = 1V, I _{L1OUT} = 50mA, LDO1VSet = 1V			70	mV
Line-Regulation Error	V _{LINEREG_LD} 01	$V_{L1IN} = (V_{L1OUT} + 0.2V)$ to 2V	-0.4		+0.4	%/V
Load-Regulation Error	V _{LOADREG_L} DO1	I _{L1OUT} = 100µA to 50mA		0.003	0.013	%/mA

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Line Transford	V _{LINETRAN_L}	V _{L1IN} = +1V to +2V, 200ns rise time		±45		
Line Transient	DO1	V _{L1IN} = +1V to +2V, 1µs rise time		±25		- mV
Land Transient	VLOADTRAN_L	I _{L1OUT} = 0 to 10mA, 200ns rise time		80		
Load Transient	DO1	I _{L1OUT} = 0mA to 50mA, 200ns rise time		130		- mV
Passive-Discharge Resistance	R _{PD_LDO1}		5	10	15	kΩ
Active-Discharge Current	IAD_LDO1		7	25	55	mA
	R _{ON_LDO1}	V _{L1IN} = 1V, I _{L1OUT} = 50mA			1.1	
Switch Mode Resistance	R _{ON_LDO1_0p} 7	V _{L1IN} = 0.7V, I _{L1OUT} = 1mA			2.7	Ω
	^t ON_LDO1	I _{L1OUT} = 0, time from 10%–90% of final value		0.38		
Turn-On Time	ton_ldo1_sw	I _{L1OUT} = 0, time from 10%–90% of final value, switch mode		0.065		- ms
	^t ON_LDO1	I_{L1OUT} = 0mA, LDO1_MPC0CNT = 1, time from MPC0 rising to 90% of L1OUT final value, C _{L1OUT} = 10nF		580		ns
Short-Circuit Current		V_{L1IN} = 1.2V, V_{L1OUT} = GND		400	1000	
Limit	I _{SHRT_LDO1}	V _{L1IN} = 1.2V, V _{L1OUT} = GND, switch mode		305	1000	mA
Thermal-Shutdown Temperature	T _{SHDN_LDO1}			150		°C
Thermal-Shutdown Temperature Hysteresis	T _{SHDN_LDO1_} H			10		°C
L1IN UVLO		V _{L1IN} falling	0.53	0.77		- v
	VUVLO_LDO1	V _{L1IN} rising		0.78	1.00	
		10Hz to 100kHz, V _{L1IN} = 2V, V _{L1OUT} = 1.8V		120		
Output Noise	V _{NOISE_LDO1}	10Hz to 100kHz, V _{L1IN} = 2V, V _{L1OUT} = 1.0V		95		μV _{RMS}
		10Hz to 100kHz, V _{L1IN} = 2V, V _{L1OUT} = 0.5V		70		1
LDO2 (ALWAYS ON LDO	, TYPICAL VAL	UES ARE AT V _{L2IN} = +3.7V, V _{L2OUT} = +3V)			
		LDO mode	1.71		5.5	- v
Input Voltage	V _{IN_LDO2}	Switch mode	1.2	.2	5.5	
Quiescent-Supply	I _{Q_LDO2}	LDO enabled, I _{L2OUT} = 0µA		1.0	1.9	
Current	IQ_LDO2_SW	LDO enabled, I _{L2OUT} = 0µA, switch mode		0.35	0.9	μΑ

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
Quiescent-Supply Current in Dropout	IQ_LDO2_D	I _{L2OUT} = 0μA, V _{L2I} = 0x15 (+3V)	<mark>∖</mark> = 2.9V, LDO2VSet		1.9	3.7	μΑ
Shutdown-Supply Current with Active Discharge Enabled	I _{SD_LDO2}	LDO2 disabled, LDO	D2ActDSC = 1		55		μA
Maximum Output		V _{L2IN} > 1.8V		100			- mA
Current	IL2OUT_MAX	V _{L2IN} ≤ 1.8V		50			
Maximum Output Current when Supplied from V _{CCINT}	IL2OUT_MAX_ VCCINT		/ _{BAT} > 3.2V, V _{L2OUT} = 1.8V, .DO2Supply = internal (see <u>Table 8</u>)				μA
Internal-Supply Switch	R _{ON_L2IN}		DO2Supply = internal (see Table 8), switch between V_{CCINT} and L2IN		7.3	11	kΩ
Output-Voltage Range	V _{L2OUT}	100mV step resoluti	on	0.9		4.0	V
Output-Voltage Accuracy	ACCLDO2	$V_{L2IN} = (V_{L2OUT} + I_{L2OUT} = 1mA$	0.5V) or higher,	-2.7		+2.7	%
Dropout Voltago		V _{L2IN} = 3.0V, LDO2 = 100mA	VSet = 3.1V, I _{L2OUT}			100	m)/
Dropout Voltage	V _{DROP_LDO2}	V _{L2IN} = 1.85V, LDC = 100mA	2VSet = 1.9V, I _{L2OUT}			130	- mV
Line-Regulation Error	V _{LINEREG_LD} 02	V _{L2IN} = (V _{L2OUT} + 1 1.8V	V _{L2IN} = (V _{L2OUT} + 0.5V) to 5.5V, V _{L2IN} ≥ 1.8V			+0.4	%/V
Load-Regulation Error	V _{LOADREG_L} DO2	+1.8V \leq V _{L2IN} \leq +5. to 100mA	5V, Ι _{L2OUT} = 100μΑ		0.002	0.007	%/mA
Line Transient	V _{LINETRAN_L}	V _{L2IN} = 4V to 5V, 20	00ns rise time		±35		- mV
	DO2	V _{L2IN} = 4V to 5V, 1	us rise time		±25		
Load Transient	VLOADTRAN_L	200ns rise time	I _{L2OUT} = 0mA to 10mA		100		- mV
	DO2		I _{L2OUT} = 0mA to 100mA		200		IIIV
Passive Discharge Resistance	R _{PD_LDO2}			5	10	15	kΩ
Active Discharge Current	I _{AD_LDO2}	V _{L2IN} = 3.7V		8	22	40	mA
	R _{ON_LDO2}		V _{L2IN} = 2.7V		0.4	0.7	
Switch-Mode Resistance		I _{L2OUT} = 100mA, switch mode	V_{L2IN} = 1.8V, I_{L2OUT} = 100mA, switch mode		0.65	1	Ω
	R _{ON_LDO2_sw}	I _{L2OUT} = 5mA, switch mode	V _{L2IN} = 1.2V		1.5	2.3	1

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

 $(V_{BAT} = V_{FGBAT} = V_{SYS_UVLO} (falling) to +5.5V, V_{CHGIN} = unconnected or V_{CHGIN_DET} to +28.0V, T_A = -40^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are at T_A = +25^{\circ}C, V_{BAT} = 3.7V, V_{CHGIN} = 5.0V, C_{CHGIN_EFF} = 1\muF, C_{VDIG_EFF} = 1\muF, C_{CAP_EFF} = 1\muF, C_{SYS_EFF} = 10\muF, C_{BAT_EFF} = 1\muF, C_{BK_OUT_EFF} = 10\muF, C_{L_IN} = 1\muF, C_{L_OUT_EFF} = 1\muF, C_{BBOUT_EFF} = 8.8\muF, C_{BSTOUT_EFF} = 10\muF, L_{BK_OUT} = 2.2\muH, L_{BBOUT} = 2.2\muH, L_{BSTOUT} = 4.7\muH. Limits are 100\% tested at T_A = +25^{\circ}C.) (Note 1)$

PARAMETER	SYMBOL	COND	TIONS	MIN	TYP	MAX	UNITS
		I _{L2OUT} = 0mA, time			1.5		
Turn-On Time	ton_ldo2	from 10% to 90% of final value	Switch mode		0.26		ms
Short-Circuit Current	I _{SHRT_LDO2}		V _{L2IN} = 5.5V	225	460	650	
Limit	ISHRT_LDO2_S W	V _{L2OUT} = GND	V _{L2IN} = 2.7V, switch mode	210	350 540		mA
Thermal-Shutdown Temperature	T _{SHDN_LDO2}				150		°C
Thermal-Shutdown Temperature Hysteresis	T _{SHDN_LDO2_} H				20		°C
L2IN UVLO		V _{L2IN} falling		1.05	1.35		v
	V _{UVLO_LDO2}	V _{L2IN} rising			1.36	1.69	v
		10Hz to 100kHz, V _{L2} 3.3V	_{IN} = 5V, V _{L2OUT} =		150		
Output Noise		10Hz to 100kHz, V _{L2} 2.5V	_{2IN} = 5V, V _{L2OUT} =		125		
output Noise	VNOISE_LDO2	10Hz to 100kHz, V _{L2} 1.2V	_{2IN} = 5V, V _{L2OUT} =		90		μV _{RMS}
		10Hz to 100kHz, V _{L2} 0.8V	_{2IN} = 5V, V _{L2OUT} =		80		
Ouput Leakage	ILK_L2OUT	V _{L2OUT} = GND, LDC	02 disabled	-1		+1	μA
BUCK-BOOST		-					
Input Voltage	V _{BBIN}	Input voltage = V _{SYS}		2.7		5.5	V
Output Voltage Set Range	V _{BBOUT}	50mV step resolutior valid voltage range	n, do not exceed the	2.6		5.5	V
Quiescent Supply Current	I _{Q_BB}	I _{BBOUT} = 0, V _{BBOUT}	- = 5V		2	4	μA
Shutdown Supply Current with Active Discharge Enabled	I _{SD_BB}	Buck-boost disabled	BBstActDsc = 1		60		μA
Maximum Output Operative Power	P _{MAX_BBOUT}	BBstlAdptDis = 0, V _E ≥ 3.2V, 7.5% load re	BBIN ≥ 3.2V, V _{BBOUT} gulation (Note 3)	1.5			W
Load-Regulation Error	LOAD_REG_ ERR	BBstlAdptDis = 0, BE P _{OUT} = 1.5W	3stVSet > 3.3V,		-3.5		%
Average Output-Voltage Accuracy	ACC_BBOUT	I _{BBOUT} = 1mA, C _{BB}	OUT_EFF ≥ 5µF	-3		3	%
Maximum Output Current During Startup	ILOAD_MAX_S TUP	V _{BBIN} > 3V, BBstlAd	ptDis = 0	85			mA
Startup Time	tSTUP	I _{LOAD} < I _{LOAD_MAX} V _{BBOUT} = 0V to fina	STUP, time from value		13		ms

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input-Supply Current During Startup	I _{BBIN_STUP}	V_{BBIN} = 3.6V, V_{BBOUT} = 5V, C_{BBOUT_EFF} = 10µF, I_{BBOUT} = 0		10		mA
Output UVLO Threshold	V _{BBOUT} UVL O	Falling edge (50mV hysteresis)		1.85	2.46	v
HVLX Leakage Current	ILK_BBHVLX		-1		+1	μA
LVLX Leakage Current	I _{LK_BBLVLX}		-1		+1	μA
Passive Discharge Resistance	R _{PSV_BB}		5	10	17	kΩ
Active Discharge Current	I _{ACTD_BB}	V _{BBOUT} = 2.5V	5	20	50	mA
BBOUT Pulldown Current	I _{PD_BB_E}	BBst Enabled; BBstVSet = 4V; V _{BBOUT} = 4.1V		300		nA
Thermal Shutdown Temp	T _{SHDN_BB}			150		°C
HV BOOST						
Input-Voltage Range	V _{BSTIN}	Input voltage = V _{SYS}	2.7		5.5	V
Output-Voltage Range	V _{BSTOUT}	250mV step resolution	5		20	V
Output-Voltage UVLO	V _{BSTOUT} UVL O	V _{BSTOUT} - V _{SYS} falling	-2.7	-2.2	-1.6	v
Quiescent-Supply Current	I _{Q_BST}	I _{BSTOUT} = 0, V _{SYS} = 3.7V, BstVSet = 5V, T _A = 25°C		2.4	9	μA
Current	_	I _{BSTOUT} = 0, V _{SYS} = 3.7V, BstVSet = 5V			106	
Output-Average Voltage Accuracy	ACC_BST	I _{BSTOUT} = 1mA, V _{HVOUT} < 13V	-4		+2	%
Peak-to-Peak Voltage Ripple	V _{RPP_BST}	BstlSet = 350mA, BstVSet = 12V, C _{BSTOUT_EFF} = 10µF, L _{BSTOUT} = 4.7µH, I _{BSTOUT} = 1mA		5		mV
Peak Current-Set Range	I _{PSET_BST}	25mA step resolution	100		475	mA
DC Load Regulation Error	V _{LOAD_REG_B} ST	BstVSet = 12V, I _{BSTOUT} = 25mA, BstISet = 300mA, BstIAdptEn = 1		0.3		%
DC Line Regulation Error	V _{LINE_REG_B} ST	BstVSet = 6.5V, V _{SYS} from 2.7V to 5.5V		4		mV
BSTOUT Pulldown Resistance	R _{BSTOUT}	-3% Load Regulation Error		10		ΜΩ
True Shutdown PMOS On-Resistance	R _{ON_TS}	I _{BSTOUT} = 100mA		0.15	0.22	Ω
Boost Freewheeling NMOS On-Resistance	R _{ONBST_FRW} HL_N	I _{BSTOUT} = 100mA		0.45	0.7	Ω
Boost NMOS On-	R _{ONBST_N}	BstFETScale = 0, I _{BSTOUT} = 100mA		0.55	0.9	
Resistance	R _{ONBST NFS}	BstFETScale = 1, I _{BSTOUT} = 100mA		1.1	1.8	Ω

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Schottky Diode Forward Voltage	V _{BE_SCHOTTK}	I _{BSTOUT} = 100mA, V _{BSTHVLX} - V _{BSTOUT}	0.2	0.4	0.6	V
Freewheeling On- Resistance	R _{ONBST_FRW} HL	I _{BSTOUT} = 100mA		50	80	Ω
Minimum t _{ON}	^t ON_BST_MIN			65		ns
Max Switching Frequency	FREQ_BST_ MX	V _{BSTOUT} regulation error = -150mV, BstlSet = 100mA, BstlAdptEn = 0	1.7	3.5	5.5	MHz
Max Peak Current Setting Extra Budget with BstIAdptEn = 1	ΔI_{P_MAX}	BstIAdptEn = 1, V _{BSTOUT} regulation error = -200mV	150	250	450	mA
Short-Circuit Current Limit Difference vs. Peak Current Setting	∆I _{BST_SHRT}	BstlAdptEn = 0	130	200	250	mA
BSTHVLX Leakage	ILK_BSTHVLX	Boost disabled			1	μA
BSTLVLX Leakage	ILK_BSTLVLX	Boost disabled			1	μA
Passive Discharge Resistance	R _{BSTPSV}			10		kΩ
Linear BSTOUT Precharge Current	IL_BSTOUT_PR CH	$V_{\mbox{\scriptsize BSTOUT}}$ from 0V to $V_{\mbox{\scriptsize SYS}}$ - 0.4V	5	12.5	20	mA
Switching Precharge Inductor Current	ISW_BSTOUT_ PRCH	V _{BSTOUT} from V _{SYS} - 0.4V to final regulation voltage		13		mA
Full Turn-On Time	^t ON_BST_MIN	Time from enable to full current capability		100		ms
	EFFIC_12	BstVSet = 12V, I _{BSTOUT} = 20mA, BstISet = 300mA, Inductor = Murata DFE201610E-4R7M		85		
	EFFIC_15	BstVSet = 15V, I _{BSTOUT} = 2mA, BstlSet = 300mA, Inductor = Murata DFE201610E-4R7M		83		
Efficiency	EFFIC_5	BstVSet = 5V, I _{BSTOUT} = 10µA, BstlSet = 150mA, Inductor = Murata DFE201610E-4R7M		76		%
	EFFIC_6P5	BstVSet = 6.5V, I _{BSTOUT} = 10µA, BstlSet = 150mA, Inductor = Murata DFE201610E-4R7M		73		
BHVLX Rising/Falling Slew Rate	SLW_BSTHV LX			2		V/ns
Thermal Shutdown Threshold	T _{SHDN_BST}			140		°C
CHARGE PUMP		·				•
Input Voltage	V _{CPIN}	Input voltage = V _{SYS}	2.7		5.5	V

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Quiescent-Supply	IQ_CP_5V	I _{CPOUT} = 0μA, CPVSet = 5V		2	3.5	
Current	IQ CP 6.6V	I _{CPOUT} = 0μA, CPVSet = 6.6V		2.2	4.3	- μΑ
CPOUT Output Voltage	V _{CPOUT}	CPVSet = 0, I _{CPOUT} = 10µA, V _{SYS} > 3.3V		6.6		v
		CPVSet = 1, I _{CPOUT} = 10µA		5		1
Output Accuracy	ACC_CP	I _{CPOUT} < 120μA, V _{SYS} > 3.3V	-3		+3	V
Maximum Operative Output Current	ICPOUT_MAX	V _{SYS} > 3.3V, -5% load regulation error	250			μA
Efficiency	EFF_CP	CPVSet = 6.6V, I _{OUT} = 10µA, V _{SYS} = 3.7V		79		%
Max Charge-Pump Frequency	FREQ_CP		89	100	114	kHz
Passive-Discharge Resistance	R _{PSV_CP}			10		kΩ
LOAD SWITCHES 1 ANI	D 2 (TYPICAL VA	LUES ARE AT V _{LSW_IN} = 1.2V)				
Input Voltage	V _{SW_IN}		0.65		5.50	V
Quiescent-Supply		Load switch on, voltage protection enabled		0.80	1.20	
Current	IQ_SW_	Load switch on, voltage protection disabled		0.26	0.45	- μΑ
On-Resistance	R _{SW_}	V _{SYS} = 3V, V _{SW_IN} = 1.2V, I _{SW_OUT} = 50mA		0.5	0.85	Ω
Startup Current	I _{SW_START}	$V_{LSW_{IN}} = 1.2V, V_{LSW_{OUT}} = 0V$ initially		50	108	mA
Voltage Protection		Rising		130	260	m\/
Threshold	V _{SW_PROT}	Falling	10	120		- mV
Turn-On Time	ton_sw_	V _{LSW_IN} = 1.2V, 1µF output capacitance, 10% to 90% out		15		μs
Startup Time-Out Time	tSTUP_LSW			5		ms
Startup Retry Time	tRETRY_LSW_			5		ms
Passive Discharge Resistance	R _{PSV_LSW_}			10		kΩ
Active Discharge Current	IACTD_LSW_			20		mA
Output Leakage	ILK_LSW_	LSW_OUT = GND, load switch disabled			1	μA
LED CURRENT SINKS						
Maximum Input Voltage	VIN_LED_MAX				20	V
Quiscent Current	I _{Q LED}	All LEDs on, V _{SYS} = 3.7V		245	370	μA

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		LEDIStep = 0.6mA steps	0.6		15	
Current Sink Setting Range	ILED_RNG	LEDIStep = 1mA steps	1		25	mA
range		LEDIStep = 1.2mA steps	1.2		30	
		I _{LED} = 13mA, T _A = +25°C, V _{LED} = +0.7V to +20V	-2		+2	
		I _{LED} = 13mA, V _{LED} = +0.7V to +20V	-5		+5	1
LED Current Accuracy	ACC_LED	I_{LED} = 0.6mA to 30mA, T_A = +25°C, V_{LED} = +0.7V to +20V	-5		+5	%
		I _{LED} = 0.6mA to 30mA, V _{LED} = +0.7V to +20V	-6		+6	-
		I _{LED_SET} = 5mA, I _{LED} = 0.9 x 5mA		110	160	
LED Dropout Voltage	V _{LED_DROP}	I _{LED_SET} = 25mA, I _{LED} = 0.9 x 25mA		145	215	mV
		I _{LED_SET} = 30mA, I _{LED} = 0.9 x 30mA		175	270]
Leakage in Shutdown	ILK_LED	V _{LED} = +20V			0.1	μA
Open-LED Detection Threshold	V _{LED_DET}	LED_ enabled, LEDIStep = 0.6mA steps, falling edge	61	92	140	mV
VBSTOUT Loop Max Voltage	LED_LOOP_V MAX	5V < BstVSet < 15V, LED_BoostLoop = 1, VLED0 = GND		V _{BSTOU} T + 5		V
		LED_BoostLoop = 1, LED0_REFSEL = 00	190	200	210	
VLED0 Loop Regulation	VLED0_LOOP _REG	LED_BoostLoop = 1, LED0_REFSEL = 01	290	300	310	
Voltage		LED_BoostLoop = 1, LED0_REFSEL = 10	385	400	415	- mV
		LED_BoostLoop = 1, LED0_REFSEL = 11	485	500	515	
FUEL GAUGE (REFER T	O MAX17260 FC	R DETAILS) / POWER SUPPLY				
FGBAT UVLO		V _{FGBAT} rising, V _{CHGIN} present		2.25	2.28	- V
Threshold	VFGBAT_UVLO	V _{FGBAT} falling, V _{CHGIN} present	2.16	2.19		v
Shutdown Supply Current	I _{DD0}			0.5		μA
Hibernate Supply Current	IDD1	Average current		5.5		μA
Active Supply Current	I _{DD2}	Average current not including thermistor measurement current		12.5		μA
Startup Voltage	V _{FGBATSU}				3.05	V
FUEL GAUGE (REFER T		R DETAILS) / ANALOG-TO-DIGITAL CON	VERSION			
FGBAT Measurement	Varaa	T _A = +25°C	-7.5		+7.5	
Error	V _{GERR}	-40°C ≤ T _A ≤ +85°C	-20		20	- mV

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FGBAT Measurement Resolution	V _{LSB}			78.125		μV
FGBAT Measurement Range	V _{FS}		2.3		4.9	V
Current-Measurement Offset Error	IOERR	Long-term average without load current		±1.5		μV
Current-Measurement Error	IGERR		-1		+1	% of Reading
Current-Measurement Resolution	I _{LSB}			1.5625		μV
Current-Measurement Range	I _{FS}			±51.2		mV
Internal Temperature- Measurement Error	TI _{GERR}	-40°C ≤ T _A ≤ +85°C		±1		°C
Internal Temperature- Measurement Resolution	TI _{LSB}			0.00391		°C
FUEL GAUGE (REFER T	O MAX17260 F	OR DETAILS) / INPUT/OUTPUT				•
External Thermal	R _{EXT10}	Config.R100 = 0		10		kΩ
Resistance	R _{EXT100}	Config.R100 = 1		100		1122
Output Drive Low, ALRT, SDA	V _{OL}	I _{OL} = 4mA, V _{BATT} = 2.3V			0.4	V
Input Logic High, ALRT, SCL, SDA	VIH		1.5			V
Input Logic Low, ALRT, SCL, SDA	V _{IL}				0.5	V
Battery-Detach Detection Threshold	V _{DET}	Measured as a fraction of V_{FGBAT} on THM rising	91.0	96.2	99.0	%
Battery-Detach Detection Threshold Hysteresis	V _{DET-HYS}	Measured as a fraction of V_{FGBAT} on THM falling		1.6		%
Battery-Detach Comparator Delay	toff	THM step from 70% to 100% of V_{FGBAT} (Alrtp = 0, EnAIN = 1, FTHRM = 1)			100	μs
FUEL GAUGE (REFER T	O MAX17260 F	OR DETAILS) / LEAKAGE				·
Leakage Current, CSN, CSPH, ALRT	I _{LEAK}	V _{ALRT} < 15V	-1		+1	μA
FUEL GAUGE (REFER T	O MAX17260 F	OR DETAILS) / TIMING				
Time-Base Accuracy	t _{ERR}	T _A = +25°C	-1		+1	%
TH Precharge Time	t _{PRE}		8.48			ms

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DIGITAL						
SDA, SCL, MPC_, PFN_, RST, INT Input- Leakage Current	ILK_IO	Input pullup/pulldown resistances disabled, V_{IO} = 0V to 5.5V	-1		+1	μA
SDA, SCL, MPC_ Input- Logic High	V _{IO_IH}		1.4			V
SDA, SCL, MPC_ Input- Logic Low	V _{IO_IL}				0.4	V
PFN_ Input-Logic High	V _{PFN_IH_C}	OFF/SEAL mode		0.7 x V _{CCINT}		V
PFN_ Input-Logic Low	V _{PFN_IL_C}	OFF/SEAL mode		0.3 x V _{CCINT}		V
PFN_ Input-Logic High	V _{PFN_IH_T}	ON mode	1.4			V
PFN_ Input-Logic Low	V _{PFN_IL_T}	ON mode			0.4	V
MPC_, PFN_ Input- Pullup Resistance	R _{IO_PU}	Pullup resistance to V_{CCINT} (Note 2)		170		kΩ
MPC_, PFN_ Input- Pulldown Resistance	R _{IO_PD}			170		kΩ
MPC_Output Logic- High	V _{IO_OH}	I _{OH} = 1mA, MPC_configured as push- pull output, pullup voltage is V _{BK1OUT}	V _{BK1OU} _T - 0.4			V
SDA, MPC_, PFN_, RST, INT Output Logic Low	V _{IO_OL}	I _{OL} = 4mA			0.4	v
MPC6 Harvester Disable Pullup Resistor	R _{MPC6_HARV} _DIS_RPU	Harvester interaction enabled, pull-up resistor to V_{CCINT} (Note 2)		4		kΩ
SCL Clock Frequency	f _{SCL}	(Note 4)	0		400	kHz
Bus Free-Time Between STOP and START Condition	t _{BUF}		1.3			μs
Hold Time for a Repeated START Condition	^t HD_STA		0.6			μs
Setup Time for a Repeated START Condition	^t SU_STA		0.6			μs
Low Period of SCL Clock	tLOW	(Note 5)	1.3			μs
High Period of SCL Clock	^t HIGH		0.6			μs
Data-Hold Time	^t HD_DAT	(Notes 6, 7)	0		0.9	μs
Data-Setup Time	t _{SU DAT}		100			ns

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Electrical Characteristics (continued)

 $(V_{BAT} = V_{FGBAT} = V_{SYS_UVLO} \text{ (falling) to } +5.5V, V_{CHGIN} = \text{unconnected or } V_{CHGIN_DET} \text{ to } +28.0V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C}, V_{BAT} = 3.7V, V_{CHGIN} = 5.0V, C_{CHGIN_EFF} = 1\mu\text{F}, C_{VDIG_EFF} = 1\mu\text{F}, C_{CAP_EFF} = 1\mu\text{F}, C_{SYS_EFF} = 10\mu\text{F}, C_{BAT_EFF} = 1\mu\text{F}, C_{BK_OUT_EFF} = 10\mu\text{F}, C_{L_IN} = 1\mu\text{F}, C_{L_OUT_EFF} = 1\mu\text{F}, C_{BBOUT_EFF} = 8.8\mu\text{F}, C_{BSTOUT_EFF} = 10\mu\text{F}, L_{BK_OUT} = 2.2\mu\text{H}, L_{BBOUT} = 2.2\mu\text{H}, L_{BSTOUT} = 4.7\mu\text{H}. \text{ Limits are } 100\% \text{ tested at } T_A = +25^{\circ}\text{C}. \text{ (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Setup Time for STOP Condition	t _{SU_STO}		0.6			μs
Spike Pulse Widths Suppressed by Input Filter	t _{SP}	(Note 8)	50			ns
SPI						
SCLK Frequency	f SCLK				10	MHz
CS Setup Time	t _{CS}		10			ns
CS Hold Time	t _{CH}		100			ns
CS Pulse-Width High	t _{IDLE}			60		ns
DIN Setup Time	t _{DS}		10			ns
DIN Hold Time	t _{DH}		20			ns
SCLK Pulse-Width Low	t _{LOW_SPI}		20			ns
SCLK Pulse-Width High	t _{HIGH} SPI		20			ns

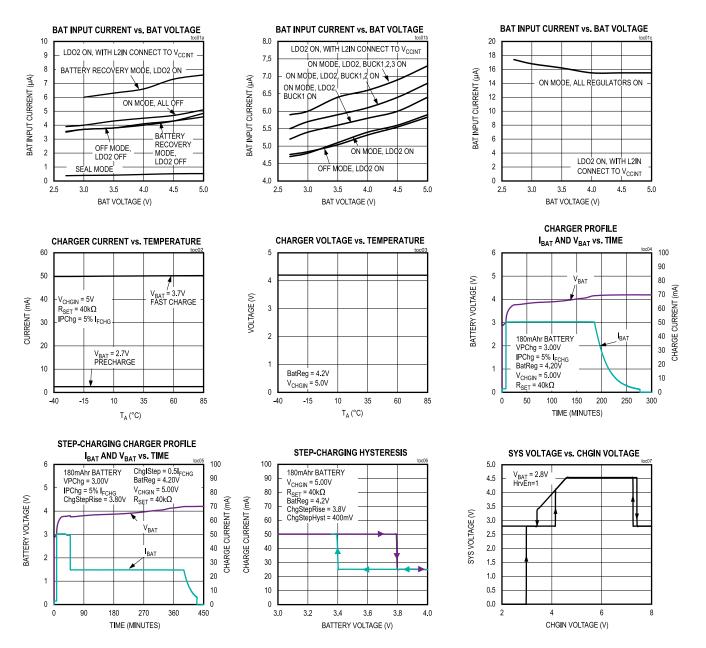
Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range are guaranteed by design.

Note 2: V_{CCINT} is an internal supply generated from either BAT or CAP. Its voltage is determined by the following: IF: [(V_{CHGIN} > V_{CHGIN}_DET AND V_{CAP} > V_{CAP}_DET) OR V_{CAP} > (V_{BAT} + V_{THSWOVER})] THEN: V_{CCINT} = V_{CAP} ELSE: V_{CCINT} = V_{BAT} where V_{THSWOVER} = 0mV-300mV

Note 3: Guaranteed by design, not production tested.

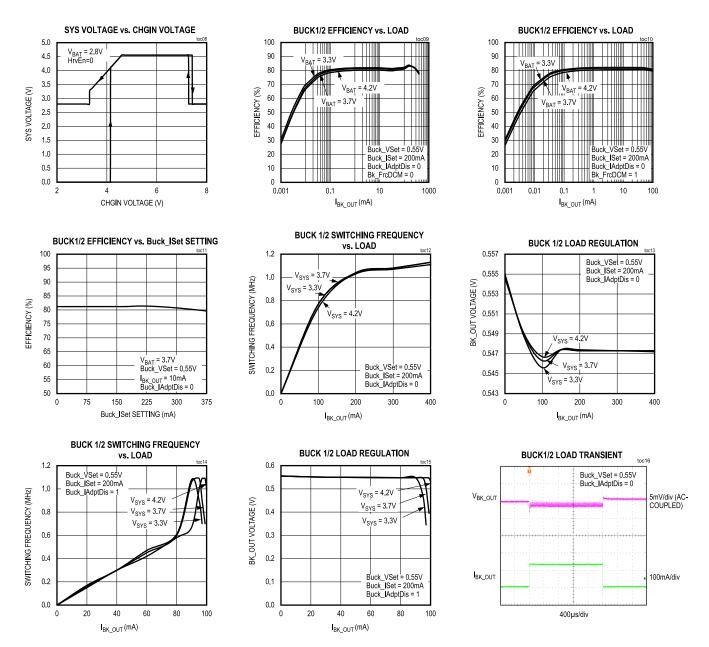
Note 4: Timing must be fast enough to prevent the Fuel Gauge from entering shutdown mode due to bus low for a period greater than the shutdown timer setting.

Note 5: The SCL waveform must meet the minimum clock low time plus the rise/fall times.

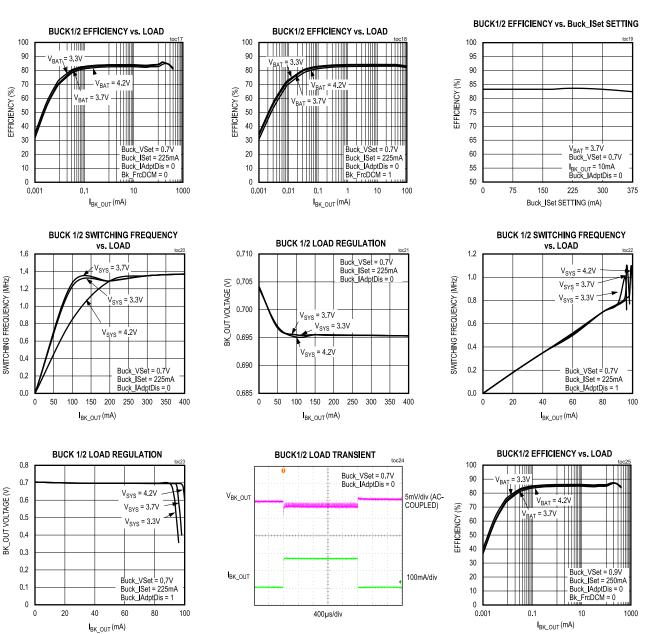

Note 6: The maximum t_{HD DAT} has only to be met if the device does not stretch the low period (t_{LOW}) of the SCL signal.

Note 7: This device internally provides a hold time of at least 100ns for the SDA signal (refer to the minimum VIH of the SCL signal) to bridge the undefined region of the falling edge of SCL.

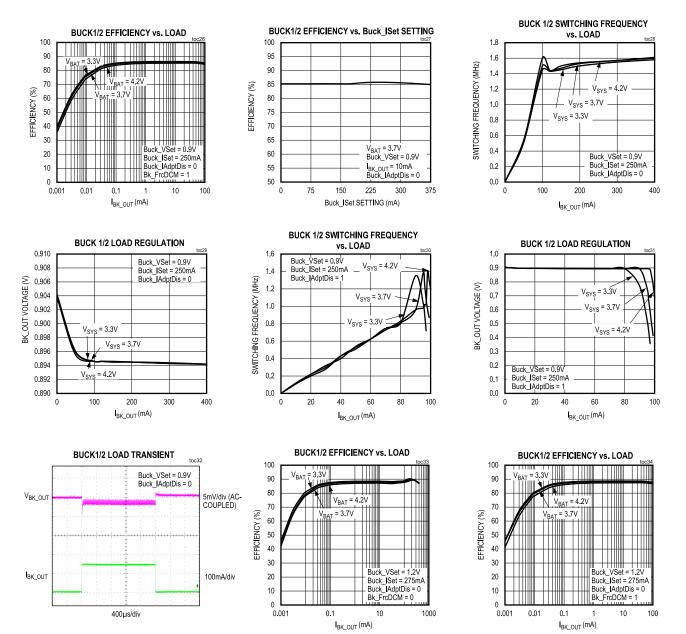
Note 8: Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

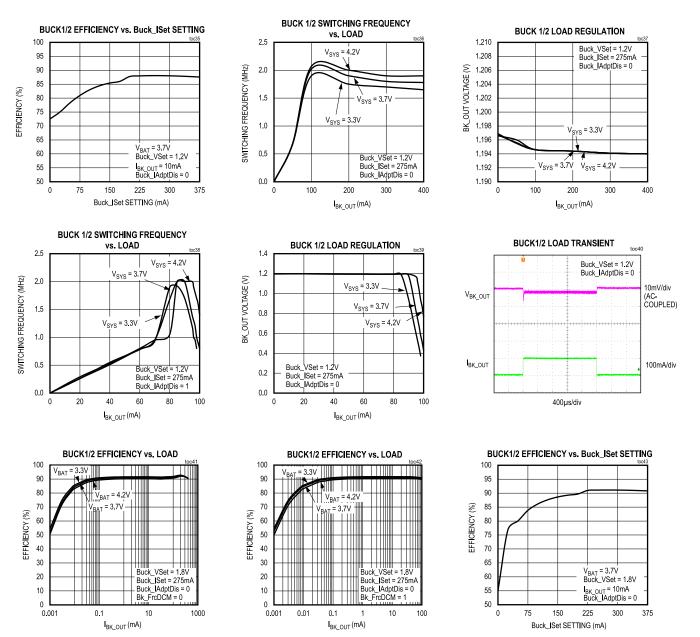
Typical Operating Characteristics


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

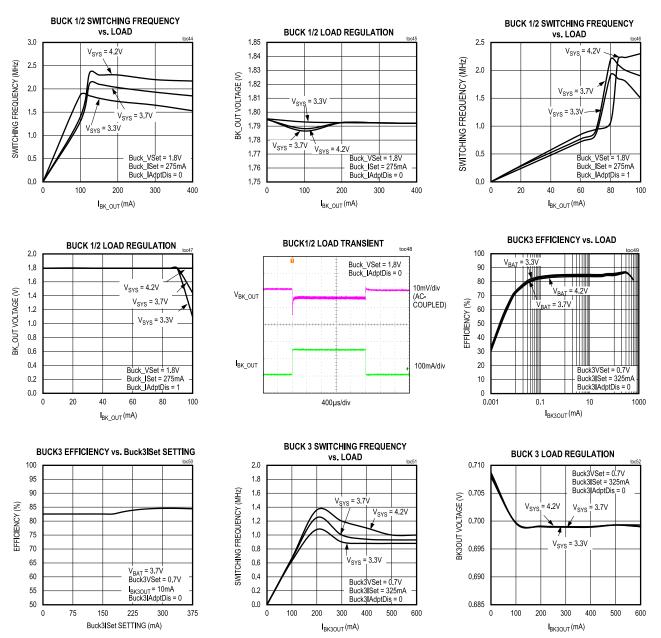
Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

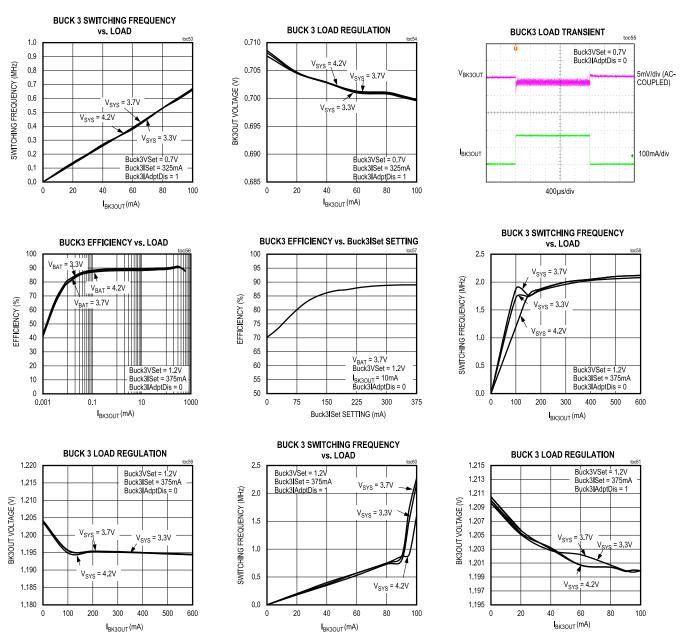
Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

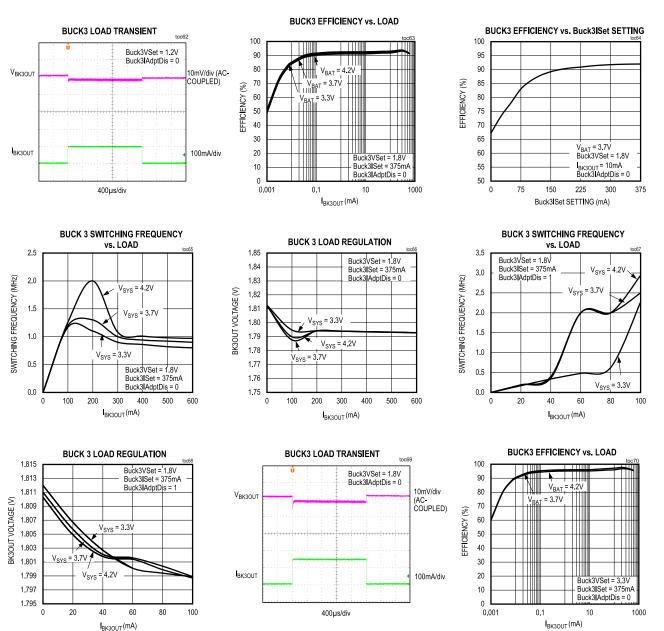
Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

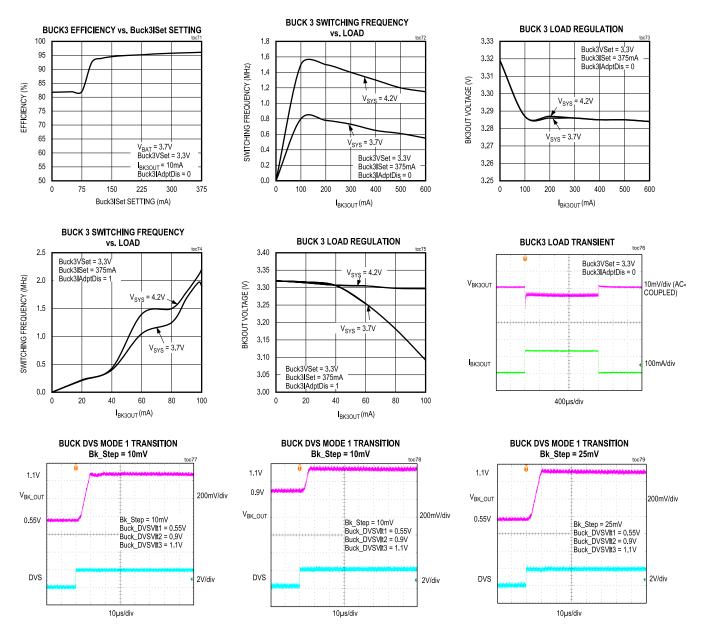
Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

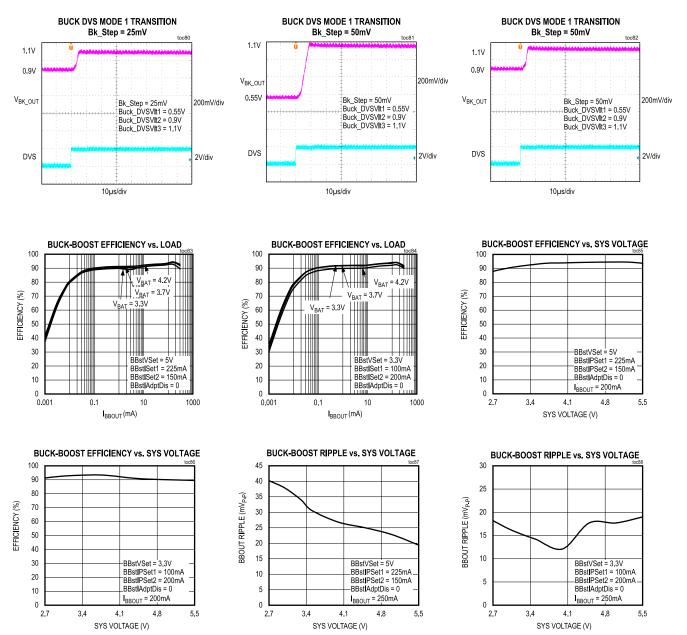
Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

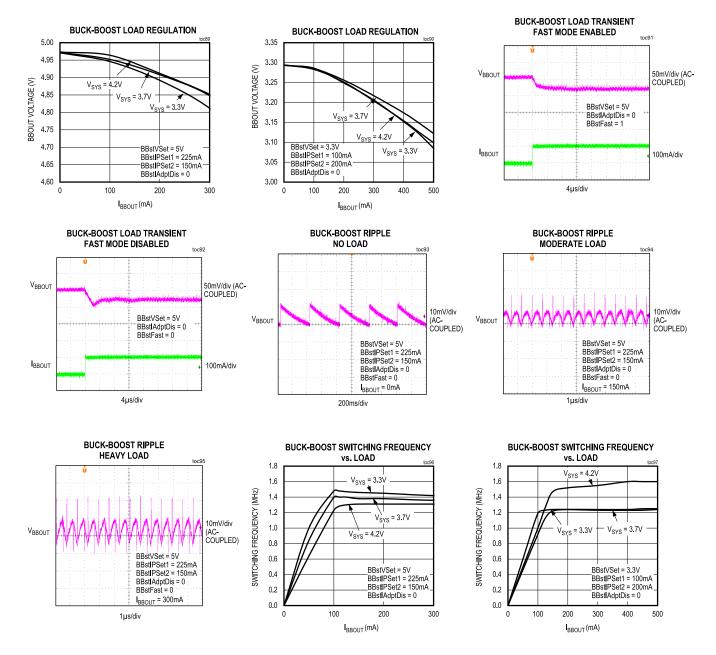
Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

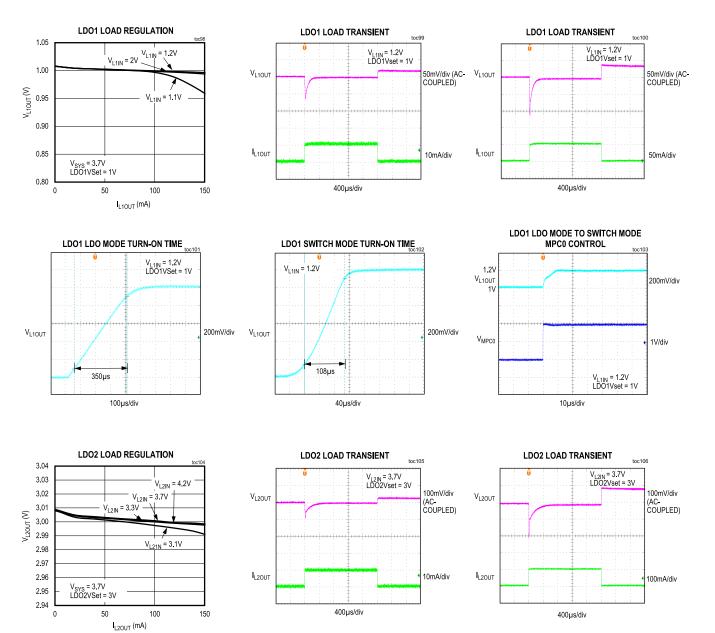
Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

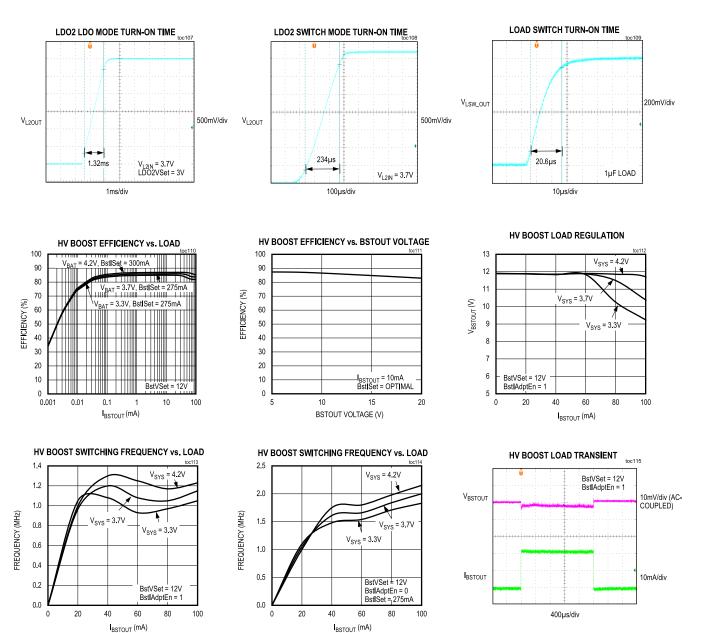
Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Typical Operating Characteristics (continued)

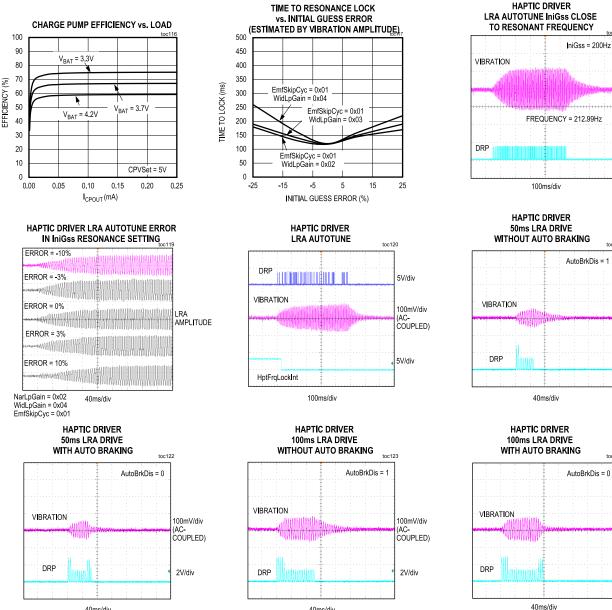

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Typical Operating Characteristics (continued)


PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Typical Operating Characteristics (continued)

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System


Typical Operating Characteristics (continued)

PMIC with Ultra-Low IQ Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Typical Operating Characteristics (continued)

 $(V_{BAT} = 3.7V, C_{CHGIN_EFF} = 1\mu F, C_{VDIG_EFF} = 1\mu F, C_{CAP_EFF} = 1\mu F, C_{SYS_EFF} = 10\mu F, C_{BAT_EFF} = 1\mu F, C_{BK_OUT_EFF} = 10\mu F, C_{L_IN} = 1\mu F, C_{L_OUT_EFF} = 1\mu F, C_{BBOUT_EFF} = 8.8\mu F, C_{BSTOUT_EFF} = 10\mu F, L_{BK_OUT} = 2.2\mu H, L_{BBOUT} = 2.2\mu H, L_{BSTOUT} = 10\mu F, C_{L_OUT_EFF} = 10\mu F, C_{$ 4.7 μ H, T_A = +25°C, unless otherwise noted.)

40ms/div

40ms/div

toc118

100mV/div

(AC-COUPLED)

5V/div

100mV/div

(AC-COUPLED)

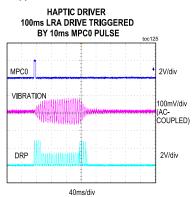
2V/div

toc124

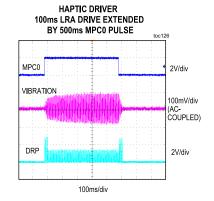
100mV/div

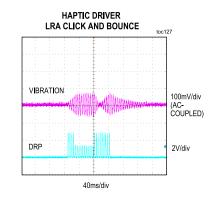
COUPLED)

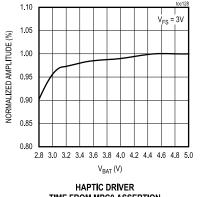
(AC-

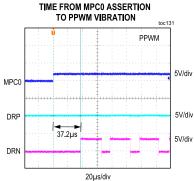

2V/div

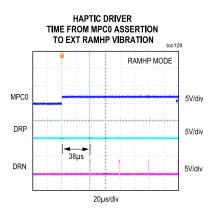
toc121

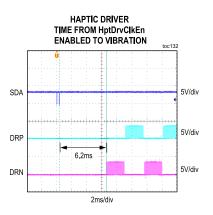

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

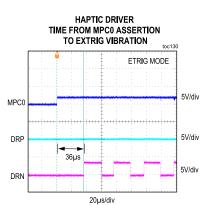

Typical Operating Characteristics (continued)

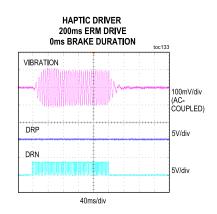

 $(V_{BAT} = 3.7V, C_{CHGIN_EFF} = 1\mu F, C_{VDIG_EFF} = 1\mu F, C_{CAP_EFF} = 1\mu F, C_{SYS_EFF} = 10\mu F, C_{BAT_EFF} = 1\mu F, C_{BK_OUT_EFF} = 10\mu F, C_{L_IN} = 1\mu F, C_{L_OUT_EFF} = 1\mu F, C_{BBOUT_EFF} = 8.8\mu F, C_{BSTOUT_EFF} = 10\mu F, L_{BK_OUT} = 2.2\mu H, L_{BBOUT} = 2.2\mu H, L_{BSTOUT} = 4.7\mu H, T_A = +25^{\circ}C$, unless otherwise noted.)

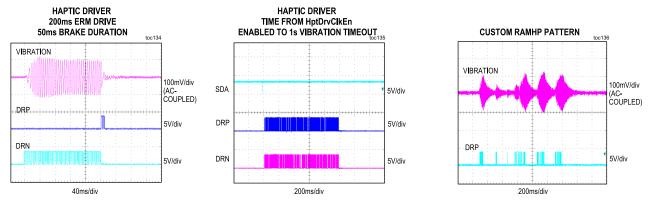



HAPTIC DRIVER LRA AMPLITUDE vs. VBAT









PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System


Typical Operating Characteristics (continued)

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Pin Configuration

MAX20360

Pin Description

PIN	NAME	FUNCTION	
A1	BK1LX	Buck 1 Regulator Switch. Connect a 1µH or 2.2µH inductor to BK1OUT.	
A2	BK1GND	Buck 1 Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.	
A3	BK1OUT	Buck 1 Regulator Output. Bypass with effective capacitance to GND. Refer to the <u>Buck Output</u> <u>Capacitor Selection</u> section.	
A4	LED2	Current Sink Output 2	
A5	LED1	Current Sink Output 1	
A6	LED0	Current Sink Output 0	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Pin Description (continued)

PIN NAME		FUNCTION		
A7	BSTOUT	Boost Regulator Output. Bypass with effective capacitance to GND. Refer to the <u>Boost Regulator</u> <u>Section</u> section.		
A8	BSTHVLX	Boost Regulator Switch. Connect through a 2.2µH or 4.7µH inductor to BSTLVLX.		
A9	BSTGND	Boost Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.		
B1, B9, D9, G1, H8	SYS	System Load Connection. All SYS bumps must be connected on the PCB using a low-impedance trace or SYS plane. Bypass the common node with a minimum 10μ F real capacitance (after derating) to GND.		
B2, C2	BBOUT	Buck-Boost Regulator Output. Bypass with effective capacitance to GND. Refer to the <u>Buck-Boost</u> <u>Output Capacitor Selection</u> section.		
B3	CPN	Charge Pump Capacitor Negative Terminal. Connect 22nF (min), 33nF (max) capacitor to CPP.		
B4	CPP	Charge Pump Capacitor Positive Terminal. Connect 22nF (min), 33nF (max) capacitor to CPN.		
B5	CPOUT	Charge Pump Output. Bypass with 1µF capacitor to GND.		
B6	MPC0	Multipurpose Control I/O 0. LDO3 direct control option.		
B7	MPC1	Multipurpose Control I/O 1. FAST control option for buck-boost.		
B8	BSTLVLX	Boost Regulator Switch. Connect through a 3.3µH or 4.7µH inductor to BSTHVLX.		
C1	BBGND	Buck-Boost Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.		
C3	MPC2	Multipurpose Control I/O 2		
C4	MPC3	Multipurpose Control I/O 3		
C5	MPC4	Multipurpose Control I/O 4		
C6	MPC6	Multipurpose Control I/O 6		
C7	MPC7	Multipurpose Control I/O 7		
C8	SFOUT	Safe Out LDO. Bypass with 1µF real capacitor (after derating) to GND.		
C9	BAT	Battery Connection. Connect to a positive battery terminal. Bypass with a minimum 1µF real capacitor (after derating) to GND.		
D1	BBLVLX	Buck-Boost Regulator Switch LV Side. Connect through 2.2µH inductor to BBHVLX.		
D2	BBHVLX	Buck-Boost Regulator Switch HV Side. Connect through 2.2µH inductor to BBLVLX.		
D3	MPC5	Multipurpose Control I/O 5		
D4	PFN1	Configurable Power Mode Control Pin (e.g., KIN)		
D5	PFN2	Configurable Power Mode Control Pin (e.g., KOUT)		
D6	TPU	Battery Temperature Thermistor Measurement Pullup. Internally connected to VDIG during battery temperature thermistor measurement. Do not exceed 2mA load on TPU.		
D7	IVMON	Voltages and Charging Current Monitor Multiplexer Output.		
D8	ISET	External Resistor Connection for Battery Charge Current Level Setting. Do not connect any capacitance on this pin. Maximum allowed capacitance: C _{ISET} < (5µs / R _{ISET}) pF.		
E1	HDGND	Haptic Driver Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.		
E2	DRN	Haptic Driver Negative Output		
E3	ĪNT	Interrupt Open-Drain Output. Active-low.		
E4	RST	Reset Open-Drain Output. Active-low.		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Pin Description (continued)

PIN	NAME	FUNCTION		
E5	DGND	Digital Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.		
E6, F6	AGND	Analog Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.		
E7	SDA	I ² C Serial Data Input/Open-Drain Output		
E8	CAP	Internal Reference Supply. Bypass with 1µF real capacitor (after derating) to GND.		
E9	CHGIN	+28V/-5.5V Protected Charger Input. Bypass with 1µF real capacitance (after derating) to GND.		
F1	HDIN	Haptic Driver H-Bridge Supply. Connect using a low-impedance trace to SYS for normal operation or to BBOUT when a higher drive voltage is required. Bypass with a local capacitor to GND if the trace up to SYS or BBOUT bypass capacitors is longer than 10mm.		
F2	DRP	Haptic Driver Positive Output		
F3	THM	Battery Temperature Thermistor Measurement Connection		
F4	VDIG	Internal Reference Supply. Bypass with 1µF real capacitor (after derating) to GND.		
F5	GSUB	Substrate Connection. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.		
F7	CSPH	Fuel Gauge Sense Resistor Positive Sense Point. Kelvin connect to the system side of the sense resistor.		
F8	SCL	I ² C Serial Clock Input		
F9	BK2OUT	Buck 2 Regulator Output. Bypass with effective capacitance to GND. Refer to the <u>Buck Output</u> <u>Capacitor Selection</u> section.		
G2	BK3OUT	Buck 3 Regulator Output. Bypass with effective capacitance to GND. Refer to the <u>Buck Output</u> <u>Capacitor Selection</u> section.		
G3	L1IN	LDO 1 Input. Bypass with 1µF capacitor to GND.		
G4	L10UT	LDO 1 Output. Bypass with 1µF real capacitor (after derating) to GND.		
G5	LSW2OUT	Load Switch 2 Output		
G6	LSW2IN	Load Switch 2 Input		
G7	ALRT	Alert Output. The ALRT pin is an open-drain active-low output that provides fuel-gauge alerts. Connect to GND if not used.		
G8	CSN	Fuel Gauge Resistor Sense Point. Kelvin connect to the cell-side of the sense resistor.		
G9	BK2GND	Buck 2 Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.		
H1	BK3LX	Buck 3 Regulator Switch. Connect a 2.2µH inductor to BK3OUT.		
H2	BK3GND	Buck 3 Ground. All ground bumps must be connected on the PCB using a low-impedance trace, or on the GND plane.		
H3	L2IN	LDO 2 Input. Bypass with 1µF capacitor to GND.		
H4	L2OUT	LDO 2 Output. Bypass with 1µF real capacitor (after derating) to GND.		
H5	LSW1IN	Load Switch 1 Input		
H6	LSW1OUT	Load Switch 1 Output		
H7	FGBAT	Fuel Gauge Power Supply and Battery Voltage Sense Input. Connect to the positive terminal of a battery cell. Bypass with a 0.1µF real capacitor (after derating) to GND.		
H9	BK2LX	Buck 2 Regulator Switch. Connect a 1μ H or 2.2 μ H inductor to BK2OUT.		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Detailed Description

The MAX20360 is a highly integrated and programmable power management solution designed for ultra-low-power wearable applications. It is optimized for size and efficiency to enhance the value of the end product by extending battery life and shrinking the overall solution size. A flexible set of power-optimized voltage regulators, including multiple buck, boost and buck-boost converters, and linear regulators, provides a high level of integration and the ability to create a fully optimized power architecture. The quiescent current of each regulator is ultra-low targeted at extending battery life in always-on applications.

The MAX20360 includes a complete battery management solution with battery seal, charger, power path, and fuel gauge. Both thermal management and input protection are built into the charger. The device also includes a factory programmable button controller with multiple inputs that are customizable to fit specific product UX requirements.

Three integrated LED current sinks are included for indicator or backlighting functions, and an ERM/LRA driver with automatic resonance tracking is capable of providing sophisticated haptic feedback to the user. A low noise, 1.5W buck-boost converter provides a clean way to power LEDs commonly used in optical heart-rate systems. The device is configurable through an I²C interface that allows for programming various functions and reading device status, including the ability to read temperature and supply voltages with the integrated ADC.

Power Regulation

The MAX20360 features three high-efficiency, low-quiescent current buck regulators (see the <u>Buck Regulators</u> section), a buck-boost regulator (see the <u>Buck-Boost Regulator</u> section), two low-quiescent current, low-dropout linear regulators (LDOs) (see the <u>LDOs</u> section), a low-quiescent current charge pump (see the <u>Charge Pump</u> section), a low-quiescent current, high voltage boost (see the <u>Boost Regulator</u> section), and two dedicated load switches (see the <u>Load Switches</u> section). Excellent light-load efficiency allows the switching regulators to run continuously without significant energy cost. The buck, buck-boost, and boost regulators can operate in a fixed peak current mode for low-current applications or an adaptive peak-current mode to improve load regulation, extend the high-efficiency range, and minimize capacitor size when more current is required.

Dynamic Voltage Scaling

All of MAX20360 regulators feature dynamic voltage scaling (DVS) to scale the output voltage without disabling the converter. The regulator output voltages are set by direct I²C writes to the corresponding VSet register. In addition to I²C DVS, the buck and buck-boost regulators feature two additional control methods for applications where timing is critical: GPIO DVS and SPI DVS. Note that the output-voltage slew rate remains the same in all DVS modes.

Buck DVS transitions maximize the output-voltage slew rate while controlling inrush current for devices that require fast voltage transitions. The other regulators minimize inrush current by limiting the output-voltage slew rate. A typical DVS transition on a buck regulator has a rise time of 10µs. (Note S_DVS_HC)

DVS Mode 0 (I²C DVS Mode)

DVS Mode 0 configures the regulator outputs to be controlled by I²C. If Buck_DVSCfg or BBstDVSCfg = 00000 (see these bits: <u>Buck1DVSCfg</u>, <u>Buck2DVSCfg</u>, <u>Buck3DVSCfg</u>, <u>BBstDVSCfg</u>), the output voltage of that regulator is controlled by I²C writes to the Buck_VSet or BBstVSet bitfield (see these bits: <u>Buck1VSet</u>, <u>Buck2VSet</u>, <u>Buck3VSet</u>, <u>BBstVset</u>). Note that a regulator in I²C DVS mode must be unlocked before modifying the output voltage. Regulators are unlocked by setting their lock mask bit to 0 in LockMsk (see bit: <u>LockMsk</u>) and writing the unlock password 0x55 to the LockUnlock register (see register: <u>LockUnlock</u>).

DVS Mode 1 (GPIO DVS Mode)

In DVS Mode 1, two MPC inputs select the regulator output from four programmed values. To configure a regulator output for GPIO mode, set the corresponding Buck_DVSCfg or BBstDVSCfg bits (see bits: <u>Buck1DVSCfg</u>, <u>Buck2DVSCfg</u>, <u>Buck2DVSCfg</u>) to any value between 00001 and 11100. Each code selects a different pair of MPC_pins to control the regulator. See the DVS Cfg register descriptions (refer to bits: <u>Buck1DVSCfg</u>, <u>Buck2DVSCfg</u>, <u>Buck3DVSCfg</u>, <u>Bu</u>

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

bit and the second MPC controls the higher bit.

The four xxxDVSVIt_ bitfields (see bits: <u>Buck1DVSVIt0</u>, <u>Buck1DVSVIt1</u>, <u>Buck1DVSVIt2</u>, <u>Buck1DVSVIt3</u>, <u>Buck2DvsVIt0</u>, <u>Buck2DvsVIt1</u>, <u>Buck2DvsVIt2</u>, <u>Buck2DvsVIt3</u>, <u>Buck2DvsVIt3</u>, <u>Buck2DvsVIt3</u>, <u>Buck3DvsVIt0</u>, <u>Buck3DvsVIt1</u>, <u>Buck3DvsVIt2</u>, <u>Buck3DvsVIt3</u>, <u>BBstDvsVIt0</u>, <u>BBstDvsVIt1</u>, <u>BBstDvsVIt2</u>, <u>BBstDvsVIt3</u>) are loaded with the corresponding regulator's factory default voltage when the MAX20360 first powers on. After the startup process, each 6-bit output voltage level can be programmed using the I²C for each converter in the Buck_DVSVIt_ and BBstDVSVIt_ bitfields. As the MPC inputs change, the regulator output adjusts to the newly selected level as illustrated in Figure 1. Voltage levels are selected as shown in Table 1.

Table 1. DVS Mode 1 Voltage Selection

GPIO1	GPIO0	DVS VOLTAGE
0	0	VItO
0	1	Vlt1
1	0	VIt2
1	1	VIt3

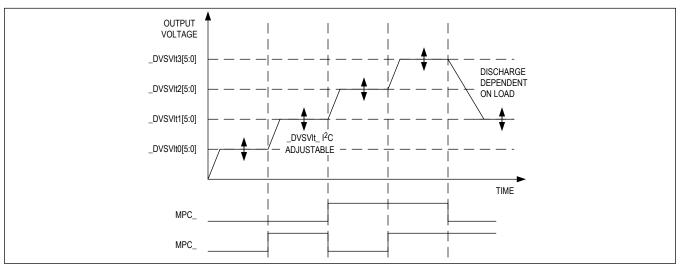
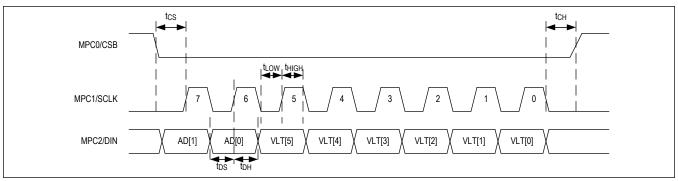
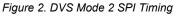


Figure 1. DVS Mode 1, GPIO Control


SPI DVS Mode (DVS Mode 2)


In DVS Mode 2, the regulator voltages are changed by writing command bytes to a 3-wire SPI interface. The SPI interface uses MPC0–MPC2. MPC0 becomes the active-low chip select pin \overline{CS} , MPC1 becomes the clock SCLK with polarity 0, and MPC2 becomes the data input pin DIN. Data is clocked in on the SCLK rising edge. The maximum SPI clock frequency is 8MHz. A command byte comprises two address bits (ADD[1:0]) that select the regulator and six voltage bits (VLT[5:0]) that set the voltage. Figure 2 shows how data is clocked in SPI mode.

The output voltage is latched on the 8th rising edge of the clock. Note that voltages set by the SPI interface are mirrored in the Buck_SPIVIt and BBstSPIVIt bitfields for each converter and readback must be done over I²C. Figure 3 shows two regulators controlled in DVS Mode 2.

The DVS SPI interface supports single-byte and burst-mode data transfer. In single-byte mode, \overline{CS} goes high after each command byte is transferred. In burst-mode, all command bytes are written to the MAX20360 before \overline{CS} returns high. Figure 4 shows how data is written in both modes.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

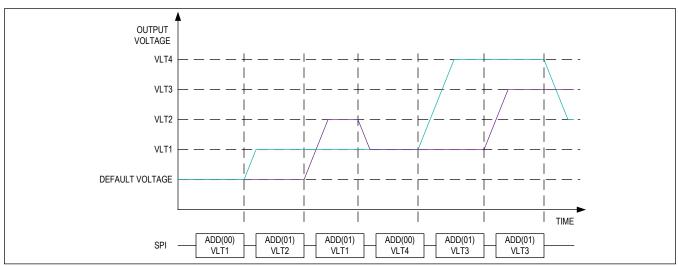


Figure 3. DVS Mode 2, SPI Control

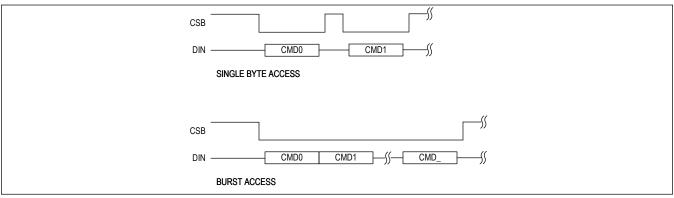


Figure 4. Single-Byte and Burst-Mode SPI Access

Dedicated DVS Interrupts

To quickly alert a host processor when a DVS transition is complete, the MAX20360 features the option to configure the MPC0–MPC6 pins as dedicated PGOOD interrupts. To configure the dedicated interrupt, write the desired BK_MPC_Sel bit(s) in registers 0x70–0x72. Additionally, interrupts signalling changes in the haptic driver, ADC, and USBOk statuses are available as dedicated MPC interrupts as well.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Buck Converter DVS Options

The MAX20360 buck converters feature two DVS valley current settings that can be selected using the Buck_DVSCur bits. Both 500mA and 1A settings are available. The 500mA valley-current setting offers a slightly slower transition time while minimizing the voltage overshoot that can occur due to demagnetization of the inductor at the end of the transition. The 1A valley-current setting offers the fastest DVS transition time, but can exhibit overshoot due to inductor demagnetization. Care should be taken that the overshoot is not potentially damaging to downstream devices.

LDOs

LDO Output Capacitance Selection

The LDOs on MAX20360 are designed to operate with a minimum of 1µF of real capacitance on the output. Pay attention to capacitance derating with DC voltage bias and other factors when making your capacitor selection.

LDO1 MPC0 Control

Both of the LDOs on MAX20360 can be enabled using an MPC input and are configurable as load switches. The low voltage LDO1 offers an additional, on-the-fly configuration option. Setting the LDO1_MPC0CNT (see bit $\underline{LDO1_MPC0CNT}$) bit to 1 configures LDO1 to be controlled by MPC0 based on the state of LDO1_MPC0CNF (see bit $\underline{LDO1_MPC0CNF}$). If LDO1_MPC0CNF = 0, MPC0 changes LDO1 between LDO mode and switch mode. If LDO1_MPC0CNF = 1, then MPC0 enables or disables LDO1 in switch mode. See <u>Table 2</u> for LDO1 MPC0 control detail. Using this MPC control allows the state of LDO1 to be changed much more quickly than through I²C writes on the order of microseconds. Rapid control of LDO1 supports applications that require minimal delays. For example, quickly increasing the LDO1 output voltage by changing from LDO mode to switch mode reduces the time required for an application processor to transition from a low-power sleep mode to a higher-voltage active state.

LDO1En	LDO1_MPC0CNF	LDO1_MPC0CNT	MPC0 CONTROL	
00	1	1	MPC0 control switch mode on/off	
01	0	1	MPC0 control LDO mode or switch mode	
	1	1		
10	1	1	MPC0 control switch mode on/off	
11	1	1	MPC0 control switch mode on/off	

Table 2. LDO1 MPC0 Control

Internal Switchover for LDO2 Always-On Power

In order to power LDO2 when no battery voltage is present, an internal switchover circuit is available. This switchover circuit requires that the LDO be bypassed at the L2IN node by 1μ F of capacitance. The L2IN node must otherwise be left unconnected. The switchover circuit automatically powers the LDO from a regulated voltage off of CHGIN so that it is powered even if no battery is present. This option can be enabled by default at the factory or left disabled by default. Either way, the behavior is programmable by I²C after startup. This function is intended to support an output voltage of 1.8V or lower and a load current of 100µA (max) or smaller. The R_{ON_L2IN} specification in the electrical characteristics table is used to generate the worst-case output-power capability based on the minimum input voltage from V_{CCINT} (see *Note 2*), maximum output voltage of LDO2, and the maximum on-resistance.

Load Switches

The MAX20360 load switches allow a system to disconnect loads when inactive to reduce quiescent current. To limit inrush on enabled, each load switch initially behaves as a constant current source with the value I_{SW_START} . Current mode remains until the switch output is charged to meet the condition $V_{SW_IN} - V_{SW_OUT} < V_{SW_PROT}$. Once the condition is met, the switch turns fully on and connects LSW_IN to LSW_OUT. If this condition is not met within the startup time-out t_{STUP_LSW} , the switch attempts to turn on after a retry delay t_{RTRY_LSW} .

Both switches feature optional voltage protection to prevent overcurrent. A protection comparator monitors the difference between the input and output voltages. If the difference exceeds V_{SW} PROT, the switch is opened to protect downstream

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

circuitry. The comparator can be disabled with the LSW_LowIq bit to reduce quiescent current if the upstream power supply has its own overcurrent protection.

Boost Regulator

The MAX20360 includes a high-voltage boost converter that supports output voltages up to 20V for powering display backlight LEDs, piezo buzzers, or other system components requiring high supply voltages. In order to maximize the ease of implementation, the peak current settings of the boost regulator are automatically adjusted to the most optimal settings for a given output voltage when BstISetLookUpDis = 0 (see <u>BstISetLookUpDis</u>). If a different peak current setting is desired, the BstISetLookUpDis = 1 (see <u>BstISetLookUpDis</u>) setting must be selected. In order to maintain stability, the boost must meet minimum capacitance requirements. Figure 5 below shows the required effective capacitance for a given output voltage to guarantee stability.

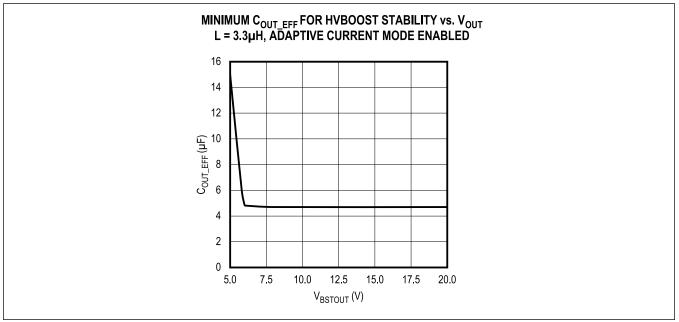


Figure 5. Minimum Effective Capacitance for HVBOOST Stability

Boost Inductor Selection

Inductor selection for the MAX20360 high-voltage boost converter should be optimized for the intended application. A 4.7µH inductor value is recommended for this boost; however, 3.3µH and 2.2µH inductors can be used for the tradeoff of efficiency. Aside from the inductor value physical size, DC resistance (DCR), maximum average current, and saturation current are the primary factors to consider. The maximum average inductor current is obtained using the following equation:

$$I_{L_MAX} = \frac{V_{OUT_MAX} \times I_{OUT_MAX}}{\eta \times V_{IN} MIN}$$

where,

V_{OUT MAX} = Maximum expected operating voltage

IOUT MAX = Maximum expected output current

VIN MIN = Minimum expected operating input voltage

 η = Expected worst-case efficiency in the minimum input voltage and maximum output power case (see the <u>Typical</u> <u>Operating Characteristics</u> section for help in estimating efficiency)

The average inductor current calculated above dictates the required maximum average current for temperature rise on

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

the inductor. In order to determine the required inductor saturation current, the peak current must be calculated. The peak current for this converter can be calculated as:

 $I_{L_PEAK_CCM} = I_{L_MAX} + \frac{1.15 \times BstlSet}{2} + 100mA and I_{L_PEAK_DCM} = 1.15 \times BstlSet + 100mA$

where BstISet is the peak current setting set as described in the Boost Inductor Peak Current section. (see <u>Bst/Set</u>)

When selecting an inductor, one primary factor in achieving high efficiency is the DCR of the inductor. For maximum efficiency, select an inductor with the lowest DCR possible in the required package size. Another factor to consider is magnetic losses. Generally magnetic losses are lower in inductors with larger physical size and/or higher saturation current ratings. In most cases, ferrite inductors should be avoided as they tend to exhibit poor AC characteristics, especially in DCM.

Boost Capacitor Selection

The high-voltage boost is designed to operate with a minimum of 4.8µF of real capacitance on the output. Pay attention to capacitance derating with DC voltage bias and other factors when making your capacitor selection.

Inductor Peak Current Limit

The boost regulator monitors the maximum value of the inductor current each switching cycle to control the end of the On phase. The peak current can be fixed to the value BstlSet (BstlAdptEn = 0) or allowed to change based on load requirements (BstlAdptEn = 1) (see bits: <u>BstlSet</u>, <u>BstlAdptEn</u>). It is strongly recommended to leave BstlAdptEn = 1 as the setting as this greatly improves load regulation and extends the range over which the converter achieves high efficiency. Peak current is set in the BstlSet register. In order to maximize the ease of implementation, the peak current settings of the boost regulator are automatically adjusted to the settings shown in <u>Figure 6</u> when BstlSetLookUpDis = 0 (see bit: <u>BstlSetLookUpDis</u>). These are the optimal settings for a given output voltage. If a different peak current setting is desired the BstlSetLookUpDis = 1 (see bit: <u>BstlSetLookUpDis</u>) setting must be selected; only then will the BstlSet register have any effect.

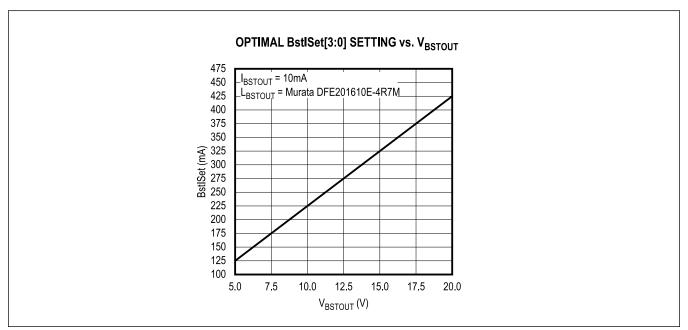


Figure 6. Optimal Peak Current vs. Voltage Lookup Table

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Boost Converter and LED0 Closed Loop Operation

The boost regulator has a feature allowing it to work in closed loop with the LED current sink LED0. The intent is to allow LEDs that are driven by LED0 and the boost to be run as efficiently as possible. When LED_BoostLoop = 1 (see bit: <u>LED_BoostLoop</u>), the boost voltage is adjusted in order to regulate the voltage at LED0 to the value set by LED0_REFSEL (see bit: <u>LED0_REFSEL</u>). This allows the headroom at the LED0 current sink to be minimized, and as a result, the efficiency of driving the LEDs is maximized. The boost regulation circuit can only act to increase the voltage from the initial setting and has a 5V range of adjustability.

Buck-Boost Regulator

The MAX20360 buck-boost regulator provides a low-ripple voltage rail that can be used for voltage regulation near or above the battery voltage. The buck-boost is sized to be ideal in powering LEDs used in photoplethysmography (PPG) systems. This includes PPG systems with short wavelength LEDs that require large forward voltage drops. The buck-boost topology as well as the dynamic voltage scaling capabilities allow the user to adjust the output voltage to accommodate as little headroom on the LED current sink as possible to maximize efficiency.

Several other controls help to optimize the efficiency and output noise of the regulator. These include peak current control and automatic peak and valley current adjustment. Additionally, the Buck-Boost regulator can operate in buck-only mode to increase efficiency when V_{BBOUT} is much lower than V_{SYS}.

Buck-Boost Inductor Selection

Inductor selection for the MAX20360 should be optimized for the intended application. A 2.2µH inductor value is required for this buck-boost. Aside from the inductor value physical size, DC resistance (DCR), maximum average current, and saturation current are the primary factors to consider. The maximum average inductor current is obtained using the following equation:

where,

V_{OUT MAX} = Maximum expected operating voltage

I_{OUT MAX} = Maximum expected output current

VIN MIN = Minimum expected operating input voltage

 η = Expected worst-case efficiency in the minimum input voltage and maximum output power case (see the Typical Operating Characteristics section for help in estimating efficiency).

The average inductor current calculated above dictates the required maximum average current for temperature rise on the inductor. In order to determine the required inductor saturation current, the peak current must be calculated. The worst case peak current for this converter can be calculated as the higher value between:

$$I_{L_{PEAK_{CCM}}} = I_{L_{MAX}} + \frac{1.15 \times (BBstIPSet1 + BBstIPSet2)}{2} + 100 \text{mA}$$

and

IL PEAK DCM = 1.15 × (BBstIPSet1 + BBstIPSet2) + 100mA

If I_{L_PEAK} is expected to occur when V_{IN} is lower than V_{OUT} by at least 100mV, a less pessimistic assumption can be taken as the lower of the below:

$$I_{L_PEAK_CCM} = I_{L_MAX} + \frac{1.15 \times BBstlPSet1}{2} + 100mA and I_{L_PEAK_DCM} = 1.15 \times BBstlPSet1 + 100mA$$

where BBstIPSet1 and BBstIPSet2 are the peak current settings.

When selecting an inductor, one primary factor in achieving high efficiency is the DCR of the inductor. For maximum efficiency, select an inductor with the lowest DCR possible in the required package size. Another factor to consider is magnetic losses. Generally magnetic losses are lower in inductors with larger physical size and/or higher saturation

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

current ratings. In most cases, ferrite inductors should be avoided as they tend to exhibit poor AC characteristics, especially in DCM. Refer to <u>Table 3</u> for inductor recommendations for a given optimization parameter.

Table 3. Recommended Inductors

OPTIMIZATION PARAMETERS	VENDOR	PART NUMBER
Efficiency	Murata	DFE201610E-2R2M
Size	Murata	DFE18SBN2R2MEL

Buck-Boost Output Capacitor Selection

The buck-boost is designed to be compatible with small case-size ceramic capacitors. As such, the device has low output capacitance requirements to accommodate the steep voltage derating of 0603 and 0402 (imperial) case-size capacitors. The sample derating curve in Figure 7 shows the required minimum capacitance for the BBOUT node.

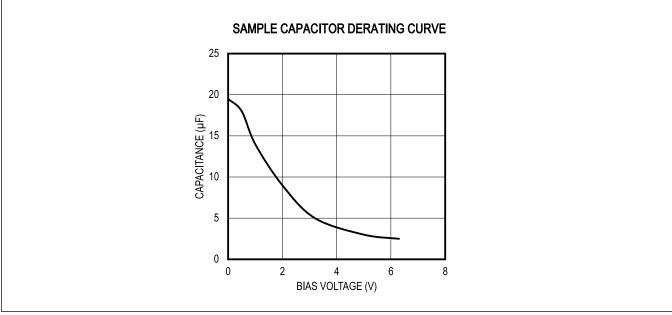


Figure 7. Buck-Boost Required Minimum Output Capacitance

Architecture and Switching Phases

The buck-boost comprises a typical noninverting buck-boost topology. Figure 8 illustrates the regulator's basic structure with arrows depicting the current flow in each switching phase. Depending on the register settings and input-to-output voltage relationship, the buck-boost sequences through the below switching phases in a particular order to deliver charge to the output. At most two switches are on in any given phase.

- Phase 1: MP1 on, MP2 on. Inductor charges.
- Phase 2: MP1 on, MN2 on. Inductor charges.
- Phase 3: MN1 on, MP2 on. Inductor discharges.
- Phase 4: MN1 on, MN2 on. Freewheeling.

The buck-boost features a frequency comparator to monitor its switching frequency. Switching frequency increases as the load current increases. Under light loads, the buck-boost optimizes its feedback loop for low quiescent current. When load requirements increase the switching frequency to the f_{HIGH} threshold, the low-quiescent current mode is disabled to improve response time. The transition above this threshold generates a discontinuity in the output-voltage ripple. If the transition occurs at a sensitive current causing noise on the output at a critical frequency, adjustment of the f_{HIGH}

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

threshold is recommended with the trade-off of a slight decrease in light load efficiency. The f_{HIGH} threshold is set by the BBFHighSh setting in the BBstCfg1 register (see register: <u>BBstCfg1</u>). Hysteresis prevents the buck-boost regulator from resuming the low-quiescent current mode until the switch frequency decreases to $f_{HIGH}/4$.

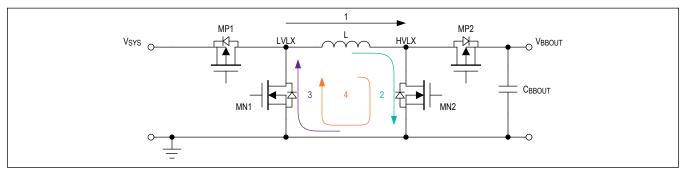


Figure 8. The Buck-Boost Regulator and Switching Phases

Buck-Boost Mode

When BBstMode (register 0x31[1]) is 0, the regulator operates in buck-boost mode. The inductor charges in phase 2 up to BBstIPSet1 (register 0x33[3:0]). This minimizes noise when V_{SYS} is close to V_{BBOUT} . The buck-boost then transitions to phase 1. If $V_{SYS} > V_{BBOUT}$, the inductor continues charging until either the current reaches BBstIPSet1 + BBstIPSet2 (register 0x33[7:4]) or after a 500ns delay. If $V_{SYS} \le V_{BBOUT}$, the buck-boost waits for the 500ns delay to elapse or until the current drops to the valley limit. Next, the regulator enters phase 3 to discharge the inductor current to the valley limit. When the inductor current reaches the valley-current crossing threshold or falls below 0, the regulator freewheels in phase 4 until the next charge phase. When operating in continuous conduction mode (CCM), the buckboost enters phase 4 for approximately 30ns if BBZCCmpEnb = 1. The buck-boost skips phase 4 when operating in CCM and BBZCCmpEnb = 0. The valley behavior is determined by BBZCCmpEnb (register 0x34[5]). Figure 9 shows the inductor current in buck-boost mode.

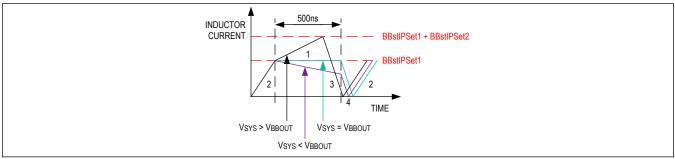


Figure 9. Buck-Boost Inductor Current in Buck-Boost Mode

Buck-Only Mode

To maximize efficiency when $V_{SYS} > V_{BBOUT}$, the buck-boost regulator has a buck-only mode. When BBstMode = 1, the regulator behaves as a synchronous buck regulator. The inductor charges in phase 1 until the inductor current reaches BBstIPSet1. The regulator then transitions to phase 3 to provide a path to deliver the inductor current to the output. Figure 10 shows the inductor current in buck-only mode.

Buck-only mode reduces switching losses present in buck-boost mode. Buck-only mode should be used when V_{BBOUT} is always less than V_{SYS} to maximize efficiency.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

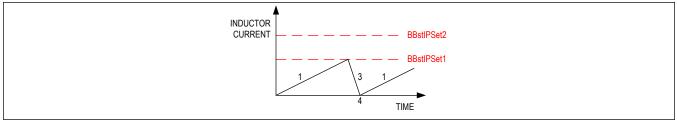


Figure 10. Buck-Boost Inductor Current in Buck-Only Mode

Inductor Peak and Valley Current Limits

The buck-boost regulator monitors the maximum and minimum values of the inductor current. Peak and valley currents can be fixed to the values in BBstIPSet_ and 0mA, respectively (see bits: <u>BBstIPSet1</u>, <u>BBstIPSet2</u>), or allowed to change based on load requirements if BBstIAdptDis = 0 (see bit: <u>BBstIAdptDis</u>).

Peak currents are set in the BBstlSet register (see register: <u>BBstlSet</u>). BBstlPSet1 controls the peak current when $V_{SYS} < V_{BBOUT}$ and when the regulator is in buck-only mode. BBstlPSet2 sets a secondary current limit when $V_{SYS} > V_{BBOUT}$ in buck-boost mode. The total inductor current limit when $V_{SYS} > V_{BBOUT}$ is BBstlPSet1 + BBstlPSet2. The buck-boost regulator transitions from phase 1 to phase 3 if the inductor current reaches BBstlPSet1 + BBstlPSet2 or if the 500ns timeout has elapsed. Minimizing the difference between BBstlPSet1 and BBstlPSet2 reduces the output ripple, but decreases efficiency. Care must be taken to optimize the peak current settings to keep a low output ripple while maximizing efficiency. Figure 11 presents the safe operating area of BBstlPSet2 with respect to BBstlPSet1. Selecting values lower than those of Figure 11 for a given value can reduce efficiency and increase output ripple. Figure 12 is a graphical guide to selecting combinations of BBstPSet1 and BBstlPSet2 to maximize efficiency for specific BBstVSet values.

In order to maximize the ease of implementation, the peak current settings of the buck-boost regulator are automatically adjusted to the settings shown in <u>Figure 12</u> for a given output voltage when BBstlSetLookUpDis = 0. If a different peak current setting is desired, the BBstlSetLookUpDis = 1 setting must be selected; only then will BBstlPSet1 and BBstlPSet2 have an effect (see bit: <u>BBstlSetLookUpDis</u>) When BBstlAdptDis = 0 (see bit: <u>BBstlAdptDis</u>), the regulator automatically increases the peak current limits when the load increases to improve load regulation and efficiency at high loads. When BBstZCCmpDis = 1 (see bit: <u>BBstZCCmpDis</u>), the buck-boost operates with peak and valley current limits. In discontinuous conduction mode (DCM), the valley limit is 0mA and it acts as a zero crossing. In CCM, the peak and valley limits are automatically adjusted by the voltage loop if BBstIAdptDis = 0 (see bit: <u>BBstIAdptDis</u>). However, when BBstZCCmpDis = 0 (see bit: <u>BBstZCCmpDis</u>), the buck-boost operates with peak, valley, and zero crossing current limits. The zero crossing limit is fixed at 0mA while the peak and valley limits are adjusted by the voltage loop if BBstIAdptDis = 0 (see bit: <u>BBstIAdptDis</u>).

In DCM, the valley current limit is negative so the end of phase 1 or 3 is determined by the zero-crossing current. In CCM, the valley current limit is \geq 0mA if BBstZCCmpDis = 0 (see bit: <u>BBstZCCmpDis</u>). The end of phase 1 or 3 is thus determined by the valley current comparator.

Disabling the zero current crossing comparator reduces the buck-boost output ripple. Enabling the comparator improves EMI in CCM by removing the phase 4 stage in CCM mode that is otherwise present when BBstZCCmpDis = 1 (see bit: <u>BBstZCCmpDis</u>).

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

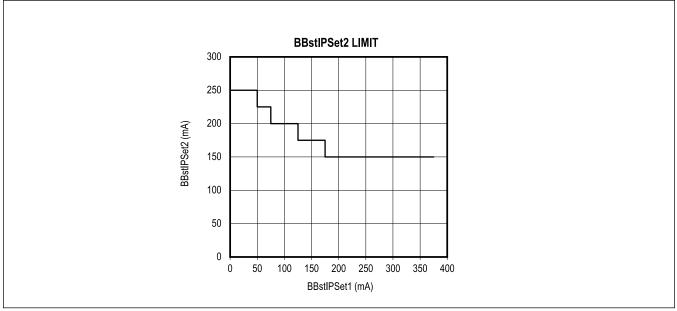


Figure 11. Minimum BBstIPSet2 Limit for a Given BBstIPSet1 Setting

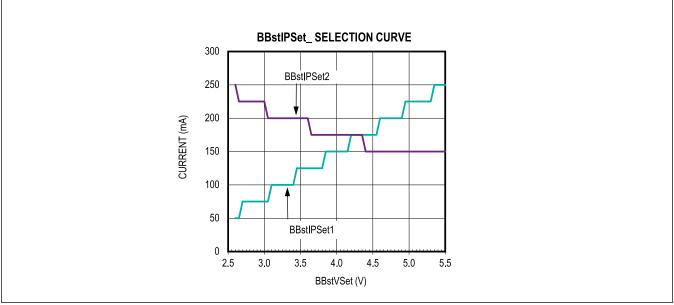


Figure 12. Recommended BBstIPSet1 and BBstIPSet2 Settings

Buck Regulators

The MAX20360 includes three buck regulators: two low-power 400mA bucks and one high-power 600mA buck. All of the buck regulators operate in a pulse-frequency modulation (PFM) scheme with peak and valley current control. At light loads, the buck converters operate in discontinuous conduction mode (DCM) to maximize efficiency. The buck regulators have minimum and maximum capacitance requirements. The effective output capacitance of each buck should fall within these limits to guarantee stable operation. Figure 13 illustrates the minimum and maximum capacitance for each output-voltage setting.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Buck Inductor Selection

Inductor selection for the MAX20360 should be optimized for the intended application. A 2.2µH inductor value is strongly preferred for these buck converters. A 1µH inductor is acceptable, but results in decreased efficiency with only marginal load transient response benefits. Aside from the inductor-value physical size, DC resistance (DCR), maximum average current, and saturation current are the primary factors to consider. The maximum average inductor current is simply equal to the maximum output current expected in the application.

The average inductor current calculated above dictates the required maximum average current for temperature rise on the inductor. In order to determine the required inductor saturation current, the peak current must be calculated. The peak current for this converter can be calculated as the higher value between the following equations:

 $I_{L_PEAK_CCM} = I_{L_MAX} + \frac{1.15 \times BuckxlSet}{2} + 100mA and I_{L_PEAK_DCM} = 1.15 \times BuckxlSet + 100mA$

Where BuckxISet is the peak current setting for the relevant buck converter and I_{L_MAX} is the maximum expected load current on the converter.

When selecting an inductor, one primary factor in achieving high efficiency is the DCR of the inductor. For maximum efficiency, select an inductor with the lowest DCR possible in the required package size. Another factor to consider is magnetic losses. Generally, magnetic losses are lower in inductors with larger physical size and/or higher saturation current ratings. In most cases, ferrite inductors should be avoided as they tend to exhibit poor AC characteristics, especially in DCM. Refer to <u>Table 4</u> for inductor recommendations for a given optimization parameter.

Table 4. Recommended Inductors Buck

OPTIMIZATION PARAMETERS	VENDOR	PART NUMBER
Efficiency	Murata	DFE201610E-2R2M
Size	Murata	DFE18SBN2R2MEL

Buck Output Capacitor Selection

The bucks are designed to be compatible with small case-size ceramic capacitors. As such, the device has low output capacitance requirements to accommodate the steep voltage derating of 0603 and 0402 (imperial) case-size capacitors. Additionally, there is a maximum output capacitance requirement to maintain stability. The required minimum and maximum capacitance requirements in Figure 13 show the required capacitance for the BK_OUT node.

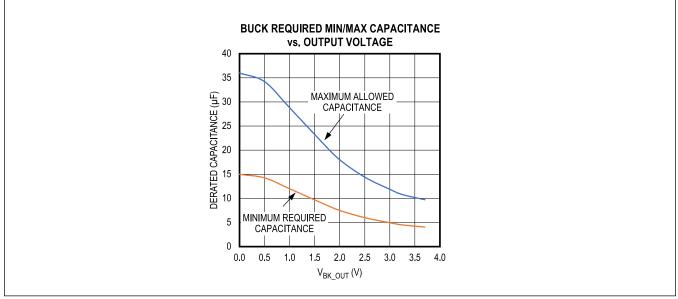


Figure 13. Buck Required Minimum and Maximum Capacitance to Guarantee Stability

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Inductor Peak and Valley Current Limits

When a buck regulator is in DCM, the inductor's minimum current threshold (I_{VALLEY}) is 0mA and the inductor's peak current threshold (I_{PEAK}) is set automatically to the optimal value per <u>Figure 14</u> by the regulator's automatic lookup table or by the Buck_ISet register (see bits: <u>Buck1ISet, Buck2ISet, Buck3ISet</u>) if Buck_ISetLookUpDis = 1 (see bits: <u>Buck1ISetLookUpDis</u>, <u>Buck2ISetLookUpDis</u>). In this mode, as the load increases the switching frequency also increases in accordance with the PFM control scheme.

As the load continues to increase, the switching frequency of the buck regulator eventually reaches roughly 1.1MHz. At this point, if the buck regulator adaptive current setting is enabled (Buck_IAdptDis = 0) (see bits: <u>Buck1IAdptDis</u>, <u>Buck2IAdptDis</u>), IPEAK and IVALLEY shifts upward maintaining a roughly constant offset between themselves (set by the inductor peak current setting described in the first paragraph above). Once the valley current begins to increase, the regulator is operating in continuous conduction mode (CCM) as the inductor is no longer discharged completely to 0mA. The slope of the switching frequency flattens and rises only marginally for the remainder of the load range. This control scheme seeks to balance both the ohmic losses arising from the peak current level and the switching losses incurred by driving the gates of the FETs, extending load regulation and high efficiency over a wider range of loads.

If the adaptive current setting is disabled (Buck_IAdptDis = 1) (see bits: <u>Buck1IAdptDis</u>, <u>Buck2IAdptDis</u>, <u>Buck3IAdptDis</u>), the switching frequency continues to rise until the regulator reaches critical conduction mode. As the load increases past critical conduction mode, the switching frequency saturates and the buck regulator behaves as a current source. This results in increased load regulation error at the output of the regulator.

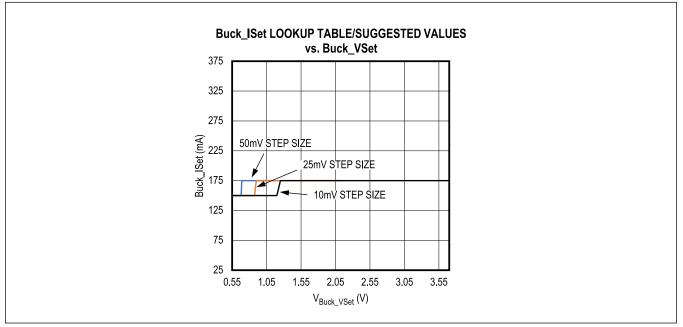


Figure 14. Optimal Peak Current Setting vs. Output Voltage

Adjustments to Manipulate Buck Switching Frequency

In some applications, the buck output-voltage ripple can generate noise at frequencies that interfere with sensitive analog circuitry. The adjustable peak current of the MAX20360 provides the flexibility to shift the ripple frequency out of the sensitive frequency ranges when the regulator is in DCM mode. Increasing the peak current delivers more charge to the output capacitor in a switching cycle, thereby decreasing the number of times the output capacitor requires charging to supply the same load. In this case, the output ripple frequency decreases for a given load current and shifts below sensitive, high-frequency ranges. Conversely, decreasing the peak current increases the switching frequency for a given load current to prevent injecting noise in sensitive, low-frequency ranges.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Note that increasing the peak current results in higher ohmic losses, which can lower efficiency and increased outputvoltage ripple amplitude. Decreasing the peak current incurs higher switching losses, which can lower the efficiency. Refer to the Typical Operating Characteristics section.

In order to maximize the ease of implementation, the peak current settings of the buck regulator can be automatically adjusted to the optimal settings for a given output voltage. When Buck_ISetLookUpDis = 0 (see bits: <u>Buck1ISetLookUpDis</u>, <u>Buck2ISetLookUpDis</u>, <u>Buck3ISetLookUpDis</u>), the MAX20360 updates the peak current settings when the output voltage of the buck regulator is changed in any DVS mode. If an application requires independent peak current control, setting Buck_ISetLookUpDis = 1 (see bits: <u>Buck1ISetLookUpDis</u>, <u>Buck2ISetLookUpDis</u>, <u>Buck2ISetLookUpDis</u>, <u>Buck3ISetLookUpDis</u>, <u>Buck3ISetLookUpDis</u>, <u>Buck2ISetLookUpDis</u>, <u>Buck3ISetLookUpDis</u>, <u>Buck3ISetLookUpDis</u>

High Power Buck Converter with LDO Mode

The charging phase of a buck regulator delivers energy to the inductor by creating a path from the regulator input to its output. Current through the inductor rises according to the equation:

$$\Delta I = \frac{V_{\text{IN}} - V_{\text{OUT}}}{L} \times \Delta t$$

Because the inductor current must ramp to a fixed value (i.e., ΔI is fixed and is the peak current limit), as the input voltage approaches the output voltage, the time required for the inductor to reach its peak current (Δt) increases. This causes the regulator output-voltage ripple amplitude on the output of the converter to grow as the V_{IN} - V_{OUT} value decreases, reducing the efficiency and increasing the output ripple noise.

To avoid an excessively large Δt , the high-current Buck3 regulator of the MAX20360 automatically transitions into an LDO operation mode when $V_{IN} - V_{OUT}$ reaches V_{IN} BOUT_DRPOUT_TH_F. This eliminates the performance reduction when Buck3 operates at low buck voltage ratios. The LDO mode also improves performance over a standard buck architecture since LDOs are efficient and maintain noise immunity at low step-down ratios. Transitions into and out of LDO mode have substantial hysteresis to prevent oscillations when entering and exiting LDO mode.

Charge Pump

A low-quiescent current 5V charge pump is included in MAX20360. For proper operation a 22nF (min), 33nF (max) capacitor should be connected between the CPP and CPN bumps.

Power Switch and Reset Control

The MAX20360 features a power switch that provides the ability to execute a reset sequence or to turn off the main system power and enter OFF or SEAL mode to extend battery life. In OFF mode, the SYS node and all PMIC outputs are turned off except LDO2 when it is configured as always on, either by the LDO2Seq (see bit: <u>LDO2Seq</u>) or when it is kept on before entering OFF mode. In SEAL mode, all regulators and the SYS node are turned off. SEAL mode is the lowest-quiescent current mode of the MAX20360 and maximizes battery life when a product cannot be used for an extended period, such as when shipping from the factory to a retailer. More details on the power modes can be found in the <u>PMIC Power Modes</u> section.

Shutdown and reset events are triggered by an external control using the power function (PFN) control inputs, I^2C commands, or if other conditions are met. The behavior of the PFN pins is preconfigured to support one of the multiple types of wearable application cases. <u>Table 5</u> describes the behavior of the PFN1 and PFN2 pins based on the PwrRstCfg bits (see <u>PwrRstCfg</u> in <u>Table 5</u>), while <u>Figure 15</u> through <u>Figure 23</u> show the state diagrams associated with each mode.

A soft-reset sends a 10ms pulse on \overline{RST} and either leaves register settings unchanged or resets them to their default values depending on the device version (see bit: <u>SftRstCfg</u>). A hard reset on any device initiates a complete power-on reset (POR) sequence.

Devices with HrvEn = 0 enter SEAL mode on cold boot (battery attach with no CHGIN present). Devices with HrvEn = 1 enter battery recovery (BR) mode on cold boot. When the MAX20360 is in ON mode, it enters OFF/SEAL/BR mode after receiving PWR_OFF_CMD/PWR_SEAL_CMD/PWR_BR_CMD I²C command in the PwrCmd register (see register: <u>PwrCmd</u>), respectively. When the device detects a valid PFN signal it enters OFF mode or BR mode based on the PwrRstCfg and HrvEn setting.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

The MAX20360 exits OFF/SEAL mode and turns the main power back on when there is a qualified PFN1 signal for PwrRstCfg settings where PFN1 is $\overline{\text{KIN}}$, or when a valid voltage is applied to CHGIN. In the powered-on state, the SYS node is enabled and other functions can be controlled through the I²C registers. <u>Figure 24</u> and <u>Figure 25</u> illustrate a complete boot sequence coming out of OFF/SEAL mode.

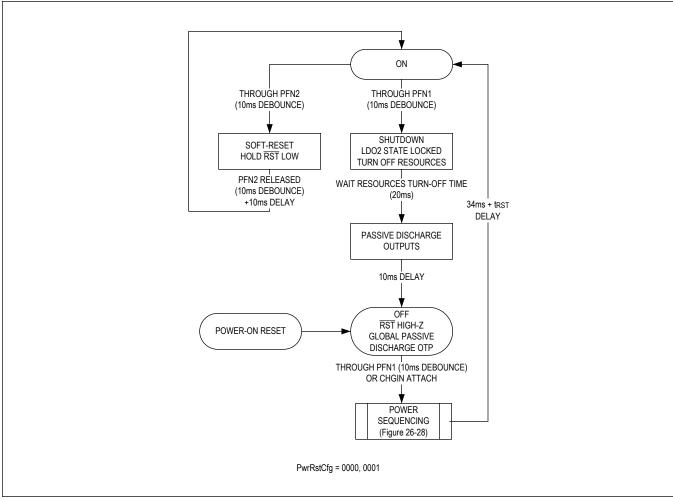


Figure 15. PwrRstCfg 0000, 0001

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

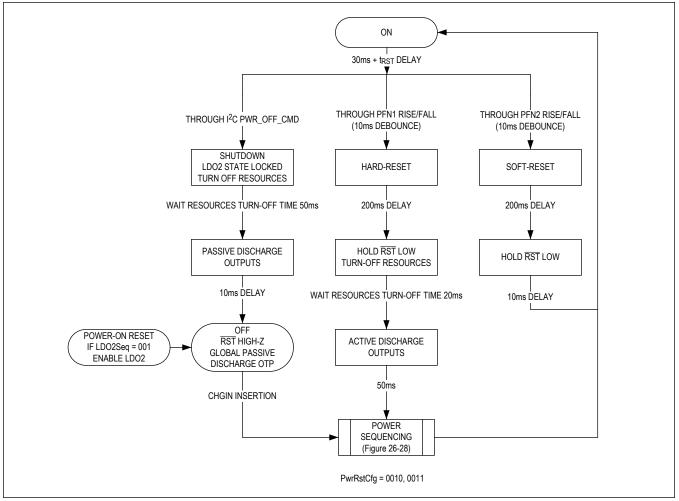


Figure 16. PwrRstCfg 0010, 0011

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

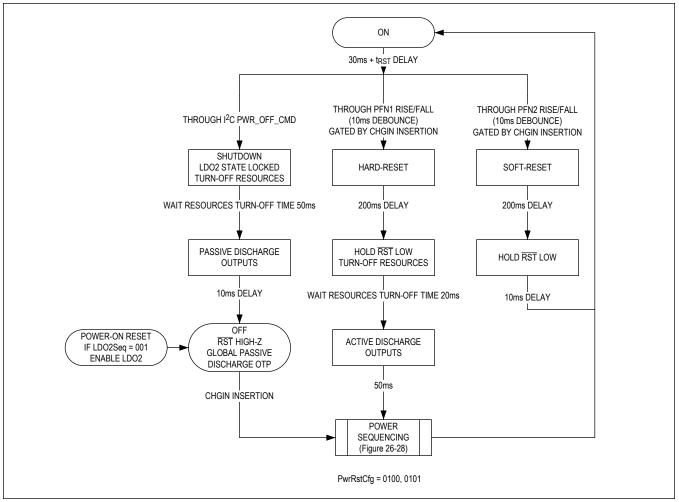
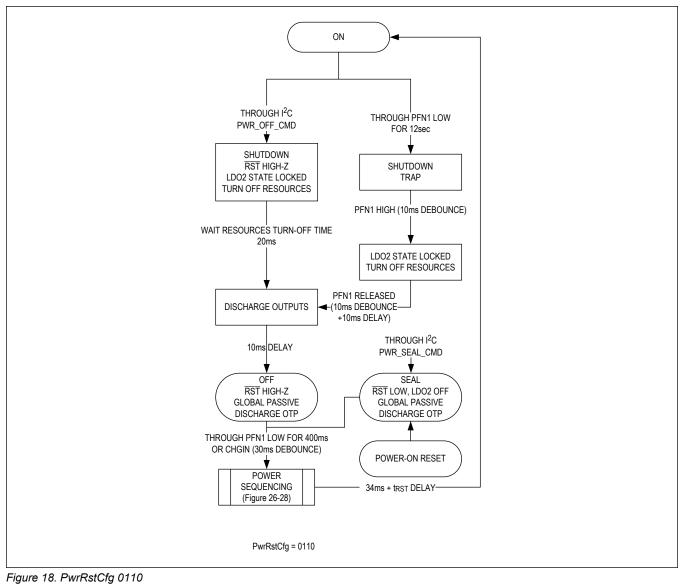



Figure 17. PwrRstCfg 0100, 0101

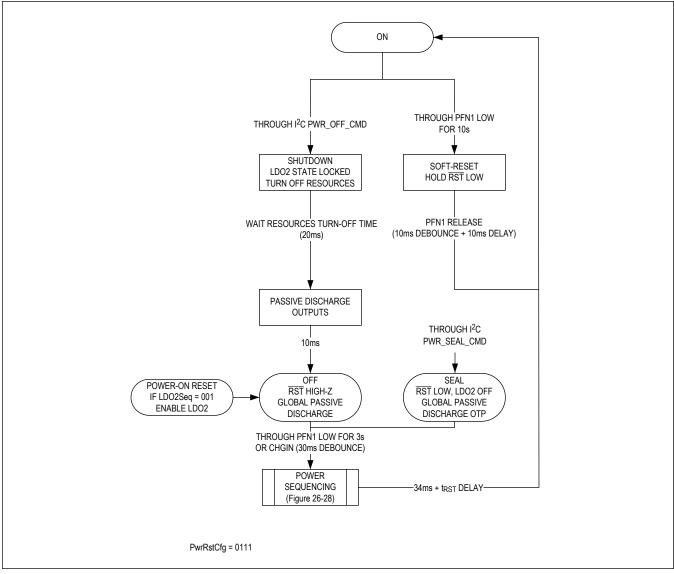


Figure 19. PwrRstCfg 0111

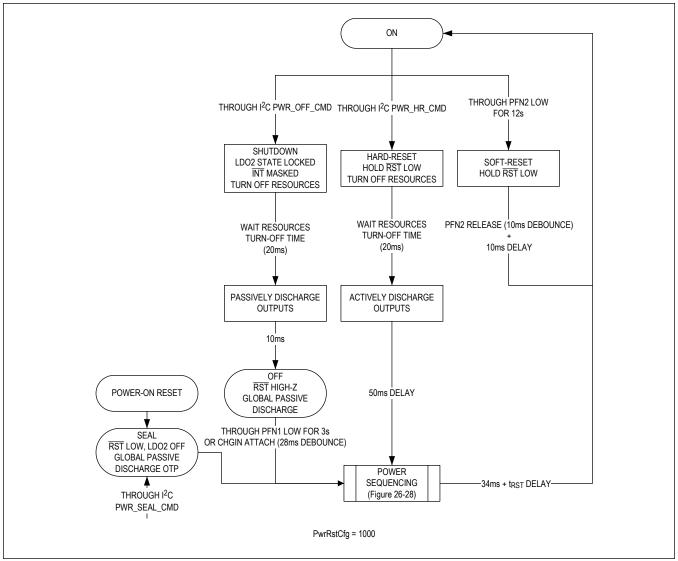


Figure 20. PwrRstCfg 1000

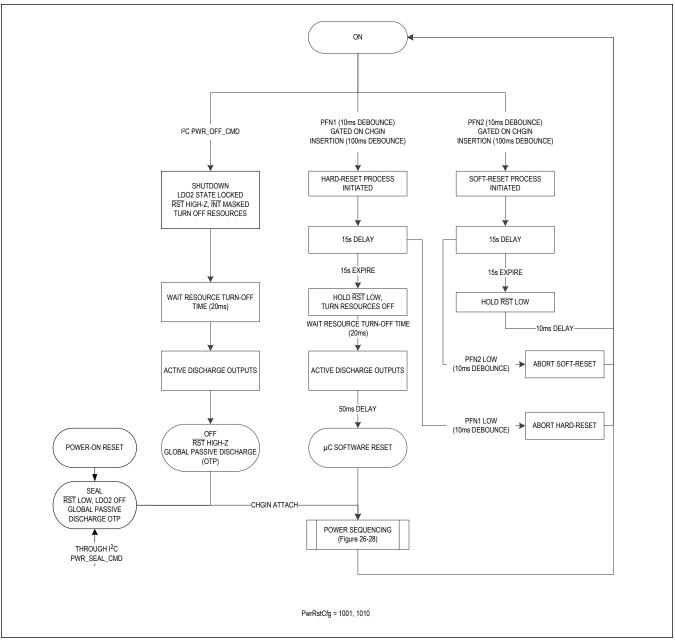


Figure 21. PwrRstCfg 1001, 1010

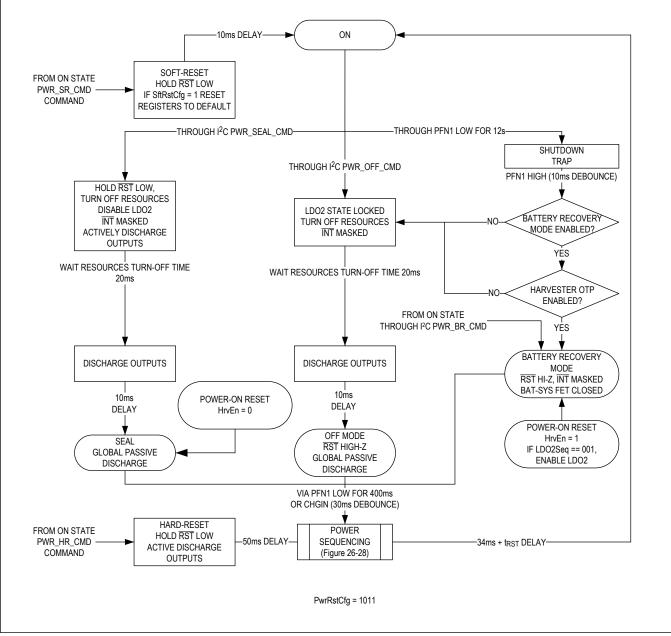


Figure 22. PwrRstCfg 1011

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

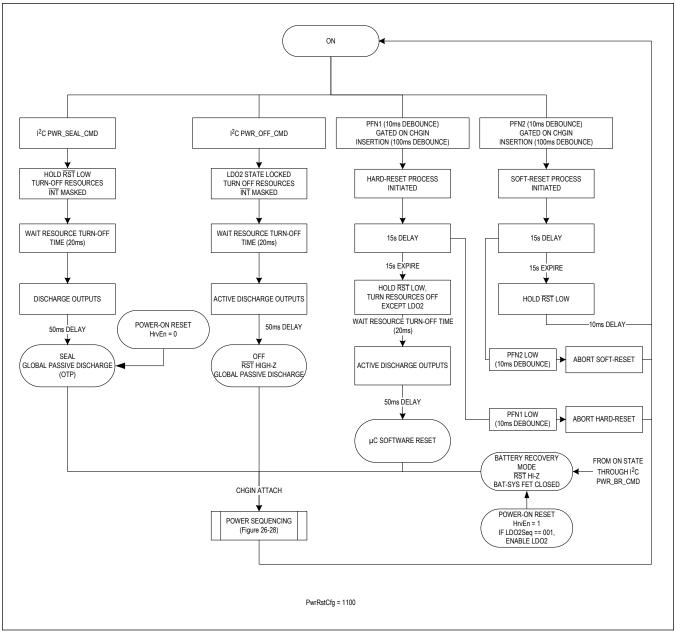


Figure 23. PwrRstCfg 1100

Table 5. PwrRstCfg Settings

PwrRstCfg[3:0]	FIGURE	MODE NAME	BEHAVIOR
0000	<u>Figure</u> <u>15</u>	ON/OFF	ON/OFF Mode with 10ms Debounce. PFN1 is the active-high ON/OFF control input. PFN2 is the active-low soft-reset input.
0001	Figure <u>15</u>	ON/OFF	ON/OFF Mode with 10ms Debounce. PFN1 is the active-low ON/OFF control input. PFN2 is the active-low soft-reset input.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Table 5. PwrRstCfg Settings (continued)

		Jocum	
0010	Figure <u>16</u>	AON	Always-On Mode. A rising edge on PFN1 generates a hard-reset after a 200ms delay. A rising edge on PFN2 generates a soft-reset after a 200ms delay. The device can only enter the OFF state by writing to the PwrCmd register.
0011	Figure <u>16</u>	AON	Always-On Mode. A falling edge on PFN1 generates a hard-reset after a 200ms delay. A falling edge on PFN2 generates a soft-reset after a 200ms delay. The device can only enter the OFF state by writing to the PwrCmd register.
0100	Figure <u>17</u>	CR High	Always-On Mode. Holding PFN1 high during a CHGIN insertion generates a hard-reset after a 200ms delay. Holding PFN2 high during a CHGIN insertion triggers a soft-reset after a 200ms delay. The device can only enter the OFF state by writing to the PwrCmd register.
0101	Figure <u>17</u>	CR Low	Always-On Mode. Holding PFN1 low during a CHGIN insertion generates a hard-reset after a 200ms delay. Holding PFN2 low during a CHGIN insertion triggers a soft-reset after a 200ms delay. The device can only enter the OFF state by writing to the PwrCmd register.
0110	<u>Figure</u> <u>18</u>	KIN	$\frac{\text{ON/OFF Through Key Presses. PFN1 is the active-low \overline{\text{KIN}} button. PFN2 is the open-drain \overline{\text{KOUT}} output, which buffers the \overline{\text{KIN}} input. The device enters on mode through a short (400ms) \overline{\text{KIN}} press or a CHGIN insertion. The device enters OFF mode through a long (> 12s) \overline{\text{KIN}} press or through the PwrCmd register.}$
0111	<u>Figure</u> <u>19</u>	CSR1	On/Reset Through Key Presses. PFN1 is the active-low $\overline{\text{KIN}}$ button. PFN2 is the opendrain $\overline{\text{KOUT}}$ output, which buffers the $\overline{\text{KIN}}$ input. The device enters on mode through a long (> 3s) $\overline{\text{KIN}}$ press or a CHGIN insertion. A long (> 12s) $\overline{\text{KIN}}$ press generates a soft-reset. The device can only enter the off state by writing to the PwrCmd register.
1000	Figure 20	CSR2	On/Reset Through Key Presses. PFN1 is the active-low $\overline{\text{KIN}}$ button. The device enters on mode through a long (> 3s) $\overline{\text{KIN}}$ press or a CHGIN insertion. A long (> 12s) PFN2 press generates a soft-reset. The device can only enter the off-state by writing to the PwrCmd register.
1001	Figure 21	Custom CR High	Always-On Mode. The device can only enter the on state through a CHGIN insertion. Holding PFN1 high during a CHGIN insertion generates a hard-reset after a 15 second delay. If PFN1 is brought low during this delay (10ms debounce), the hard-reset is aborted. Holding PFN2 high during a CHGIN insertion generates a soft-reset after a 15 second delay. If PFN2 is brought low during this delay (10ms debounce), the hard-reset is aborted.
1010	<u>Figure</u> <u>21</u>	Custom CR Low	Always-On Mode. The device can only enter the on state through a CHGIN insertion. Holding PFN1 low during a CHGIN insertion generates a hard-reset after a 15 second delay. If PFN1 is brought high during this delay (10ms debounce), the hard-reset is aborted. Holding PFN2 low during a CHGIN insertion generates a soft-reset after a 15 second delay. If PFN2 is brought high during this delay (10ms debounce), the hard-reset is aborted.
1011	Figure 22	KIN with OFF/ SEAL	ON/OFF Through Key Presses with OFF/SEAL. PFN1 is the active-low KIN button. PFN2 is the open-drain KOUT output, which buffers the KIN input. The device enters on mode through a short (400ms) KIN press or a CHGIN insertion. The device enters OFF mode through a long (> 12s) KIN press or through the PwrCmd register.
1100	Figure 23	Custom CR High with OFF/ SEAL	Always-On Mode with OFF/SEAL. The device can only enter the on-state through a CHGIN insertion. Holding PFN1 high during a CHGIN insertion generates a hard-reset after a 15-second delay. If PFN1 is brought low during this delay (10ms debounce), the hard-reset is aborted. Holding PFN2 high during a CHGIN insertion generates a soft-reset after a 15-second delay. If PFN2 is brought low during this delay (10ms debounce), the hard-reset is aborted.
1101-1111		RFU	-

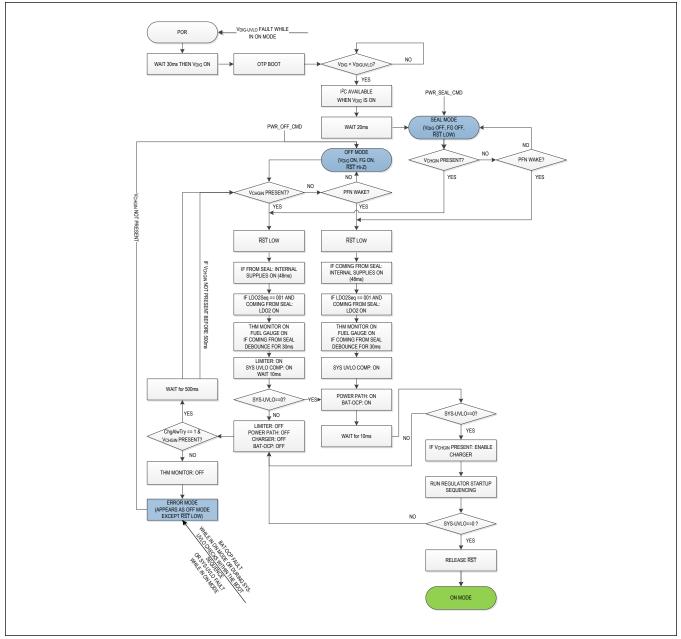


Figure 24. Boot Sequence—Harvester Mode Disabled

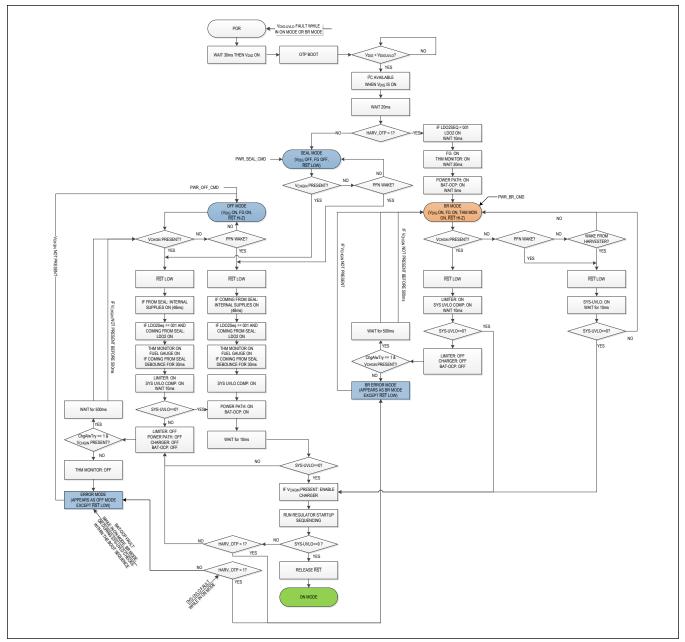


Figure 25. Boot Sequence—Harvester Mode Enabled

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

PMIC Power Modes

The following sections describe the basic operating modes of the MAX20360.

SEAL Mode

SEAL mode is the lowest-quiescent current mode on the MAX20360. In this mode, all resources are off except the button monitor and V_{CHGIN} insertion detection circuitry.

OFF Mode

The MAX20360 must in some cases power an RTC. OFF mode is the lowest quiescent current mode in which the fuel gauge and the always on LDO are powered. In this mode, the V_{DIG} supply, the button and V_{CHGIN} monitor circuits, and the fuel gauge are on. If LDO2 was on before entering OFF mode or if LDO2Seq = 001 (see bit: <u>LDO2Seq</u>), LDO2 is also on in OFF mode.

ON Mode (Versions with HrvEn = 0)

ON mode is the most common operating mode. In ON mode, all regulators are or can be enabled, the fuel gauge is on, and all features are accessible.

Battery Recovery Mode (Versions with HrvEn = 1)

On versions of MAX20360 with HrvEn = 1, MPC7 and MPC6 are permanently reconfigured as "Wake Input" (from Harvester) and "Disable Output" (to Harvester, high-side open-drain to V_{CCINT}), respectively. In battery recovery mode, the part is in the same operating condition as OFF mode; however, in addition the switch between SYS and BAT is closed in order to allow a charging path for recovery from a dead battery situation and the battery thermistor is actively monitored to ensure safe operating conditions. As soon as the battery reaches a threshold which is programmed on the MAX20361 harvester, the MAX20361 sends a wake signal, bringing the part into ON Mode (Versions with HrvEn = 1) as described below. In situations where the THM monitor detects an out-of-bound condition and the charging is considered unsafe, a disable signal is sent to the harvester to halt charging.

ON Mode (Versions with HrvEn = 1)

ON mode with HrvEn = 1 is very similar to ON mode with HrvEn = 0 as described above with the exception that harvester functionality is enabled. In this mode, an ideal diode can be applied to the BAT-SYS relationship. In the default operation, the harvester supplies SYS directly until it is unable to further support the output at which point the battery supplements the supply. This mode also includes the rest of the harvester interaction functionality described in the *MAX20361 Harvester Interaction* section. This behavior can be modified per the HrvBatSys, HrvThmEn and HrvThmDis bit fields (see bits: *HrvBatSys, HrvThmEn, HrvThmDis*).

Power Sequencing

The sequencing of the switching regulators, load switches, and LDOs during power-on is configurable. See each function's sequencing bits for details. Regulators and switches can turn on at one of three points during the power-on process: 0% of t_{RST} time after the power-on event, at the time the \overline{RST} signal is released, or at two points in between. The two points between 0% of t_{RST} time delay and the \overline{RST} rising edge are fixed proportionally to the duration of the power-on reset (POR) process boot delay (t_{RST}). The value of the t_{RST} delay ranges from 80ms to 420ms and is stored in the BootDly bits (see bit: *BootDly*). The timing relationship is presented graphically in Figure 26, Figure 27, and Figure 28.

Alternatively, the regulators and switches can remain off by default and turn on manually with an I^2C command after \overline{RST} is released. LDO2 can be configured to be always on.

The SYS voltage is monitored during the power-on sequence. If V_{SYS} falls below V_{SYS_UVLO} during the sequencing process with a valid voltage at CHGIN and ChgAlwTry = 1, the process repeats from the point where SYS was enabled to allow more time for the voltage to stabilize. If there is not a valid voltage at CHGIN, the device returns to the off state to avoid draining the battery. Power is also turned off if BAT experiences a current greater than I_{BAT_OCP} for more than tBAT_OCP_RD.

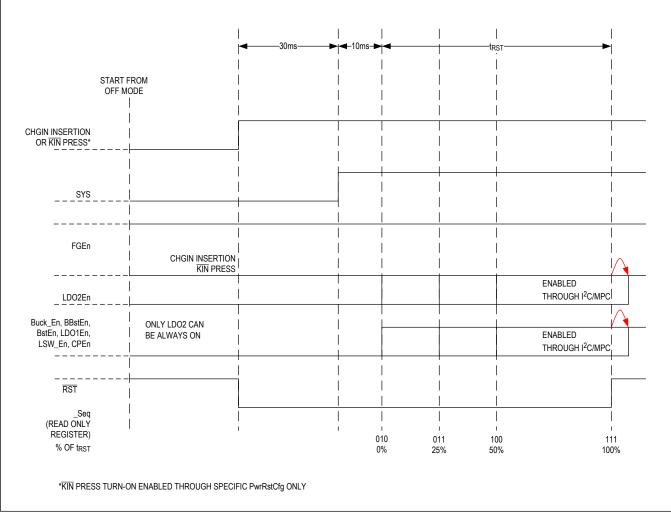


Figure 26. Power Sequencing, HrvEn = 0 from OFF Mode

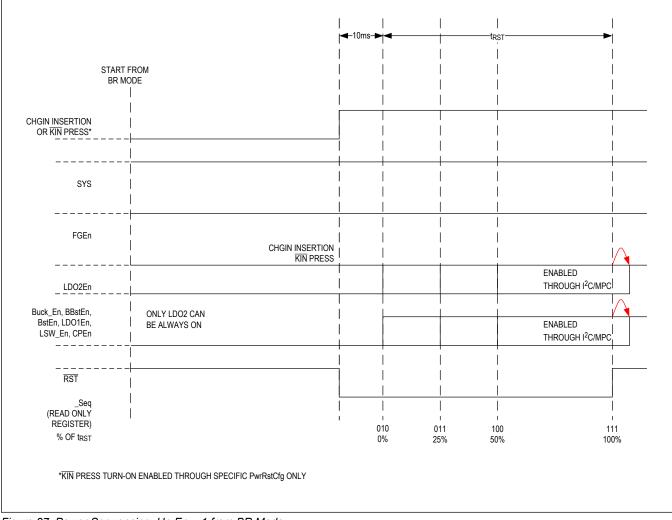


Figure 27. Power Sequencing, HrvEn = 1 from BR Mode

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

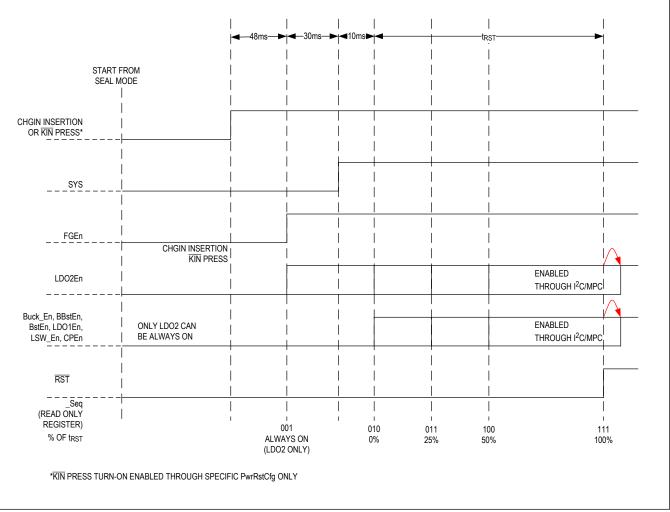


Figure 28. Power Sequencing, from SEAL Mode

System Load Switch

An internal 80m Ω (typ) MOSFET connects BAT to SYS when no voltage source is available on CHGIN. When an external source is detected at CHGIN, this switch opens and SYS is powered from the input source through the input current limiter. The SYS-to-BAT switch also prevents V_{SYS} from falling below V_{BAT} when the system load exceeds the input current limit. If V_{SYS} drops to V_{BAT} due to the current limit (I_{LIM}), the SYS-to-BAT switch turns on so the load is supported by the battery. If the system load continuously exceeds the input current limit, the battery is not charged. This is useful for handling loads that are nominally below the input current limit, but have high current peaks exceeding the input current limit. During these peaks, battery energy is used, but at all other times the battery charges.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Smart Power Selector

The smart power selector seamlessly distributes power from the external CHGIN input to the BAT and SYS nodes. With both an external adapter and battery connected, the smart power selector basic functions are:

- When the system load requirements are less than the input-current limit, the battery is charged with residual power from the input.
- When the system load requirements exceed the input-current limit, the battery supplies supplemental current to the load.
- When the battery is connected and there is no input-current limit, the system is powered from the battery.

Input Limiter

The input limiter distributes power from the external adapter to the system load and battery charger. In addition to the input limiter's primary function of passing power to the system load and charger, it performs several additional functions to optimize use of available power.

Invalid CHGIN Voltage Protection

If CHGIN is above the overvoltage threshold V_{CHGIN_OV} , the device enters overvoltage lockout (OVLO). OVLO protects the MAX20360 and downstream circuitry from high-voltage stress up to +28V. During OVLO, the internal circuit remains powered and an interrupt is sent to the host. The negative voltage protection down to -5.5V disconnects CHGIN and the device is powered only by BAT. The charger turns off and the system load switch closes, allowing the battery to power SYS. CHGIN is also invalid if it is less than V_{BAT}, or less than the V_{CHGIN_DET} threshold. With an invalid input voltage, the SYS-to-BAT load switch closes and allows the battery to power SYS.

CHGIN Input Current Limit

The CHGIN input current is limited to prevent input overload. The input current limit I_{LIM} is I^2C -controlled through paramter ILimCntl (see bit: <u>ILimCntl</u>). To accommodate systems with a high inrush current, the limiter includes a blanking time t_{ILIM} _BLANK, I^2C programmable through the parameter ILimBlank (see bit: <u>ILimBlank</u>), during which the input current limit increases to I_{LIM} _MAX.

Thermal Limiting

In case the die temperature exceeds T_{CHG_LIM} , the MAX20360 attempts to limit temperature increases by reducing the input current from CHGIN. In particular, the system load has priority over the charger current, so the input current is first reduced by lowering the charge current. If the junction temperature continues to rise and reaches the maximum operating limit (T_{CHG} SHDN), no input current is drawn from CHGIN and the battery powers the entire system load.

Battery Charger

Adaptive Battery Charging

While the system is powered from CHGIN, the charger draws power from SYS to charge the battery. If the total load exceeds the input current limit, an adaptive charger control loop reduces charge current to prevent V_{SYS} from collapsing below the maximum between V_{SYS} _LIM that is I²C programmable through the SysMinVlt parameter (see bit: <u>SysMinVlt</u>), and V_{SYS} _BAT_REG values. When the charge current is reduced below 50% (I_{FCHG_TEXT} threshold) due to V_{SYS} _LIM/ V_{SYS} _BAT_REG or T_{CHG}_LIM limits, the timer clock operates at half speed. When the charge current is reduced below 20% (I_{FCHG_TSUS} threshold) due to V_{SYS} _LIM/ V_{SYS} _BAT_REG or T_{CHG}_LIM limits, the timer clock operates at half speed. When the charge current is reduced below 20% (I_{FCHG_TSUS} threshold) due to V_{SYS} _LIM/ V_{SYS} _BAT_REG or T_{CHG}_LIM limits, the timer clock pauses.

Fast Charge Current Setting

The MAX20360 uses an external resistor connected from ISET to GND to set the fast-charge current I_{FCHG} . The precharge (I_{PCHG}) and charge-done, I_{CHG} _DONE, currents are I^2C programmed using IPChg and IChgDone parameters (see bits: <u>IPChg</u>, <u>IChgDone</u>), respectively, as a percentage of this value. The fast-charge current resistor can be calculated as:

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

RISET = KISET X VISET / IFCHG

where K_{ISET} has a typical value of 2000A/A and V_{ISET} has a typical value of +1V. The range of acceptable values for R_{ISET} is $4k\Omega$ to $400k\Omega$. A capacitive load on the ISET pin can cause instability of the charger if the condition ($C_{ISET} < 5\mu s / R_{ISET}$) pF is violated.

JEITA Monitoring with Charger Control

To enhance safety when charging lithium-ion batteries, the MAX20360 includes a JEITA compliant temperature monitoring. A resistive divider is formed on THM by attaching a pullup resistor to TPU and connecting the thermistor of a battery-pack (do not exceed 2mA load on TPU). TPU is internally connected internally to V_{DIG} through a switch. The divider output is read by internal comparators when JEITA monitoring is enabled and the resulting temperature measurement places the battery into one of five temperature zones: cold, cool, room, warm, and hot. Charging is always inhibited in cold and hot regions or if the thermistor is not detected while charging behavior is configurable in warm, room, and cool regions using the I²C-controlled ChgThmEn parameter (see bit: <u>ChgThmEn</u>). In particular, the battery regulation voltage can be reduced to the V_{BAT_REG_JTA} value using the I²C-programmed ChgCool/Room/WarmBatReg[1:0] parameters (see bits: <u>ChgCoolBatReg, ChgRoomBatReg, ChgWarmBatReg</u>) while the fast-charge current can be reduced to the I_{FCHG_JTA} value using the I²C-programmed ChgCool/Room/WarmIFChg parameters (see bits: <u>ChgCoolBatReg, ChgRoomJFChg</u>). Charging can also be inhibited in cool and warm regions using ChgThmEn (see bit: <u>ChgThmEn</u>). See figure 29, Figure 30, and Figure 31 for representations of the JEITA value provide in each of the charging phases.

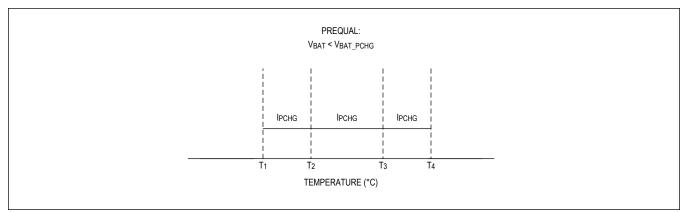


Figure 29. Sample JEITA Pre-Charge Profile

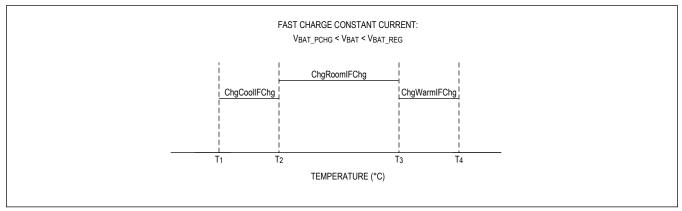


Figure 30. Sample JEITA Fast Charge Profile

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

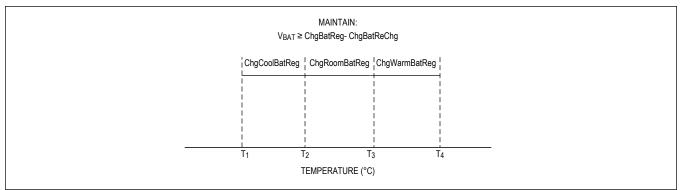


Figure 31. Sample JEITA Maintain Charge Profile

Step Charging

Lithium-ion batteries suffer capacity degradation over their lifetimes. One of the primary causes of degradation over the lifetime of a battery is due to an effect called lithium plating, which describes the formation of metallic lithium on the anode of the battery. Lithium plating has many causes, but one of the most common is when the battery is charged at high rates relative to the capacity of the battery when the battery is at a high state of charge (SOC). To combat this effect, the MAX20360 includes a step-charge function. This function allows the user to select a voltage threshold at which the charge current can be reduced in order to avoid lithium plating and prolong the lifetime of the battery. The settings of this function can be found in the StepChgCfg0 and StepChgCfg1 registers (see bit: <u>StepChgCfg0, StepChgCfg1</u>). The ChgStepRise (see bit: <u>ChgStepRise</u>) field allows the setting of the rising voltage V_{BAT_STPCHG} at which the charge current should be reduced. The ChgIStep (see bit: <u>ChgIStep</u>) field sets the percentage I_{FCHG_STPCHG} of the full fast-charge current to which the charger should be set when the battery is above the V_{BAT_STPCHG} value specified with ChgStepRise (see bit: <u>ChgStepRise</u>). Lastly, the ChgStepHys (see bit: <u>ChgStepHys</u>) field sets the V_{BAT_STPCHG_H} hysteresis for the step charge function in order to avoid oscillations in case a high battery impedance causes the voltage to fall a large amount upon reduction of the battery current. If this function is not desirable, set the ChgIStep (see bit: <u>ChgIStep</u>) setting to 100% ("111") to disable it.

In case both JEITA and step-charging related fast-charge current reductions are active, the minimum between the two is selected and applied.

Battery Charger State Diagram

A battery charger-state diagram is shown below in Figure 32. User can read ChgStat bits (see bit: <u>ChgStat</u>) to know the status of charger.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

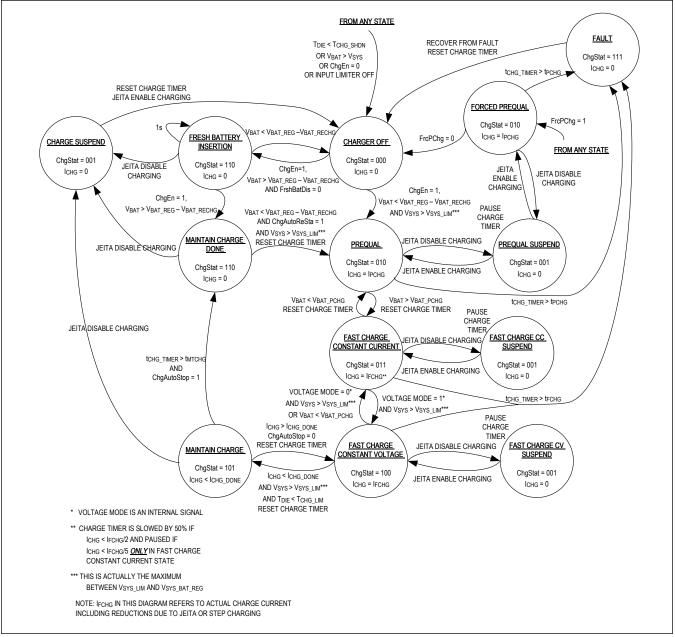


Figure 32. Battery Charger-State Diagram

Battery or Pack Protector Presence Detection

When pack protectors open due to a discharge-related fault, the pack protector turns off the discharge FET, placing a reverse-biased body diode in the discharge path and preventing further discharge. In this state, the system designer can decide that the battery has been damaged and that they would like to prevent a full charge cycle in the future. Even if the system designer does decide that the battery can be recovered, they can have concerns that the diode drop of the pack protector can cause the charger to believe that the battery is above the precharge voltage threshold, which would mean that the fast charge current is applied.

In this scenario, it is useful for the system to understand before starting a full charge cycle whether a pack is present

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

on the BAT node (with an open protector) or if the battery has simply been removed. The MAX20360 contains all of the necessary circuitry to allow the system designer to implement such a check.

One example of a simple algorithm to check for such a condition is to run the below check every time before starting a battery charging cycle:

1. After receiving a UsbOkInt interrupt (see bit: <u>UsbOkInt</u>) and before enabling the charger the BAT pulldown resistor by writing BatPD = 1 (see <u>BatPD</u>), wait enough time for any BAT capacitance to discharge, then check the BatGood (see bit: <u>BatGood</u>) status and disable the BAT pull-down resistor. If BatGood = 1 (see bit: <u>BatGood</u>), then the battery is present and charging can resume. If BatGood = 0 (see bit: <u>BatGood</u>) indicating that the BAT voltage is below the UVLO threshold either:

a. The battery is not present.

or

b.The pack protector is open.

2. Now turn the charger on in a "forced precharge" mode by writing FrcPChg = 1 and ChgEn = 1 (see bits: <u>FrcPChg</u>, <u>ChgEn</u>) simultaneously and check BatRegDone (see bit: <u>BatRegDone</u>). If BatRegDone = 1 meaning that $V_{BAT} \ge V_{BAT_REG}$, it means that the battery is not present since if it were, the BAT voltage would only be allowed to rise one diode drop above the actual battery voltage. If instead BatRegDone = 0, the battery must be present and forced precharge mode should be maintained at least long enough to unlock the pack protector.

SAR ADC/Monitor Mux

In order to simplify system monitoring, the MAX20360 includes a voltage monitor multiplexer (MUX). The MUX, which is I²C controlled using the IVMONCntl parameter (see bit: <u>IVMONCntl</u>) in the PMIC register map, connects the IVMON pin to the scaled value of one of the seven voltage regulators, BAT, or SYS. A resistive divider scales the selected voltage to one of four ratios determined by IVMONRatioConfig (see bit: <u>IVMONRatioConfig</u>). Because the MUX can only tolerate voltages up to +5.5V, CHGIN, CPOUT and BSTOUT are not available on IVMON. Additionally, the ISET voltage is available to monitor the charging current according to the following equation:

$$I_{\rm CHG} = \frac{\left(K_{\rm ISET} \times V_{\rm ISET} \times {\rm ReD_FCT}\right)}{R_{\rm ISET}}$$

where:

I_{CHG} = Actual charging current flowing into BAT

K_{ISET} = Gain factor (2000A/A)

V_{ISET} = Voltage read from monitor mux.

RED_FCT = Eventual reduction factor can be due to JEITA and/or step-charging (see bits: <u>ChgIStep</u>, <u>ChgCoolIFChg</u>, <u>ChgRoomIFChg</u>, <u>ChgWarmIFChg</u> parameters). If neither JEITA nor step-charging current reduction is active, RED_FCT is equal to 1.

RISET = Nominal resistor value on ISET

The MAX20360 also contains an internal ADC that can be used to read the voltage rails and performs system tasks such as SYS tracking for automatic level compensation (ALC) during haptic driver operations. Manual ADC measurements are initiated by first selecting a channel by writing to ADCSel (see bit: <u>ADCSel</u>) in the Haptic Driver/ADC register map. The measurement is then launched by writing a 1 to ADCConvLnch (see bit: <u>ADCConvLnch</u>). Once the measurement is complete, an ADCEOCInt interrupt (see bit: <u>ADCEOCInt</u>) is set to inform the system that the value is available for read in the ADCAvg, ADCMin, and ADCMax register fields (see bits: <u>ADCAvg, ADCMin, ADCMax</u>). Averaging of measurements can be performed by setting the number of measurements to average using the ADCAvgSiz register field (see bit: <u>ADCAvgSiz</u>). The ADC can also measure the IVMON voltage when the MUX is enabled with a 1:1 ratio. The full-scale range of the ADC for different voltage rails is detailed in <u>Table 6</u>.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Table 6. ADC Full-Scale Range

VOLTAGE RAIL	AVAILABLE RANGE (V)	CONVERSION (V)
V _{HDIN}	0 to +5.5	(ADC[7:0] x 5.5V)/255
V _{IVMON} (use IVMONRatioConfig = 00) (see <u>IVMONRatioConfig</u>)	0 to +5.5	(ADC[7:0] x 5.5V)/255
CHGIN	+3 to +8.25	(ADC[7:0] x 8.25V)/255
CPOUT	+3 to +8.25	(ADC[7:0] x 8.25V)/255
BSTOUT	+3 to +21	(ADC[7:0] x 21.0V)/255

Haptic Driver

The MAX20360 features a versatile, integrated haptic driver. The driver allows for real-time control of haptic devices through PWM or I²C as well as the ability to run haptic patterns from internal RAM. For added flexibility, the driver is capable of driving both linear resonant actuator (LRA) and eccentric rotating mass (ERM) actuators.

Eccentric Rotating Mass (ERM)

An ERM is the simplest haptic actuator to drive. The driving signal is taken directly as the PWM output of an integrated H-bridge, allowing for bidirectional operation of the actuator. To configure the MAX20360 to drive an ERM, the HptSel bit (see bit: *HptSel*) must be set to 0.

Linear Resonant Actuator (LRA)

Unlike the on-off control of an ERM, LRAs require a sinusoidal driving signal. The MAX20360 realizes this with a Class-D amplifier that converts the driver input to a sinusoidal output.

An LRA's vibration magnitude is maximized when the driving signal matches the LRA's resonant frequency. To ensure the haptic driver closely tracks this frequency, the MAX20360 includes an auto-resonance tracking feature that measures the back-electromotive force (BEMF) of the LRA to track the resonance of the actuator. The resonant tracking feature should remain enabled any time an LRA is driven. Resonance tracking is enabled by setting the EmfEn bit to 1 (see bit: *EmfEn*). The range of resonant frequencies that are tracked is clamped by the driver to be no lower than max(200kHz/IniGss[11:0], 100Hz) and no greater than min(800kHz/IniGss[11:0], 1kHz). See the description of IniGss (see bit: *IniGss*) in the register map for calculation of frequency. This mitigates the risk of audible noise during a fault event.

To select LRA mode, set the HptSel bit to 1 (see bit: <u>HptSel</u>).

LRA Braking

The haptic driver features a braking function to efficiently stop or reverse the direction of an LRA. Each time the driving polarity is reversed, the BEMF measuring configurations are overridden by the values in BrkLpGain, BrkCyc, and BrkWdw for BrkCyc number of half cycles (see bits: <u>BrkLpGain</u>, <u>BrkCyc</u>, <u>BrkWdw</u>). This allows the haptic driver to optimize the redetection of the BEMF after the sudden change in direction.

Additionally, the haptic driver can automatically detect the optimal braking time when running patterns in the RAMHP and ETRG modes. When the RAM pattern reaches a brake sample (nLSx = 00 and RPTx = 0000) (see bits: <u>nLSx</u>, <u>RPTx</u>), or when the ETRG pattern reaches the brake amplitude, the haptic driver measures the LRA's BEMF amplitude centered about either two or four sample points of the sine wave (depending on AutoBrkPeakMeas setting) (see bit: <u>AutoBrkPeakMeas</u>). If the absolute value of the BEMF is lower than the threshold AutoBrkMeasTh (see bit: <u>AutoBrkMeasTh</u>) for more than half of the duration of AutoBrkMeasWdw (see bit: <u>AutoBrkMeasWdw</u>) for a number of consecutive sample points where BEMF amplitude is measured (set by AutoBrkMeasEnd, see bit: <u>AutoBrkMeasEnd</u>), then the driver determines that the BEMF is sufficiently small and driving stops.

Note that all LRA registers except those that set the full-scale voltage and initial guess for the resonant frequency of the LRA should be left at their defaults for most actuators. The only exceptions are that EmfSkipCyc (see bit: <u>EmfSkipCyc</u>) should be written to 0 for optimal performance and when an LRA with a very fast time constant is in use, the AutoBrkPeakMeas (see bit: <u>AutoBrkPeakMeas</u>) might need to be changed to 1 in order to accommodate that LRA's characteristics.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Automatic Level Compensation

Because V_{HDIN} can vary over time, the driver must adjust its output duty cycle to maintain a constant reference to the full-scale voltage. An automatic level compensation (ALC) function measures V_{HDIN} and handles this adjustment. ALC can be enabled by setting the AlcEn bit (see bit: <u>AlcEn</u>) to 1 and uses the MAX20360 internal ADC to monitor V_{HDIN} . The ALC function then scales the haptic driver duty cycle as needed to maintain the programmed driver amplitude. If ALC is not enabled, V_{HDIN} is assumed to be Vfs (see bit: <u>Vfs</u>).

Haptic UVLO

Additionally, if AlcEn = 1 (see bit: <u>AlcEn</u>), V_{HDIN} is measured after the driver is enabled but prior to starting a vibration. At any moment, if V_{HDIN} goes below the maximum between the value programmed through HDINDisTh (see bit: <u>HDINDisTh</u>) and the V_{HDIN_UVLO} threshold, the vibration event is aborted and the haptic driver is locked. See the <u>Haptic</u> <u>Driver Lock</u> section for details regarding restarting vibration if a haptic UVLO condition is reached.

The time required to perform the initial V_{HDIN} measurement, as well as other startup delays, results in a small initial latency of the haptic driver. To avoid partial pattern skipping in real-time modes, vibration patterns should be provided at least t_{HD} START after enabling the desired real-time vibration mode (PPWM or RTI2C).

Driver Amplitude

The haptic driver features a configurable voltage basis for the amplitude of the driving signal. Setting this basis, referred to as the full-scale voltage (V_{FS}), configures the maximum amplitude of the driver output. It is set using Vfs (see bit: Vfs) and has a range of 0V to 5.5V (LSB = 21.57mV). Since the H-bridge is supplied by V_{HDIN}, the actual full-scale voltage of the driver at any given moment is the minimum of the value stored in Vfs (see bit: Vfs) and V_{HDIN}.

Once V_{FS} has been set, all driver amplitudes are scaled as a percentage of the full-scale voltage. The resolution of the amplitude is always $V_{HDIN}/128$. Therefore, the effective resolution of the amplitude scales with the V_{FS}/V_{HDIN} ratio. For example, if $V_{FS} = V_{HDIN}/2$, the effective resolution is 6 bits.

Vibration Timeout

A vibration timeout parameter is programmable through I^2C . If a vibration lasts longer than the programmed timeout period, the vibration is aborted. The timeout period is stored in DrvTmo (see bit: <u>DrvTmo</u>) (LSB = 1s). Writing code "000000" disables the timeout function. See the <u>Haptic Driver Lock</u> section for details regarding restarting vibration if a timeout is reached.

Overcurrent/Thermal Protection

The haptic driver also includes overcurrent and thermal shutdown protection. While the haptic driver is active, the MAX20360 monitors the current from DRP and DRN. If overcurrent protection is enabled (HptOCProtDis = 0) (see bit: <u>HptOCProtDis</u>) and the DRP or DRN current exceeds I_{HD_OCP} , the haptic driver issues a fault, aborts vibration, and enters the locked state.

Thermal protection allows the MAX20360 to immediately shut down the haptic driver should the die temperature exceed T_{HD} SHDN. This feature is enabled by setting HptThmProtDis = 0 (see bit: <u>HptThmProtDis</u>).

See the <u>Haptic Driver Lock</u> section for details regarding restarting vibration if an overcurrent or overtemperature condition is reached.

Haptic Driver Lock

If the MAX20360 detects a fault in the haptic driver, vibrations in progress are aborted and the haptic driver is locked by the haptic fault locking function. The user must manually set the HptFltUnlock bit (see bit: <u>HptFltUnlock</u>) in order to run a new vibration attempt. A fault occurs under any of the following conditions: V_{HDIN} drops below the threshold programmed in HDINDisTh (see bit: <u>HDINDisTh</u>) or below V_{HDIN} UVLO, an overcurrent is detected on DRN or DRP (see bits: <u>HptDRPOCPLow</u>, <u>HptDRNOCPLow</u>, <u>HptDRPOCPHigh</u>, <u>HptDRNOCPHigh</u>), the die temperature exceeds the thermal protection threshold HptThm (see bit: <u>HptThm</u>), or a vibration duration exceeds the timeout period stored in DrvTmo (see bit: <u>DrvTmo</u>). Writing HptFltUnlock (see bit: <u>HptFltUnlock</u>) to 1 clears the fault and automatically clears the HptFltUnlock bit to 0.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Interface Modes

There are a total of four interface modes for controlling the haptic driver. These include two real-time modes and two stored memory modes. The haptic driver mode is set through HptDrvMode (see bit: <u>HptDrvMode</u>). Selecting an operation mode also enables the driver. In addition, HptDrvClkEn (see bit: <u>HptDrvClkEn</u>) must be set and kept to 1 before setting HptDrvMode (see bit: <u>HptDrvMode</u>) and for the whole duration of vibration. Once the vibration finishes, HptDrvMode (see bit: <u>HptDrvMode</u>) must be set to "00000" before the haptic driver can be disabled by setting HptDrvClkEn = 0 (see bit: <u>HptDrvClkEn</u>) for power savings. In all cases haptic patterns must begin with driving in the positive direction.

Pure-PWM (PPWM)

PPWM mode offers real-time control of the haptic driver. Patterns are generated by applying a PWM signal to the MPC_ pin selected by HptDrvMode (see bit: <u>HptDrvMode</u>). The duty cycle of the applied signal determines the amplitude of the driving signal, scaled by Vfs (see bit: <u>Vfs</u>). The driving direction is centered to about a 50% duty cycle. A duty cycle of 0% to 47.5% produces a 100%Vfs to 0%Vfs amplitude in the negative direction and a duty cycle of 52.5% to 100% produces a 0%Vfs to 100%Vfs amplitude in the positive direction (see bit: <u>Vfs</u>). The region between 47.5% and 52.5% duty cycle is a dead zone and inputs within this range correspond to a null output. All patterns must begin with driving in the positive direction (duty cycle between 52.5% to 100%).

A timeout feature prevents idle PWM inputs from causing unwanted vibrations of the haptic motor. If the input signal remains at 0% duty cycle or 100% duty cycle for more than 2.56ms, the output is null and vibration stops. As such, the MPC_ input must remain dynamic to produce a continuous output.

Real-Time I²C (RTI²C)

Similar to PPWM mode, RTI²C mode offers real-time control of the haptic driver. The HptRTI2CPat register (see register: <u>HptRTI2CPat</u>) determines the amplitude of the output signal. The lower seven bits of the register (HptRTI2CPat[6:0]) set the amplitude as a percentage of V_{FS} and the MSB (HptRTI2CPat[7]) sets the direction of rotation. 100% amplitude, reverse drive, for example, is produced by setting HptRTI2CPat to 0x7F (0b0111111).

Once RTI²C mode is enabled through HptDrvMode (see bit: <u>HptDrvMode</u>), the haptic driver continuously outputs the amplitude and direction defined by the latest data in HptRTI2CPat (see bit: <u>HptRTI2CPat</u>). In order to generate haptic patterns, the HptRTI2CPat register must receive new data. All patterns must begin with driving in the positive direction (MSB of initial write to HptRTI2CPat = 0).

External Triggered Stored Pattern (ETRG)

In ETRG mode, a rising edge on an MPC_ pin or a 0-to-1 transition of the HptExtTrig bit (see bit: <u>HptExtTrig</u>) initiates a vibration sequence. The sequence is contained in six registers and comprises an overdrive (startup) amplitude, active drive amplitude, braking amplitude, and the duration of each driving behavior.

Amplitudes contained in HptETRGOdAmp, HptETRGActAmp, and HptETRGBrkAmp (see bits: <u>HptETRGOdAmp</u>, <u>HptETRGActAmp</u>, <u>HptETRGBrkAmp</u>) follow the same format as HptRTI2CPat (see bit: <u>HptRTI2CPat</u>) (i.e., the lower-seven bits store the amplitude as a percentage of V_{FS} and the MSB determines the direction).

The trigger input is selected when the driver enters ETRG mode through HptDrvMode (see bit: <u>HptDrvMode</u>). In order to properly register the rising edge, the trigger signal must remain high for a few clock cycles of the driver.

Once the sequence begins, the haptic driver follows the duration values stored in HptETRGOdDur, HptETRGActDur, and HptETRGBrkDur (see bits: <u>HptETRGOdDur</u>, <u>HptETRGActDur</u>, <u>HptETRGBrkDur</u>). It is possible, however, to extend the active drive time by leaving the trigger high longer than the time specified in HptETRGActDur (see <u>HptETRGActDur</u>). Doing so causes the driver to output the amplitude stored in HptETRGActAmp (see bit: <u>HptETRGActAmp</u>) until a falling edge is detected. Once the trigger signal falls low, the brake sequence executes. All patterns must begin with driving in the positive direction (MSB of HptETRGOdAmp = 0, see bit: <u>HptETRGOdAmp</u>).

RAM Stored Haptic Pattern (RAMHP)

The final method of controlling the haptic driver is RAMHP mode. The MAX20360 contains an internal 256 x 24-bit RAM in which haptic patterns are stored. By storing haptic sequences in RAM at startup, the driver can perform sophisticated haptic sequences upon receipt of a trigger signal as in ETRG mode. The direct I²C register HptRAMPatAdd (see bit:

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

HptRAMPatAdd) specifies the RAM address where the sequence begins.

RAM should be loaded when the MAX20360 comes out of OFF/SEAL mode. To write data to the RAM, the HptRAMEn (see bit: <u>HptRAMEn</u>) must first be set high. Next, writing a value to the direct register HptRAMAdd (see bit: <u>HptRAMAdd</u>) specifies the RAM address in which data written to HptRAMDataH, HptRAMDataM, and HptRAMDataL is store (see bit: <u>HptRAMDataH</u>, <u>HptRAMDataH</u>, <u>HptRAMDataH</u>). It is possible to read back data from RAM. Writing an address to HptRAMAdd (see bit: <u>HptRAMAdd</u>), then initiating an I²C read transaction of the HptRAMDataH, HptRAMDataH, and HptRAMDataL registers allow readback of the three bytes stored in the RAM address. RAM read and write procedures are depicted graphically in Figure 33. Note that all patterns must begin with driving in the positive direction (AmpSign of first RAM address in a pattern = 0).

A haptic pattern is composed of multiple pattern samples. Pattern samples define the amplitude, duration, wait time, transition, and repetition of a segment of a haptic pattern. These samples are defined in three bytes and written to RAM through HptRAMDataH, HptRAMDataM, and HptRAMDataL. HptRAMDataH (see bit: <u>HptRAMDataH</u>) contains the sign of the sample's amplitude (AmpSign), the upper-five bits of the amplitude (Amp[6:2]), and instructions to the haptic driver on handling the pattern sample (nLSx). HptRAMDataM (see bit: <u>HptRAMDataM</u>) contains the lower two bits of the sample's amplitude (Amp[1:0]), the duration of the sample (Dur), and the upper bit of the wait time before the next sample in the pattern (Wait[4]). HptRAMDataL (see bit: <u>HptRAMDataL</u>) contains the lower four bits of the wait time (Wait[3:0]) and the repetition behavior (RPTx). <u>Table 7</u> describes the definition of a pattern sample and <u>Figure 34</u> and <u>Figure 35</u> provide a sample haptic pattern with a corresponding waveform.

S	SLAVE ADDRESS-W	А	HptRAMAddr (0x28)	А	RAM ADDRESS[7:0]	А	R	AMDataH[7:0]	А	R	RAMDataM[7:0] A		RAMDataL[7:0] A	Р	
REA	DING RAM DATA BYTES	S FRC	M RAM ADDRESS[7:0]												
S	SLAVE ADDRESS-W	А	HptRAMAddr (0x28)	А	RAM ADDRESS[7:0]	Α									
														-	
S	SLAVE ADDRESS-W	А	HptDataH (0x29)	А	Sr SLAVE ADDRES	SS-R	Α	RAMDataH[7:0]	A	RAMDataM[7:0]	А	RAMDataL[7:0]	NA	Р
					•										
	FROM MAS	TER 1	O SLAVE												
	FROM MAS														
		/E TO	MASTER												
	FROM SLAV	/E TO	MASTER												
5	FROM SLAV	/E TO IDITIC STAF	MASTER DN IT												
	FROM SLAV S START CON Sr REPEATED	/E TO IDITIC STAF DTION	MASTER DN IT												

Figure 33. Read and Write Process for Haptic RAM

Table 7. RAMHP Pattern Storage Format

ADDRESS		0x40-0x43								
BIT	B7	B7 B6 B5 B4 B3 B2 B1 B0								
HptRAMAdd			Н	ptRAMAdd	[7:0]					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Table 7. RAMHP Pattern Storage Format (continued)

HptRAMDataH							
HptRAMDataM	Amp[1:0]		Dur[4:0]		Wait[4]		
HptRAMDataL		Wait[3:0]		RPTx[3:0]			
HptRAMAdd[7:0]	The RAM address in whi	ch the pattern sample is	stored				
nLSx[1:0]	Sets the behavior of a sa 00 = Current sample is th 01 = Current sample is n 10 = Interpolate current s 11 = Current sample is th	ne last sample in the patt ot the last sample in the sample with next sample	pattern	ire pattern RPTx[3:0] time	s		
AmpSign[1:0]	Sign of haptic amplitude 0 = Positive 1 = Negative Patterns must always us negative (1) amplitude.		ring begins with pos	sitive (0) amplitude and bra	aking is done wit		
Amp[6:2]	Sets the amplitude of par	ttern sample x as a 7-bit	percentage of V _{FS}	and a 1-bit direction (see)	√fs[7:0]).		
Dur[4:0]	Sets the duration of time 00000 = 0ms 00001 = 5ms 11110 = 150ms 11111 = 155ms	the driver outputs the ar	nplitude of the curre	ent sample in increments c	of 5ms		
Wait[4:0]	Sets the duration of time 00000 = 0ms 00001 = 5ms 11110 = 150ms 11111 = 155ms	the driver waits at zero a	implitude before the	e next sample in incremen	ts of 5ms		
RPTx[3:0]	11, this sets the number	of times to repeat the wh	ole pattern.	next sample in the pattern			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

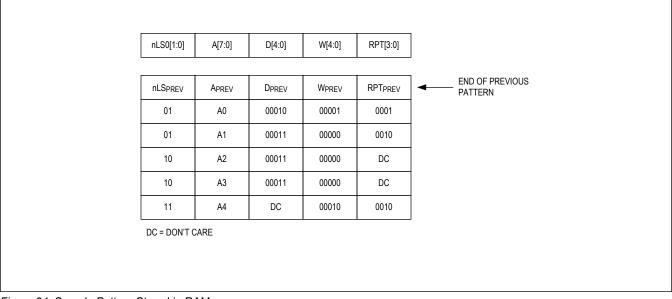


Figure 34. Sample Pattern Stored in RAM

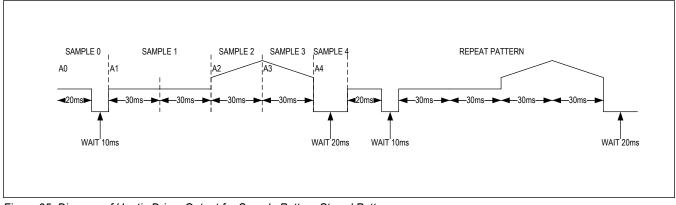


Figure 35. Diagram of Haptic Driver Output for Sample Pattern Stored Pattern

Fuel Gauge

The MAX20360 integrates ModelGauge m5 EZ with high-side current sensing. For more details about the ModelGauge m5 algorithm, a link to the ModelGauge m5 EZ User Guide/software implementation guide, etc., refer to the Design Resources tab at the <u>MAX17260 product page</u>, and see the Register Map in the <u>MAX17620 data sheet</u>.

MAX20361 Harvester Interaction

The MAX20360 implements a few features that allow it to seamlessly interact with the MAX20361 solar-energy harvester chip. Registers ThmCfg2, HrvCfg0, and HrvCfg1 (see bits: *ThmCfg2*, *HrvCfg0*, *HrvCfg1*) offer some settings for how the harvester-PMIC interaction takes place. Thresholds set on the PMIC for battery full-charge voltage and a restart threshold (see bits: *HrvBatReg*, *HrvBatReChg*) set the conditions for the behavior of the PMIC described in per the HrvBatSys register setting (see bit: *HrvBatSys*). Interactions between the charger and harvester are intended to be seamless and system intervention should not be necessary.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Harvester Thermistor Monitoring

The MAX20360 features harvester temperature thresholds that are distinct from those of the battery charger for hot and cold regions. These thresholds are more relaxed offering a wider temperature range over which the harvester is permitted to charge. According to the device specific setting (see JEITASet in <u>Table 8</u>) the hot threshold can be set to either 14.51% (JEITASet = 0) or 23.53% (JEITASet = 1) while the cold threshold is fixed at 81.64% for both. For additional flexibility, register HrvCfg1 (see register: <u>HrvCfg1</u>) also allows behavior in the various charging temperature regions to be defined.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Register Map

Haptic Driver and ADC Registers - SlaveID: 0xA0/0xA1

ADDRESS	NAME	MSB							LSB			
	aptic Status/Interrupts	1		1		1	1	1	1			
0x00	HptStatus0[7:0]	HptHDIN Dis	HptDRP OCPLow	HptDRN OCPLow	HptDRP OCPHig h	HptDRN OCPHig h	HptThm	HptClkO n	HptFrqLo ck			
0x01	HptStatus1[7:0]	-	-	-	-	-	-	-	HptFlt			
0x02	HptStatus2[7:0]	-	-	-	-	-	-	ADCBus y	_			
0x03	HptInt0[7:0]	HptHDIN DisInt	HptDRP OCPLow Int	HptDRN OCPLow Int	HptDRP OCPHig hInt	HptDRN OCPHig hInt	HptThml nt	HptClkO nInt	HptFrqLo ckInt			
0x04	HptInt1[7:0]	-	-	-	-	HptAuto TuneDon eInt	HptTmol nt	HptHDIN UVLOInt	HptFltInt			
0x05	HptInt2[7:0]	_	-	_	-	-	_	ADCBus yInt	ADCEO CInt			
0x06	HptIntMask0[7:0]	HptHDIN DisIntM	HptDRP OCPLow IntM	HptDRN OCPLow IntM	HptDRP OCPHig hIntM	HptDRN OCPHig hIntM	HptThml ntM	HptClkO nIntM	HptFrqLo ckIntM			
0x07	HptIntMask1[7:0]	_	-	_	_	HptAuto TuneDon eIntM	HptTmol ntM	HptHDIN UVLOInt M	HptFltInt M			
0x08	HptIntMask2[7:0]	-	_	_	_	_	_	ADCBus yIntM	ADCEO CIntM			
Haptic Con	trol					I	1	1	1			
0x09	HptControl[7:0]	HptExtTri g	HptRam En	HptDrvCl kEn		Hp	otDrvMode[4	:0]				
0x0A	HptRTI2CPat[7:0]				HptRTI2	CPat[7:0]						
0x0B	HptRAMPatAdd[7:0]				HptRAMP	atAdd[7:0]						
0x0C	HptProt[7:0]	-	-	-	-	-	HptOfflm p	HptThm ProtDis	HptOCPr otDis			
0x0D	HptUnlock[7:0]	-	-	-	-	-	-	_	HptFltUnl ock			
Haptic Con	figuration											
0x11	HPTCfg0[7:0]	_	AutoBrk PeakMe as	AutoBrk CmpSat Stop	AutoBrk Dis	EmfEn	HptSel	AlcEn	ZccHysE n			
0x12	HPTCfg1[7:0]				Vfs	[7:0]						
0x13	HPTCfg2[7:0]				HDINDi	sTh[7:0]						
0x14	HPTCfg3[7:0]	-			E	mfSkipTh[6:	0]					
0x15	HPTCfg4[7:0]	IniGssRe sDis	_	-			IniDly[4:0]					
0x16	HPTCfg5[7:0]	-	_	-		١	WidWdw[4:0]					
0x17	HPTCfg6[7:0]		NarWo	dw[3:0]		-	Er	nfSkipCyc[2	:0]			

ADDRESS	NAME	MSB							LSB	
0x18	HPTCfg7[7:0]	_	_			BlankW	/dw[5:0]			
0x19	HPTCfg8[7:0]	_	_	_			BrkCyc[4:0]			
0x1A	HPTCfg9[7:0]		AutoBrkMe	asWdw[3:0]		AutoBrkM	easTh[1:0]		easEnd[1:)]	
0x1B	HPTCfgA[7:0]	-	BrkLpG	ain[1:0]	_		BrkWo	lw[3:0]		
0x1C	HPTCfgB[7:0]	ZccSlow En	FltrCntrE n	-		DrvTmo[4:0]				
0x1D	HPTCfgC[7:0]				IniGss[s[7:0][7:0]				
0x1E	HPTCfgD[7:0]	-	-	-	-		IniGss[1	1:8][3:0]		
0x1F	HPTCfgE[7:0]	-	-			NarCnt	Lck[5:0]			
0x20	HPTCfgF[7:0]	-	N	arLpGain[2:	0]	-	W	/idLpGain[2	0]	
Haptic Auto	otune									
0x22	HptAutoTune[7:0]	-	-	-	-	-	-	AutoTun eGood	AutoTun eRun	
0x23	BEMFPeriod0[7:0]				BEMFPeri	od[7:0][7:0]				
0x24	BEMFPeriod1[7:0]	-	-	-	-		BEMFPerio	d[11:8][3:0]		
Haptic Patte	erns									
0x30	HptETRGOdAmp[7:0]				ETRGO	IAmp[7:0]				
0x31	HptETRGOdDur[7:0]				ETRGO	dDur[7:0]				
0x32	HptETRGActAmp[7:0]				ETRGAc	tAmp[7:0]				
0x33	HptETRGActDur[7:0]				ETRGAC	tDur[7:0]				
0x34	HptETRGBrkAmp[7:0]				ETRGBr	(Amp[7:0]				
0x35	HptETRGBrkDur[7:0]				ETRGBr	kDur[7:0]				
RAM Interfa	ice									
0x40	HptRAMAdd[7:0]				HptRAM	IAdd[7:0]				
0x41	HptRAMDataH[7:0]				HptRAME	DataH[7:0]				
0x42	HptRAMDataM[7:0]				HptRAME	DataM[7:0]				
0x43	HptRAMDataL[7:0]				HptRAM	DataL[7:0]				
ADC/MON I	nterface									
0x50	ADCEn[7:0]	-	-	-	-	-	-	-	ADCCon vLaunch	
0x51	ADCCfg[7:0]	-	_	A	DCAvgSiz[2	:0]		ADCSel[2:0]	
0x53	ADCDatAvg[7:0]			•	ADCA	vg[7:0]				
0x54	ADCDatMin[7:0]				ADCM	1in[7:0]				
0x55	ADCDatMax[7:0]				ADCM	ax[7:0]				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Register Details

HptStatus0 (0x00)

BIT	7	6	5	4		3	2	1	0	
Field	HptHDINDis	HptDRPOC PLow	HptDRNOC PLow	HptDRPOC PHigh		DRNOC PHigh	HptThm	HptClkOn	HptFrqLock	
Access Type	Read Only	Read Only	Read Only	Read Only	Re	ad Only	Read Only	Read Only	Read Only	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
HptHDINDis	7	Status of the disable three	e haptic driver l shold.	HDIN voltage		0: V _{HDIN} greater than HDINDisTh[7:0] threshold 1: Fault condition. Haptic driver locked and disabled due to V _{HDIN} falling below the HDINDisTh[7:0] threshold.				
HptDRPOCP Low	6		e haptic driver on the DRP low-			 0: No overcurrent detected on the DRP low-side switch. 1: Fault condition. Haptic driver locked and disabled due to current on the DRP low-side swit rising above thr I_{HD OCP} threshold. 				
HptDRNOCP Low	5		e haptic driver o n the DRN low			switch. 1: Fault disablec	vercurrent deter condition. Hap due to current pove the I _{HD O}	tic driver locked	d and	
HptDRPOCP High	4		e haptic driver on the DRP high			switch. 1: Fault disablec	vercurrent deter condition, hapt due to the cur ising above the	ic driver locked rent on the DR	l and P high-side	
HptDRNOCP High	3		e haptic driver o n the DRN high			switch. 1: Fault disablec	vercurrent deter condition. Hap d due to current sing above the	tic driver locked	d and igh-side	
HptThm	2	Status of the	Status of the haptic driver thermal protection. Status of the haptic driver thermal protection.						d and	
HptClkOn	1	Status of the	e haptic driver o	clock.		0: Haptic driver clock disabled 1: Haptic driver clock enabled				
HptFrqLock	0	Status of the frequency lo		BEMF resonan	t		F resonant freq F resonant freq		ed	

HptStatus1 (0x01)

BIT	7	6	5	4	3	2	1	0
Field	_	_	-	-	-	-	-	HptFlt
Access Type	-	-	_	-	-	-	-	Read Only

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
HptFlt	0		0: No haptic driver fault condition detected 1: Haptic driver locked and disabled due to one or more fault conditions detected

HptStatus2 (0x02)

BIT	7	6	5	4	3		2	1	0		
Field	-	-	-	-	-		-	ADCBusy	-		
Access Type	_	-	_	-	_		-	Read Only	_		
BITFIELD	BITS		DESCRIPT	ION		DECODE					
ADCBusy	1	Status of AD	C operation.				disabled enabled and co	onversion runni	ng		

HptInt0 (0x03)

BIT	7	6	5		4	3	2	1	0	
Field	HptHDINDis Int	HptDRPOC PLowInt	HptDR PLow			HptDRNOC PHighInt	HptThmInt	HptClkOnInt	HptFrqLockI nt	
Access Type	Write, Read	Write, Read	Write, I	Read	Write, Read			Write, Read	Write, Read	
BITFIEI	D	BITS				DES	SCRIPTION			
HptHDINDisInt		7		Chan	ge in HptHDIN	Dis caused an	interrupt.			
HptDRPOCPLo	owInt	6		Chan	ge in HptDRPC	OCPLow cause	d an interrupt.			
HptDRNOCPL	owInt	5		Chan	ge in HptDRNC	OCPLow cause	d an interrupt.			
HptDRPOCPH	ighInt	4		Chan	ge in HptDRPC	CPHigh cause	ed an interrupt.			
HptDRNOCPH	ighInt	3		Chan	ge in HptDRNC	CPHigh cause	ed an interrupt.			
HptThmInt		2		Chan	ge in HptThm o	aused an inter	rupt.			
HptClkOnInt		1		Change in HptClkOn caused an interrupt.						
HptFrqLockInt		0		Chan	ge in HptFrqLo	ck caused an i	nterrupt.			

HptInt1 (0x04)

BIT	7	6	5	4		3	2	1	0	
Field	-	_	-	_	-	AutoTun DoneInt	HptTmoInt	HptHDINUV LOInt	HptFltInt	
Access Type	-	-	-	-	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
HptAutoTune DoneInt	3	Haptic driver interrupt.	r auto-tune pro	cedure comple	tion	Set to 1 when haptic auto tune is complete.				
HptTmoInt	2	Haptic drive	r vibration time	out interrupt.		1: Fault	condition. Hap	n timeout not e tic driver locked on timeout bein	and	
HptHDINUVL OInt	1	Haptic drive	r HDIN UVLO i	nterrupt.		1: Fault	N > V _{HDIN_UVL} condition. Hap due to V _{HDIN}	O. tic driver locked < VHDIN_UVLC	d and	
HptFltInt	0	Change in H	IptFlt caused a	n interrupt.		Set to 1	when there is	change in the F	lptFlt bit.	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

HptInt2 (0x05)

BIT	7	6	5		4	3	2	1	0
Field	_	-	-	-	-	-	-	ADCBusyInt	ADCEOCInt
Access Type	_	-	-	-	-	_	_	Write, Read	Write, Read
BITFIEI	D	BITS		DESCRIPTION					
ADCBusyInt		1		Change in ADCBusy caused an interrupt.					
ADCEOCInt		0		ADC end of conversion interrupt.					

HptIntMask0 (0x06)

BIT	7	6	5	4		3	2	1	0	
Field	HptHDINDis IntM	HptDRPOC PLowIntM	HptDRNOC PLowIntM	HptDRPOC PHighIntM		DRNOC ighIntM	HptThmIntM	HptClkOnInt M	HptFrqLockI ntM	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	/rite, Read Write, Read Write, Read			Write, Read	
BITFIELD	BITS		DESCRIPT	ION			DI	ECODE		
HptHDINDisl ntM	7		IntM masks the he HptInt0 regi	e HptHDINDislı ster (0x03).	nt	0: Mask 1: Not m				
HptDRPOCP LowIntM	6	HptDRPOCI	HotoPocPLowIntM masks the HptDRPOCPLowInt interrupt in the HptInt0 register (0x03).				ed nasked			
HptDRNOCP LowIntM	5	HptDRNOCI	HptDRNOCPLowIntM masks the HptDRNOCPLowInt interrupt in the HptInt0 register (0x03).				0: Masked 1: Not masked			
HptDRPOCP HighIntM	4		-	ks the ipt in the HptInt	:0	0: Mask 1: Not m				
HptDRNOCP HighIntM	3		0	ks the upt in the HptIn	tO	0: Masked 1: Not masked				
HptThmIntM	2		HptThmIntM masks the HptThmInt interrupt in the HptInt0 register (0x03).				in 0: Masked 1: Not masked			
HptClkOnInt M	1		HptClkOnIntM masks the HptClkOnInt interrupt in the HptInt0 register (0x03).				0: Masked 1: Not masked			
HptFrqLockIn tM	0		ntM masks the he HptInt0 regi	HptFrqLockInt ster (0x03).		0: Masked 1: Not masked				

HptIntMask1 (0x07)

BIT	7	6	5	4		3	2	1	0
Field	_	-	-	-		AutoTun oneIntM	HptTmoIntM	HptHDINUV LOIntM	HptFltIntM
Access Type	_	_	_	_	Writ	e, Read	Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
HptAutoTune DoneIntM	3			sks the rupt in the Hptlr	nt1	0: Mask 1: Not m			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
HptTmoIntM	2	HptTmoIntM masks the HptTmoInt interrupt in the HptInt1 register (0x04).	0: Masked 1: Not masked
HptHDINUVL OIntM	1	HptHDINUVLOIntM masks the HptHDINUVLOInt interrupt in the HptInt1 register (0x04).	0: Masked 1: Not masked
HptFltIntM	0	HptFltIntM masks the HptFltInt interrupt in the HptInt1 register (0x04).	0: Masked 1: Not masked

HptIntMask2 (0x08)

BIT	7	6	5	4	3	2	1	0
Field	_	_	-	-	-	-	ADCBusyInt M	ADCEOCInt M
Access Type	-	-	-	-	-	-	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION		D	ECODE	
ADCBusyInt M	1		M masks the A he HptInt2 regi		0: Masked 1: Not masked			
ADCEOCInt M	0		M masks the A he HptInt2 regi		0: Mask 1: Not m			

HptControl (0x09)

BIT	7	6	5	4		3	2	1	0		
Field	HptExtTrig	HptRamEn	HptRamEn HptDrvClkE n			HptDrvMode[4:0]					
Access Type	Write, Read	Write, Read	Write, Read		Write, Read N DECODE for ETRGI and vMod[4:0] = = "10010," 0: No vibration triggered 1: Vibration triggered ble 0: RAM disabled 1: RAM enabled						
BITFIELD	BITS		DESCRIPT	ION			D	ECODE			
HptExtTrig	7	RAMHPI dri	ver mode (Hpt[HptDrvMod[4:								
HptRamEn	6	Haptic drive	r RAM block er	nable		-					
HptDrvClkEn	5	modes, Hptl same time of mode in Hpt bit must rem Once vibrati be set to "00	DrvClkEn must r before provid DrvMod[4:0]. T lain set to 1 du on finishes, Hp 0000" before the through HptDr	In all interface be set to 1 at the ing the desired 'he HptDrvClkE ring the vibratio tDrvMod[4:0] m e haptic driver of vClkEn = 0 for	n n. nust		c driver clock d c driver clock e				

BITFIELD	BITS	DESCRIPTION	DECODE
HptDrvMode	4:0	Haptic driver interface mode selection.	00000: Disable haptic driver. 00001: Enable PPWM0 mode and provide amplitude based on PWM duty cycle on MPC0 00010: Enable PPWM1 mode and provide amplitude based on PWM duty cycle on MPC2 00100: Enable PPWM3 mode and provide amplitude based on PWM duty cycle on MPC3 00101: Enable PPWM4 mode and provide amplitude based on PWM duty cycle on MPC4 00110: Enable PPWM4 mode and provide current output amplitude based on the contents of HptRTI2CPat(0x0A) 00111: Enable ETRG0 mode. Provide a pulse on MPC0 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details). 01001: Enable ETRG1 mode. Provide a pulse on MPC1 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details). 01001: Enable ETRG2 mode. Provide a pulse on MPC1 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details). 01010: Enable ETRG3 mode. Provide a pulse on MPC2 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details). 01010: Enable ETRG3 mode. Provide a pulse on MPC3 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details). 01011: Enable ETRG3 mode. Provide a pulse on MPC4 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details). 01101: Enable ETRG4 mode. Provide a pulse on MPC4 to start vibration (see the External Triggered Stored Pattern (ETRG) section for details). 01101: Enable ETRG1 mode using I ² C. Set HptExtTrg(0x09[7]) bit to start vibration (see the External Triggered Stored Pattern (ETRG) section for details). 01101: Enable RAMHP1 mode. Provide a pulse on MPC4 to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details). 01111: Enable RAMHP1 mode. Provide a pulse on MPC2 to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details). 10001: Enable RAMHP1 mode. Provide a pulse on MPC4 to start vibration (see the RAM Stored Haptic Pattern (RAMHP) section for details). 1

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

HptRTI2CPat (0x0A)

BIT	7	6	5	4	3	2	1	0		
Field				HptRTI2CPat[7:0]						
Access Type				Write, Read						
BITFIE	LD	BITS			DE	SCRIPTION				
HptRTI2CPat		7:0	mode repre	e (HptDrvMod =	: "00110"). LSE of the amplitud	B = 0.78%V _{FS} . e to be driven.	percentage of \ Note that the N Patterns must 3).	/SB		

HptRAMPatAdd (0x0B)

BIT	7	6	5	4	3	2	1	0			
Field				HptRAMPatAdd[7:0]							
Access Type				Write, Read							
BITFIEI	_D	BITS			DE	SCRIPTION					
HptRAMPatAd	ptRAMPatAdd 7:0						attern to be run 10000," "10001	_			

HptProt (0x0C)

BIT	7	6	5	4		3	2	1	0
Field	-	_	-	-		_	HptOffImp	HptThmProt Dis	HptOCProt Dis
Access Type	-	-	-	-		-	Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
HptOffImp	2	Haptic drive	r output off-sta	te impedance.		strongly 1: When	shorted to GN	s disabled, outp D through low-s s disabled, outp 5kΩ pull-down	side switches
HptThmProt Dis	1	If HptThmPr locked and o overtempera interrupt is is	disabled due to ature condition, ssued and HptI k = 1 to allow a	he haptic drive an HptThmInt -It is set to 1. S		0: Thermal protection enabled, haptic driver shuts down if die temperature rises above T _{HD_SHDN} threshold 1: Thermal protection disabled			
HptOCProtDi s	0	If HptOCPrc locked and c condition, H HptDRNOC HptDRPOC HptDRNOC HptFlt is set	Haptic driver overcurrent protection disable. If HptOCProtDis = 0 and the haptic driver is locked and disabled due to an overcurrent condition, HptDRPOCPLowInt and/or HptDRNOCPLowInt and/or HptDRPOCPHighInt and/or HptDRNOCPHighInt interrupt is issued and HptFlt is set to 1. Set HptFltUnlock = 1 to allow a restart of the haptic driver.			0: Overcurrent protection enabled. Haptic driver shuts down if current through any of DRP/DRN high/low-side switches exceeds the I _{HD_OCP} threshold 1: Overcurrent protection disabled			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

HptUnlock (0x0D)

BIT	7	6	5		4	3	2	1	0	
Field	_	-	-		-	-	-	_	HptFltUnloc k	
Access Type	_	-	_		_	_	-	_	Write, Read	
BITFIEI	LD	BITS		DESCRIPTION						
HptFltUnlock		0		Haptic driver unlock control. When a fault condition causes the haptic driver to be locked and dis HptFlt is set to 1 and it can only be cleared by manually writing HptF to 1. After the unlock, HptFltUnlock also goes to 0 automatically.				IptFltUnlock		

HPTCfg0 (0x11)

BIT	7	6	5	4		3	2	1	0	
Field	_	AutoBrkPea kMeas	AutoBrkCm pSatStop	AutoBrkDis	E	EmfEn	HptSel	AlcEn	ZccHysEn	
Access Type	_	Write, Read	Write, Read	Write, Read	Wri	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
AutoBrkPeak Meas	6	sample poin Determines	if two or four B			BEMF a 1: Two s	sample points a implitude sample points a implitude			
AutoBrkCmp SatStop	5	counter satu If enabled, the exits when the comparator	iration. he automatic b he counter on t is saturated du	rossing compar raking function the zero crossir rring a braking rkCyc[4:0] half	ng	compara 1: Exit b	0: Do not exit braking when the zero crossing comparator counter is saturated1: Exit braking when the zero crossing comparator counter is saturated			
AutoBrkDis	4	Haptic drive	r automatic bra	iking disable.		0: Automatic braking enabled 1: Automatic braking disabled				
EmfEn	3	Haptic drive control.	r BEMF resona	ance detection		0: Disat 1: Enab				
HptSel	2	Haptic drive	r mode select.			0: ERM 1: LRA				
AlcEn	1		Haptic driver automatic level compensation (ALC) control.				0: Disabled 1: Enabled			
ZccHysEn	0		Haptic driver BEMF zero crossing comparato hysteresis control.				oled led (6mV typ)			

HPTCfg1 (0x12)

BIT	7	6	5	4	3	2	1	0		
Field		Vfs[7:0]								
Access Type				Write,	Read					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
Vfs	7:0	Haptic drive full-scale voltage (V _{FS}). Stores the voltage V _{FS} to which the desired percentage output amplitude is referred. The actual V _{FS} is the minimum between the value programmed on Vfs[7:0] and the current V _{HDIN} value. LSB = $5.5V/255 = 21.57mV$.

HPTCfg2 (0x13)

BIT	7	7 6 5 4 3 2 1 0									
Field		HDINDisTh[7:0]									
Access Type		Write, Read									
BITFIEI	D	BITS			DE	SCRIPTION					
HDINDisTh		7:0	lf V _{HI} HptH	Haptic driver HDIN voltage disable threshold. If V _{HDIN} falls below this threshold, the haptic driver is locked and disabled, HptHDINDisInt interrupt is issued and HptFlt is set to 1. Set HptFltUnlock = 1 to allow a restart of the haptic driver. LSB = 5.5V/255 = 21.57mV.							

HPTCfg3 (0x14)

BIT	7	6	6 5 4 3 2 1 0									
Field	-		EmfSkipTh[6:0]									
Access Type	_		Write, Read									
BITFIE	LD	BITS			DE	SCRIPTION						
EmfSkipTh		6:0	If the V _{FS} i	Haptic driver BEMF detection skip threshold. If the absolute (lower 7 bits) programmed output amplitude as a percentage or V _{FS} is lower than EmfSkipTh, BEMF detection is skipped as the returned BEMF voltage would be too small to be reliably detected. LSB = 0.78%V _{FS} .								

HPTCfg4 (0x15)

BIT	7	6	5	4 3 2 1 0						
Field	IniGssResD is	-	-	IniDly[4:0]						
Access Type	Write, Read	_	-	Write, Read						
BITFIELD	BITS	DESCRIPTION				D	ECODE			
IniGssResDis	7	Haptic drive	r initial guess re	restore disable. 0: Haptic driver uses IniGss[11:0] as the driving frequency after the end of BrkCyc[4:0] sineware half periods 1: Haptic driver does not use IniGss[11:0] as driving frequency after the end of BrkCyc[4:0] sinewave half periods						

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
IniDly	4:0	 Haptic driver number of sinewave half periods to be skipped before (re)starting BEMF measurement after: 1) start of vibration pattern 2) change of output polarity (e.g., braking) 3) programmed percentage output amplitude (with respect to V_{FS}) becoming again higher than EmfSkipTh[6:0] after having previously gone below it 	

HPTCfg5 (0x16)

BIT	7	6	5		4 3 2 1 0										
Field	-	-	-		WidWdw[4:0]										
Access Type	_	-	-		Write, Read						Write, Read				
BITFIEI	LD	BITS			DESCRIPTION										
WidWdw		4:0			tic driver wide window duration for BEMF zero-crossing detection. LSB = 2 nd of currently imposed sinewave period.										

HPTCfg6 (0x17)

BIT	7	6 5 4 3 2 1							
Field		NarWo	EmfSkipCyc[2:0	mfSkipCyc[2:0]					
Access Type		Write, Read – Write, Read							
BITFIEI	D	BITS			DE	SCRIPTION			
NarWdw		7:4		ic driver narrow 2 nd of currently			ero-crossing de	etection. LSB	
EmfSkipCyc		2:0		Haptic driver number of consecutive sinewave half periods during which BEMF detection is skipped after a BEMF detection completes.					

HPTCfg7 (0x18)

BIT	7	6	5	5 4 3 2 1 0												
Field	-	-		BlankWdw[5:0]							BlankWdw[5:0]					
Access Type	_	_	Write, Read					Write, Read								
BITFIEI	LD	BITS			DE	SCRIPTION										
BlankWdw		5:0	prior durat Autol	Haptic driver zero-crossing comparator blanking time applied after entering of prior to exiting the wide, narrow, and braking windows. The blanking window duration cannot exceed 1/64 th of the current sinewave period unless AutoBrkPeakMeas = 1 and the driver is in the automatic braking state. LSB = 128/25.6MHz.												

HPTCfg8 (0x19)

BIT	7	6	5	4	3	2	1	0
Field	—	_	-			BrkCyc[4:0]		
Access Type	_	_	_			Write, Read		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
BrkCyc	4:0	Haptic driver number of consecutive sinewave half periods during which active braking is applied after a change in driving polarity. During these half periods, the gain used becomes BrkLpGain[1:0], the window duration becomes BrkWdw[4:0], and the effects of IniDly[4:0], EmfSkipCyc[2:0], and NarCntLck[5:0] are masked.

HPTCfg9 (0x1A)

BIT	7	6	5	4	3	2	1	0	
Field		AutoBrkMe	asWdw[3:0]		AutoBrkM	AutoBrkMeasTh[1:0] AutoBrkMeasEnd[1:0]			
Access Type		Write,	Read		Write	Write, Read Write, Read			
BITFIELD	BITS		DESCRIPT	ION		D	ECODE		
AutoBrkMeas Wdw	7:4		0	ude detection tomatic braking					
AutoBrkMeas Th	3:2		r BEMF absolu reshold during	ite amplitude automatic braki	00: 2.5n 01: 5.0n ng. 10: 7.5n 11: 10.0	nV nV			
AutoBrkMeas End	1:0	counter duri Sets the nur amplitude de amplitude of AutoBrkMea	ng automatic b nber of consec etections in wh the BEMF mu sTh[1:0] for m sWdw[3:0] in o	cutive BEMF ich the absolute ist be less than ore than half of	00: 1 01: 2 10: 3				

HPTCfgA (0x1B)

BIT	7	6	5	4	3	2	1	0		
Field	_	BrkLpG	ain[1:0]	-		BrkW	dw[3:0]	·		
Access Type	-	Write,	Read	-		Write, Read				
BITFIELD	BITS		DESCRIPT	ION		C	ECODE			
BrkLpGain	6:5	Sets gain by the zero-cro- calculate the period with r	ssing compara shift for the ne espect to the p his value is use	use delay found tor is multiplied ew sinewave ha previously impo	to 01: 1	/4				
BrkWdw	3:0	BEMF zero-	•	ow duration for tion. LSB = 1/3 ave period.	2nd					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

HPTCfgB (0x1C)

BIT	7	6	5	4	3	2	1	0	
Field	ZccSlowEn	FltrCntrEn	-			DrvTmo[4:0]			
Access Type	Write, Read	Write, Read	_			Write, Read			
BITFIELD	BITS		DESCRIPT	TION		[DECODE		
ZccSlowEn	7	Haptic drive down enable		g comparator slo	w- mode 1: Slow	 0: Zero-crossing comparator operates in normal mode 1: Slows down the zero-crossing comparator by 2X for stronger antialiasing filtering 			
FltrCntrEn	6	Haptic drive filter enable.		g event capturing	compar 1: Zero counter the con enabled counter positive the ave after the crossin closer t window can be the end down c could o	ator/transition -crossing mea- that samples parator for the d window (wide starts at zero e or negative co rage zero-cross an the expecte g is on averag o zero code re r is. Phase erro calculated by o f the window ounter enables	sured using sir sured using an (at 25.6MHz) t e whole duratic e, narrow, or br (mid-code) an ode depending sing event occ d time. The clo e to the expect turned at the e or (in 25.6MHz dividing the res y by 2. The usa s filtering/noise e a systematic	up/down he output of on of the raking). The d ends at a on whether curs before or oser the zero- ed time, the end of the period units) sulting code at ige of the up/ rejection that	
DrvTmo	4:0	If vibration ti driver is lock interrupt is is HptFltUnloc	ed and disabl ssued and Hpt k = 1 to allow a . LSB = 1s. Ti	eout. hed, the haptic ed, HptTmoInt :Flt is set to 1. Se a restart of the meout is disabled					

HPTCfgC (0x1D)

BIT	7	6	5	4	3	2	1	0				
Field		IniGss[7:0][7:0]										
Access Type		Write, Read										
BITFIE	LD	BITS			DI	ESCRIPTION						
IniGss[7:0] 7:0 Haptic driver initial generation							64) / IniGss[11:	0]).				

HPTCfgD (0x1E)

BIT	7	6	5	4	3	2	1	0	
Field	-	_	-	-	IniGss[11:8][3:0]				
Access Type	_	_	-	_	Write, Read				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION					
IniGss[11:8]	3:0	Haptic driver initial guess frequency. Initial estimate for BEMF frequency = ((25.6MHz/64) / IniGss[11:0]).					

HPTCfgE (0x1F)

BIT	7	6	5 4 3 2 1 0						
Field	_	-	NarCntLck[5:0]						
Access Type	-	-	Write, Read						
BITFIE	LD	BITS			DE	SCRIPTION			
NarCntLck	arCntLck 5:0 Haptic driver number of consecutive sinewave half periods where the BE is detected and where the phase delay must fall within the narrow windo before detection window is reduced from wide to narrow.								

HPTCfgF (0x20)

BIT	7	6	5	4		3	2	1	0	
Field	-		NarLpGain[2:0]		-	- WidLpGain[2:0]			
Access Type	-	Write, Read				-		Write, Read		
BITFIELD	BITS		DESCRIPT	ION			DECODE			
NarLpGain	6:4	Sets gain by the zero-cro calculate the period with r	ssing compara shift for the n espect to the p his value is use	ase delay found itor is multiplied ew sinewave h previously impo	l to alf	000: 1 001: 1/2 010: 1/4 011: 1/8 100: 1/16 101: 1/32 110: 1/64 111: 1/128				
WidLpGain	2:0	Sets gain by the zero-cro calculate the period with r	ssing compara shift for the n espect to the p his value is use	gain. ase delay found tor is multiplied ew sinewave h previously impo ed when the wi	l to alf sed	000: 1 001: 1/2 010: 1/4 011: 1/8 100: 1/10 101: 1/3 110: 1/6 111: 1/1	6 2 4			

HptAutoTune (0x22)

BIT	7	6	5	4	3	2	1	0	
Field	-	-	-	-	-	-	AutoTuneG ood	AutoTuneR un	
Access Type	-	-	-	-	_	-	Read Only	Write, Read	
BITFIELD	BITS		DESCRIPT	ION		DECODE			
AutoTuneGo od	1	Haptic drive	r auto-tune pro	cedure result.	achieve 1: BEM	 0: BEMF resonant frequency locking was not achieved with the auto-tune procedure 1: BEMF resonant frequency locking was achieved with the auto-tune procedure 			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
AutoTuneRu n	0	Haptic driver auto-tune command. Set AutoTuneRun to 1 to launch the auto- tune procedure. AutoTuneRun is automatically cleared to 0 once auto-tune procedure is complete.	

BEMFPeriod0 (0x23)

BIT	7	6	5	4	3	2	1	0				
Field		BEMFPeriod[7:0][7:0]										
Access Type		Read Only										
BITFIE	LD	BITS			DE	SCRIPTION						
BEMFPeriod[7:0] 7:0				Haptic driver resonant frequency resolved by autotune function = ((25.6MHz / 64) / BEMFPeriod[11:0]).								

BEMFPeriod1 (0x24)

BIT	7	6	5		4	3 2 1 0				
Field	-	-			BEMFPeriod[11:8][3:0]					
Access Type	_	-	_		_	Read Only				
BITFIE	LD	BITS				DESCRIPTION				
BEMFPeriod[1	1:8]	3:0				a driver resonant frequency resolved by autotune function = ((25.6MHz 3EMFPeriod[11:0]).				

HptETRGOdAmp (0x30)

BIT	7	6	5	4	3	2	1	0	
Field				ETRGO	IAmp[7:0]				
Access Type		Write, Read							
BITFIE	LD	BITS			DE	SCRIPTION			
ETRGOdAmp		7:0 Haptic driver programmed output amplitude of the overdrive period as a percentage of V _{FS} in ETRG mode. LSB = 0.78%V _{FS} . Note that the MSB represents the sign of the amplitude to be driven and must always be set to 0							

HptETRGOdDur (0x31)

BIT	7	6	5	4	3	2	1	0		
Field		ETRGOdDur[7:0]								
Access Type		Write, Read								
BITFIEI	D	BITS DESCRIPTION								
ETRGOdDur		7:0 Haptic driver duration of the overdrive period in ETRG mode. LSB = 5ms.								

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

HptETRGActAmp (0x32)

BIT	7	6	5	4	3	2	1	0			
Field		ETRGActAmp[7:0]									
Access Type		Write, Read									
BITFIEL	D	BITS			DE	SCRIPTION					
ETRGActAmp		7:0Haptic driver programmed output amplitude of the normal drive period as a percentage of V _{FS} in ETRG mode. LSB = 0.78%V _{FS} . Note that the MSB represents the sign of the amplitude to be driven and must always be set to 0.									

HptETRGActDur (0x33)

BIT	7	7 6 5 4 3 2 1 0								
Field		ETRGActDur[7:0]								
Access Type		Write, Read								
BITFIEL	D	BITS DESCRIPTION								
ETRGActDur		7:0 Haptic driver duration of the normal drive period in ETRG mode. LSB = 10ms.								

HptETRGBrkAmp (0x34)

BIT	7	6	5	4	3	2	1	0		
Field				ETRGBrk	(Amp[7:0]					
Access Type		Write, Read								
BITFIEL	D	BITS			DE	SCRIPTION				
ETRGBrkAmp		7:0 Haptic driver programmed output amplitude of the braking period is a percentage of V_{FS} in ETRG mode. LSB = 0.78% V_{FS} . Note that the MSB represents the sign of the amplitude to be driven and must always be set to								

HptETRGBrkDur (0x35)

BIT	7	6	5	4	3	2	1	0		
Field		ETRGBrkDur[7:0]								
Access Type		Write, Read								
BITFIEI	LD BITS DESCRIPTION									
ETRGBrkDur		7:0 Haptic driver duration of the braking period in ETRG mode is LSB = 5ms AutoBrkDis = 0, the automatic braking process is triggered with a maxim braking time of ETRGBrkDur[7:0]. If AutoBrkDis = 1, ETRGBrkDur[7:0] r be adjusted to achieve the desired optimal braking efficiency.						a maximum		

HptRAMAdd (0x40)

BIT	7	6	5	4	3	2	1	0
Field				HptRAM	Add[7:0]			
Access Type				Write,	Read			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
HptRAMAdd	7:0	Haptic driver RAM address. The pattern sample is stored in these bits.

HptRAMDataH (0x41)

BIT	7	6	5	4	3	2	1	0					
Field	L	HptRAMDataH[7:0]											
Access Type		Write, Read											
BITFIELD	BITS	BITS DESCRIPTION DECODE											
HptRAMData H	7:0	Bits 7-6: nL Bit 5: AmpS Bits 4-0: An	Sign		00 = Cui pattern 01 = Cui pattern 10 = Inte 11 = Cui pattern. AmpSigi sample 0 = Posi 1 = Nega Amp: Se		the last samp not the last sa t sample with the last samp tire pattern RP ic amplitude in de of pattern s	le in the ample in the next sample le in the Tx[3:0] times current ample x as a					

HptRAMDataM (0x42)

BIT	7	6	5	4	3	2	1	0				
Field		HptRAMDataM[7:0]										
Access Type		Write, Read										
BITFIELD	BITS		DESCRIPT	ION		[ECODE					
HptRAMData M	7:0	Bits 7-6: Am Bits 5-1: Du Bit 0: Wait[4	r[4:0]		7-bit pe Dur: Se amplitud 5ms 00000 = 00001 = 11110 = 11111 = Wait: So zero an increme 00000 = 00001 = 11110 =	rcentage of V _F ts the duration de of the curre = 0ms = 5ms = 150ms = 155ms ets the duratio nplitude before ents of 5ms = 0ms	ide of pattern s s and a 1-bit of of time the dri nt sample in in n of time the d the next samp	direction. Ever outputs the accements of				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

HptRAMDataL (0x43)

BIT	7	6	5	4	3	2	1	0					
Field		HptRAMDataL[7:0]											
Access Type				Write,	Read								
BITFIELD	BITS		DESCRIPTION DECODE										
HptRAMData L	7:0	Bits 7-4: Wa Bits 3-0: RP			zero am increme 00000 = 00001 = 11110 = 11111 = RPTx: S sample pattern. times to 0000 = F braking maximu 0001 = F 1110 = F	plitude before nts of 5ms Oms 5ms 150ms 155ms ets the numb before moving If nLSx[1:0] = repeat the wh Repeat 0 time is performed on m braking tim Repeat 14 time	s. If nLSx = 00 on this sample e equal to Wai	epeat the imple in the ne number of , automatic with a t[4:0].					

ADCEn (0x50)

BIT	7	6	5		4	3	2	1	0
Field	-	-	-		-	_	_	-	ADCConvL aunch
Access Type	_	-	-	-	-	_	_	_	Write, Read
BITFIE	LD	BITS		DESCRIPTION					
ADCConvLaur	ich	0		ADC conversion launch command. Set ADCConvLaunch = 1 to launch an ADC conversion. ADCConvL automatically cleared to 0 once the conversion is complete.					nvLaunch is

ADCCfg (0x51)

BIT	7	6	5	4	3	2	1	0
Field	-	-	ADCAvgSiz[2:0] ADCSel[2:0]					
Access Type	-	-	Write, Read Write, Read					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
ADCAvgSiz	5:3	ADC averaging size. ADC performs 2 ^{ADCAvgSiz[2:0]} consecutive averaged measurements.	000: No averaging (1 measurement)001: Average 2 measurements010: Average 4 measurements011: Average 8 measurements100: Average 16 measurements101: Average 32 measurements110: Average 64 measurements111: Average 128 measurements
ADCSel	2:0	ADC channel selection.	000: V _{HDIN} 001: V _{IVMON} (use IVMONRatioConfig[1:0] = "00") 010: Reserved 011: V _{CHGIN} 100: V _{CPOUT} 101: V _{BSTOUT} 110: Reserved 111: Reserved

ADCDatAvg (0x53)

BIT	7	7 6 5 4 3 2 1 0									
Field		ADCAvg[7:0]									
Access Type		Read Only									
BITFIE	LD	BITS			DE	SCRIPTION					
ADCAvg 7:0			ADC Conta	ADC conversion average value. Contains the average value of the 2 ^{ADCAvgSiz[2:0]} ADC measurements.							

ADCDatMin (0x54)

BIT	7	6	5	4	3	2	1	0			
Field		ADCMin[7:0]									
Access Type		Read Only									
BITFIEI	LD	BITS			DE	SCRIPTION					
ADCMin		7:0		ADC conversion minimum value. Contains the minimum value among the 2 ^{ADCAvgSiz[2:0]} ADC measurements							

ADCDatMax (0x55)

BIT	7	6	5	4	3	2	1	0			
Field		ADCMax[7:0]									
Access Type		Read Only									
BITFIEI	D	BITS DESCRIPTION									
ADCMax		7:0	Conta	ADC conversion maximum value. Contains the maximum value among the 2 ^{ADCAvgSiz[2:0]} ADC measurements.							

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

PMIC Registers - SlaveID: 0x50/0x51

ADDRESS	NAME	MSB							LSB
	upts and Status								_
0x00	ChipID[7:0]				ChipR	ev[7:0]			
0x01	<u>Status0[7:0]</u>		_	-	ThmStat[2:0			ChgStat[2:0	1
0x02	<u>Status1[7:0]</u>	_	_	ILim	UsbOVP	UsbOk	ChgJEIT ASD	ChgJEIT AReg	ChgTmo
0x03	Status2[7:0]	ChgThm SD	_	ThmLDO _LSW	UVLOLD O2	UVLOLD O1	_	LSW1Tm 0	LSW2Tm o
0x04	Status3[7:0]	BBstFaul t	HrvBatC mp	SysBatLi m	ChgSysL im	ChgStep	ThmBk1	ThmBk2	ThmBk3
0x05	Status4[7:0]	BatGood	BatRegD one	BstFault	_	-	-	-	-
0x06	Int0[7:0]	ThmStatl nt	ChgStatl nt	ILimInt	UsbOVPI nt	UsbOkInt	ChgJEIT ASDInt	ChgJEIT ARegInt	ChgTmol nt
0x07	Int1[7:0]	ChgThm SDInt	-	ThmLDO _LSWInt	UVLOLD O2Int	UVLOLD O1Int	-	LSW1Tm oInt	LSW2Tm oInt
0x08	Int2[7:0]	BBstFaul tInt	HrvBatC mpInt	SysBatLi mInt	ChgSysL imInt	ChgStepl nt	ThmBk1I nt	ThmBk2I nt	ThmBk3I nt
0x09	Int3[7:0]	BatGood Int	BatRegD oneInt	BstFaultI nt	_	l2cCrcFa illnt	l2cTmoIn t	HptStatIn t	ADCStatl nt
0x0A	IntMask0[7:0]	ThmStatl ntM	ChgStatl ntM	ILimIntM	UsbOVPI ntM	UsbOkInt M	ChgJEIT ASDIntM	ChgJEIT ARegInt M	ChgTmol ntM
0x0B	IntMask1[7:0]	ChgThm SDIntM	_	ThmLDO _LSWInt M	UVLOLD O2IntM	UVLOLD O1IntM	_	LSW1Tm oIntM	LSW2Tm oIntM
0x0C	IntMask2[7:0]	BBstFaul tIntM	HrvBatC mpIntM	SysBatLi mIntM	ChgSysL imIntM	ChgStepl ntM	ThmBk1I ntM	ThmBk2I ntM	ThmBk3I ntM
0x0D	IntMask3[7:0]	BatGood IntM	BatRegD oneIntM	BstFaultI ntM	_	I2cCrcFa ilIntM	I2cTmoIn tM	HptStatIn tM	ADCStatl ntM
Charger			1				1		
0x0F	ILimCntl[7:0]	S	ysMinVIt[2:	0]	ILimBla	ank[1:0]		LimCntl[2:0]
0x10	ChgCntl0[7:0]	FrcPChg	ChgBatR	eChg[1:0]		ChgBat	Reg[3:0]		ChgEn
0x11	ChgCntl1[7:0]	BatPD		VPChg[2:0]		IPCh	g[1:0]	IChgDo	one[1:0]
0x12	ChgTmr[7:0]	ChgAuto Stop	ChgAuto ReSta	MtChg	[1:0]	FChgT	mr[1:0]	PChgT	ˈmr[1:0]
0x13	StepChgCfg0[7:0]	_	Ch	ngStepHys[2	2:0]		ChgStep	Rise[3:0]	
0x14	StepChgCfg1[7:0]	-	-	-	VSysU	vlo[1:0]	0	ChgIStep[2:0)]
0x15	ThmCfg0[7:0]	-	ChgThr	nEn[1:0]	ChgCoolB	atReg[1:0]	ChgCoolFChg[2:0]		2:0]
0x16	ThmCfg1[7:0]	-	-	-	-	omBatReg[1: ChgRoor		RoomIFChg	[2:0]
0x17	ThmCfg2[7:0]	HrvThm	1En[1:0]	_	ChgWarmBatReg[1: 0]		Chg	WarmIFChg	[2:0]
0x18	HrvCfg0[7:0]	HrvBat	Sys[1:0]	HrvBatRe	eChg[1:0]		HrvBat	Reg[3:0]	
0x19	HrvCfg1[7:0]	_	HrvThm Dis	HrvWarm	BatReg[1:0]	HrvRoomE	BatReg[1:0	HrvCoolB	atReg[1:0]

ADDRESS	NAME	MSB							LSB
MON Mux	I								
0x1A	IVMONCfg[7:0]	-		tioConfig[1 0]	IVMONO ffHiZ		IVMON	Cntl[3:0]	
Buck1	•								
0x1B	Buck1Ena[7:0]	В	uck1Seq[2:	0]	_	_	_	Buck1	En[1:0]
0x1C	Buck1Cfg0[7:0]	Buck1Int egDis	Buck1P GOODE n	Buck1Fa st	Buck1Ps vDsc	Buck1Ac tDsc			
0x1D	Buck1Cfg1[7:0]	_	_	Buck1M PC2Fast	Buck1FP WM	Buck1IA dptDis	_	-	_
0x1E	Buck1Iset[7:0]	Buck1IS etLookU pDis	_	_	_	Buck1ISet[3:0]			
0x1F	Buck1VSet[7:0]	-	-			Buck1V	'Set[5:0]		
0x20	Buck1Ctr[7:0]	Buck1M PC7	Buck1M PC6	Buck1M PC5	Buck1M PC4	Buck1M PC3	Buck1M PC2	Buck1M PC1	Buck1M PC0
0x21	Buck1DvsCfg0[7:0]	-	-	-		Buck1DVSCfg[4:0]			
0x22	Buck1DvsCfg1[7:0]	-	-			Buck1DVSVIt0[5:0]			
0x23	Buck1DvsCfg2[7:0]	-	-			Buck1DVSVIt1[5:0]			
0x24	Buck1DvsCfg3[7:0]	-	-			Buck1DV	SVIt2[5:0]		
0x25	Buck1DvsCfg4[7:0]	_	_			Buck1DV	SVIt3[5:0]		
0x26	Buck1DvsSpi[7:0]	_	-			Buck1SI	PIVIt[5:0]		
Buck2	•								
0x27	Buck2Ena[7:0]	В	uck2Seq[2:	0]	_	_	_	Buck2	En[1:0]
0x28	Buck2Cfg[7:0]	Buck2En bINTGR	Buck2P GOODen a	Buck2Fa st	Buck2Ps vDsc	Buck2Ac tDsc	Buck2Lo wEMI	Buck2FE TScale	Buck2En LxSns
0x29	Buck2Cfg1[7:0]	_	_	Buck2M PCFast	Buck2FP WM	Buck2IA dptDis	_	-	_
0x2A	Buck2lset[7:0]	Buck2IS etLookU pDis	_	_	_		Buck2I	Set[3:0]	I
0x2B	Buck2VSet[7:0]	-	-		1	Buck2V	'Set[5:0]		
0x2C	Buck2Ctr[7:0]	Buck2M PC7	Buck2M PC6	Buck2M PC5	Buck2M PC4	Buck2M PC3	Buck2M PC2	Buck2M PC1	Buck2M PC0
0x2D	Buck2DvsCfg0[7:0]	-	-	-		Bu	ck2DvsCfg[4	4:0]	
0x2E	Buck2DvsCfg1[7:0]	-	-		Buck2DvsVlt0[5:0]				
0x2F	Buck2DvsCfg2[7:0]	-	_	Buck2DvsVlt1[5:0]					
0x30	Buck2DvsCfg3[7:0]	_	_	Buck2DvsVlt2[5:0]					
0x31	Buck2DvsCfg4[7:0]	-	_	Buck2DvsVlt3[5:0]					
0x32	Buck2DvsSpi[7:0]	_	_	- Buck2SPIVIt[5:0]					
Buck3									
0x34	Buck3Ena[7:0]	В	uck3Seq[2:	0]	-	_	_	Buck3	En[1:0]

ADDRESS	NAME	MSB							LSB
0x35	Buck3Cfg[7:0]	Buck3En bINTGR	Buck3P GOODen a	Buck3Fa st	Buck3Ps vDsc	Buck3Ac tDsc	Buck3Lo wEMI	Buck3FE TScale	Buck3En LxSns
0x36	Buck3Cfg1[7:0]	-	Buck3Di sLDO	Buck3M PCFast	Buck3FP WM	Buck3IA dptDis	_	-	_
0x37	Buck3lset[7:0]	Buck3IS etLookU pDis	-	_	_		Buck3I	Set[3:0]	
0x38	Buck3VSet[7:0]	-	-			Buck3V	'Set[5:0]		
0x39	Buck3Ctr[7:0]	Buck3M PC7	Buck3M PC6	Buck3M PC5	Buck3M PC4	Buck3M PC3	Buck3M PC2	Buck3M PC1	Buck3M PC0
0x3A	Buck3DvsCfg0[7:0]	-	_	_		Bu	ck3DvsCfg[4	4:0]	
0x3B	Buck3DvsCfg1[7:0]	-	-			Buck3Dv	sVlt0[5:0]		
0x3C	Buck3DvsCfg2[7:0]	-	_			Buck3Dv	sVlt1[5:0]		
0x3D	Buck3DvsCfg3[7:0]	-	-			Buck3Dv	sVlt2[5:0]		
0x3E	Buck3DvsCfg4[7:0]	-	-			Buck3Dv	sVlt3[5:0]		
0x3F	Buck3DvsSpi[7:0]	-	-			Buck3SI	PIVIt[5:0]		
Buck-Boost	t								
0x40	BBstEna[7:0]	I	BstSeq[2:0]	-	-	-	BBstE	in[1:0]
0x41	BBstCfg[7:0]	BBstlSet LookUpD is	_	_	BBstLow EMI	BBstAct Dsc	BBstRa mpEn	BBstMod e	BBstPsv Disc
0x42	BBstVSet[7:0]	_	_			BBstVS	Set[5:0]		
0x43	BBstlSet[7:0]		BBstIPS	Set2[3:0]			BBstIPS	Set1[3:0]	
0x44	BBstCfg1[7:0]	_	BBstlAdp tDis	BBstFast	BBstZCC mpDis	BBstFET Scale	BBstMP C1FastC ntl	BBFHig	hSh[1:0]
0x45	BBstCtr0[7:0]	BBstMP C7	BBstMP C6	BBstMP C5	BBstMP C4	BBstMP C3	BBstMP C2	BBstMP C1	BBstMP C0
0x46	BBstCtr1[7:0]	-	_	_		BE	BstDvsCfg[4	:0]	
0x47	BBstDvsCfg0[7:0]	-	_			BBstDvs	sVIt0[5:0]		
0x48	BBstDvsCfg1[7:0]	-	-			BBstDvs	sVlt1[5:0]		
0x49	BBstDvsCfg2[7:0]	-	-			BBstDvs	sVlt2[5:0]		
0x4A	BBstDvsCfg3[7:0]	-	-			BBstDvs	sVlt3[5:0]		
0x4B	BBstDvsSpi[7:0]	-	-			BBstSP	PIVIt[5:0]		
LDO1									
0x51	LDO1Ena[7:0]	L	.DO1Seq[2:0)]	-	-	-	LDO1	En[1:0]
0x52	LDO1Cfg[7:0]	-	_	_	LDO1_M PC0CNF	LDO1_M PC0CNT	LDO1Act Dsc	LDO1Mo de	LDO1Ps vDsc
0x53	LDO1VSet[7:0]	-	_	LDO1VSet[5:0]					
0x54	LDO1Ctr[7:0]	LDO1MP C7	LDO1MP C6	LDO1MP C5	LDO1MP C4	LDO1MP C3	LDO1MP C2	LDO1MP C1	LDO1MP C0
LDO2									
0x55	LDO2Ena[7:0]	L	.DO2Seq[2:0)]	_	-	_	LDO2	En[1:0]

ADDRESS	NAME	MSB							LSB		
0x56	LDO2Cfg[7:0]	-	_	_	_	LDO2Su pply	LDO2Act Dsc	LDO2Mo de	LDO2Ps vDsc		
0x57	LDO2VSet[7:0]	-	_	-		L	DO2VSet[4:	0]			
0x58	LDO2Ctr[7:0]	LDO2MP C7	LDO2MP C6	LDO2MP C5	LDO2MP C4	LDO2MP C3	LDO2MP C2	LDO2MP C1	LDO2MP C0		
Load Switcl	h 1	I	1	1	1	1	1	1	1		
0x59	LSW1Ena[7:0]	L	SW1Seq[2:	0]	_	– – – LSW1En[1:0]					
0x5A	LSW1Cfg[7:0]	-	_	_	_	_	LSW1Act Dsc	LSW1Lo wlq	LSW1Ps vDsc		
0x5B	LSW1Ctr[7:0]	LSW1M PC7	LSW1M PC6	LSW1M PC5	LSW1M PC4	LSW1M PC3	LSW1M PC2	LSW1M PC1	LSW1M PC0		
Load Switcl	h 2										
0x5C	LSW2Ena[7:0]	I	SW2Seq[2:	01	_	_	_	I SW2	En[1:0]		
0x5D	LSW2Cfg[7:0]		-	-	_	_	LSW2Act Dsc	LSW2Lo wlq	LSW2Ps vDsc		
0x5E	LSW2Ctr[7:0]	LSW2M PC7	LSW2M PC6	LSW2M PC5	LSW2M PC4	LSW2M PC3	LSW2M PC2	LSW2M PC1	LSW2M PC0		
Charge Pun	an										
0x5F	ChgPmpEna[7:0]	Ch	gPmpSeq[2	2:01	_	_	_	ChgPm	pEn[1:0]		
0x60	ChgPmpCfg[7:0]	_	-	_	_	_	_	CPVSet	ChgPmp Psv		
0x61	ChgPmpCtr[7:0]	CHGPM PMPC7	CHGPM PMPC6	CHGPM PMPC5	CHGPM PMPC4	CHGPM PMPC3	CHGPM PMPC2	CHGPM PMPC1	CHGPM PMPC0		
Boost											
0x62	BoostEna[7:0]	E	BoostSeq[2:0	0]	_	_	_	BstE	n[1:0]		
0x63	BoostCfg[7:0]	-	-	-	-	BstPsvD sc	BstlAdpt En	BstFastS trt	BstFETS cale		
0x64	BoostISet[7:0]	BstlSetL ookUpDi s	_	_	_		BstIS	et[3:0]			
0x65	BoostVSet[7:0]	_	_			BstVS	et[5:0]				
0x66	BoostCtr[7:0]	BstMPC 7	BstMPC 6	BstMPC 5	BstMPC 4	BstMPC 3	BstMPC 2	BstMPC 1	BstMPC 0		
MPC Contro	bl	·									
0x67	MPC0Cfg[7:0]	MPC0Re ad	_	-	MPC0Ou t	MPC0O D	MPC0Hi ZB	MPC0Re s	MPC0Pu p		
0x68	MPC1Cfg[7:0]	MPC1Re ad	_	-	MPC1Ou t	MPC1O D	MPC1Hi ZB	MPC1Re s	MPC1Pu p		
0x69	MPC2Cfg[7:0]	MPC2Re ad	_	_	MPC2Ou t	MPC2O D	MPC2Hi ZB	MPC2Re s	MPC2Pu p		
0x6A	MPC3Cfg[7:0]	MPC3Re ad	_	_	MPC3Ou t	MPC3O D	MPC3Hi ZB	MPC3Re s	MPC3Pu p		
0x6B	MPC4Cfg[7:0]	MPC4Re ad	_	_	MPC4Ou t	MPC4O D	MPC4Hi ZB	MPC4Re s	P MPC4Pu p		
0x6C	MPC5Cfg[7:0]	MPC5Re ad	_	_	MPC5Ou t	MPC5O D	MPC5Hi ZB	MPC5Re s	MPC5Pu p		

ADDRESS		MOD							100	
ADDRESS	NAME	MSB							LSB	
0x6D	MPC6Cfg[7:0]	MPC6Re ad	-	-	MPC6Ou t	MPC6O D	MPC6Hi ZB	MPC6Re s	MPC6Pu p	
0x6E	MPC7Cfg[7:0]	MPC7Re ad	-	-	MPC7Ou t	MPC7O D	MPC7Hi ZB	MPC7Re s	MPC7Pu p	
0x6F	MPCItrSts[7:0]	-	_	USBOkM PCSts	_	_	BK3PgM PCSts	BK2PgM PCSts	BK1PgM PCSts	
0x70	BK1DedIntCfg[7:0]	BK1PGM PCInt	BK1MPC 6Sel	BK1MPC 5Sel	BK1MPC 4Sel	BK1MPC 3Sel	BK1MPC 2Sel	BK1MPC 1Sel	BK1MPC 0Sel	
0x71	BK2DedIntCfg[7:0]	BK2PGM PCInt	BK2MPC 6Sel	BK2MPC 5Sel	BK2MPC 4Sel	BK2MPC 3Sel	BK2MPC 2Sel	BK2MPC 1Sel	BK2MPC 0Sel	
0x72	BK3DedIntCfg[7:0]	BK3PGM PCInt	BK3MPC 6Sel	BK3MPC 5Sel	BK3MPC 4Sel	BK3MPC 3Sel	BK3MPC 2Sel	BK3MPC 1Sel	BK3MPC 0Sel	
0x73	HptDedIntCfg[7:0]	HptStatD edInt	HPTMP C6Sel	HPTMP C5Sel	HPTMP C4Sel	HPTMP C3Sel	HPTMP C2Sel	HPTMP C1Sel	HPTMP C0Sel	
0x74	ADCDedIntCfg[7:0]	ADCStat MPCInt	ADCMP C6Sel	ADCMP C5Sel	ADCMP C4Sel	ADCMP C3Sel	ADCMP C2Sel	ADCMP C1Sel	ADCMP C0Sel	
0x75	USBOkDedIntCfg[7:0]	USBOkM PCInt	USBOkM PC6Sel	USBOkM PC5Sel	USBOkM PC4Sel	USBOkM PC3Sel	USBOkM PC2Sel	USBOkM PC1Sel	USBOkM PC0Sel	
LED Curren	nt Sinks									
0x78	LEDCommon[7:0]	LED_Bo ostLoop	_	_	LE	ED_Open[2:	0]	LEDISt	ep[1:0]	
0x79	LED0Ref[7:0]	-	-	-	-	-	-	LED0_RE	FSEL[1:0]	
0x7A	LED0Ctr[7:0]]		L	ED0ISet[4:0)]		
0x7B	LED1Ctr[7:0]		LED1En[2:0]		L	ED1ISet[4:0)]		
0x7C	LED2Ctr[7:0]		_ED2En[2:0]		L	ED2ISet[4:0	0]		
Boot Behav	vior and PFNx status	1								
0x7D	PFN[7:0]	-	_	_	_	_	_	PFN2Pin	PFN1Pin	
0x7E	BootCfg[7:0]		PwrRst	Cfg[3:0]		SftRstCf g	BootD	ly[1:0]	ChgAlwT ry	
Power Com	mands and Lock Function	on								
0x7F	PwrCfg[7:0]	-	_	_	_	_	_	_	StayOn	
0x80	PwrCmd[7:0]				PwrCr	nd[7:0]				
0x81	BuckCfg[7:0]	Bk2FrcD CM	Bk1FrcD CM	Bk3DVS Cur	Bk2DVS Cur	Bk1DVS Cur	Bk3Low BW	Bk2Low BW	Bk1Low BW	
0x83	LockMsk[7:0]	LD2Lck	LD1Lck	BBLck	BstLck	BK3Lck	BK2Lck	BK1Lck	ChgLck	
0x84	LockUnlock[7:0]				PASSV	VD[7:0]				
SFOUT										
0x86	SFOUTCtr[7:0]	SFOUTV Set	_	_	_	_	_	SFOUT	En[1:0]	
0x87	SFOUTMPC[7:0]	SFOUT MPC7	SFOUT MPC6	SFOUT MPC5	SFOUT MPC4	SFOUT MPC3	SFOUT MPC2	SFOUT MPC1	SFOUT MPC0	
OTP Readb	ack									
0x88	12C_OTP ADD[7:0]				OTPDIG_	_ADD[7:0]				
0x89	12C_OTP DAT[7:0]				OTPDIG_	_DAT[7:0]				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Register Details

ChipID (0x00)

BIT	7	7 6 5 4 3 2 1									
Field		ChipRev[7:0]									
Access Type		Read Only									
BITFIEI	LD	BITS			DE	SCRIPTION					
ChipRev		7:0		ChipRev[7:0] bits show information about the hardware revision of the MAX20360.							

Status0 (0x01)

BIT	7	6	5	4	3	2	1	0		
Field	-	-		ThmStat[2:0]		ChgStat[2:0]				
Access Type	-	-		Read Only		Read Only				
BITFIELD	BITS		DESCRIPTION DECODE							
ThmStat	5:3	Status of the	ermistor monito	pring.	001: Co VTHM (010: Ro VTHM (011: W VTHM (100: Ho 100: Ho 100: Ho 100: Ho CHGIN ChgThr voltage HrvThm 111: Th CHGIN ChgThr	ool zone(V _{THM_} COLD) oom zone (V _{TH} COOL) arm zone (V _{TH}	COOL < VTHM M_WARM < VT M_HOT < VTHI < VTHM_HOT) ected (VTHM > oring disabled s present and f or because C and ChgThmE oring disabled s not present, equal to "00" a	HM < N < VTHM_DIS) because HGIN input in[1:0] = because		
ChgStat	2:0	Status of ch	arger		001: Ch Figure 3 010: Pr 011: Fa 100: Fa 101: Ma 110: Ma 111: Ch	harger off harging suspend 32, the Battery echarge in prog ist-charge cons ist-charge cons aintain charge i aintain charger harger fault con Charger-State	Charger-State gress tant current in tant voltage in n progress timer done dition (see Fig	Diagram) progress progress		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Status1 (0x02)

BIT	7	6	5	4		3	2	1	0
Field	-	_	ILim	UsbOVP	U	JsbOk	ChgJEITAS D	ChgJEITAR eg	ChgTmo
Access Type	-	-	Read Only	Read Only	Re	ad Only	Read Only	Read Only	Read Only
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
ILim	5	Valid only w	IGIN input curr hen CHGIN inp [UsbOVP,Usb	out voltage is			IN input current		
UsbOVP	4	Status of CH (OVP).	IGIN overvolta	ge protection		0: CHGIN overvoltage not detected 1: CHGIN overvoltage detected			
UsbOk	3	Status of CI	IGIN input volt	age.		valid rar	nge	e not present or e present and v	
ChgJEITASD	2	JEITA. Valid only w	hen CHGIN inp	hutdown due to out voltage is = "01" and cha			ger operating n ger disabled du	ormally or disal e to JEITA	bled
ChgJEITARe g	1	reduction du Valid only w	ie to JEITA. hen CHGIN inp	urrent or voltag out voltage is = "01" and cha		1: Char		ormally or disal oltage being ac	
ChgTmo	0	Valid only w	arger time-out hen CHGIN inp bOVP,UsbOk]		rger			ormally or disal d a time-out co	

Status2 (0x03)

BIT	7	6	5	4		3	2	1	0
Field	ChgThmSD	-	ThmLDO_L SW	UVLOLDO2	UVL	OLDO1	-	LSW1Tmo	LSW2Tmo
Access Type	Read Only	-	Read Only	Read Only	Rea	ad Only	-	Read Only	Read Only
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
ChgThmSD	7	shutdown.	but limiter and c	charger thermal out voltage is				rger operating rger in thermal	
ThmLDO_LS W	5	Status of LD Thermal Shu	O1, LDO2, LS utdown	W1, LSW2				are operating r ocks is in therm	
UVLOLDO2	4	Status of LD	O2 UVLO			0: LDO2 operating normally 1: LDO2 UVLO active			
UVLOLDO1	3	Status of LD	O1 UVLO				operating norr UVLO active	mally	
LSW1Tmo	1	LSW1 failed period.	to startup duri	ng the timeout					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LSW2Tmo	0	LSW2 failed to startup during the timeout period.	

Status3 (0x04)

BIT	7	6	5	4		3 2		1	0	
Field	BBstFault	HrvBatCmp	SysBatLim	ChgSysLim	CI	ngStep	ThmBk1	ThmBk2	ThmBk3	
Access Type	Read Only	Read Only	Read Only	Read Only	Re	ad Only	Read Only	Read Only	Read Only	
BITFIELD	BITS		DESCRIPTION DECODE							
BBstFault	7	Status of Bu	ck-Boost Faul	t			-Boost operatin -Boost under fa			
HrvBatCmp	6		rvester BAT co hen harvester en HrvEn=1.			0: V _{BAT} < V _{HARV_BAT_REG} (with V _{HARV_BAT_RECHG} hysteresis) 1: V _{BAT} > V _{HARV_BAT_REG} (with V _{HARV_BAT_RECHG} hysteresis)				
SysBatLim	5	voltage. Valid only w	alid only when CHGIN input voltage is resent, [UsbOVP,UsbOk] = "01" and charger 1: Charge current a regulate Vovo colla							
ChgSysLim	4	CHGIN volta Valid only w	out limiter regul age. hen CHGIN in [UsbOVP,Usb	out voltage is		to regula 1: Input	limiter current i ate V _{CHGIN} limiter current i e V _{CHGIN} collar	is actively being		
ChgStep	3	reduction. Valid only w	arger step-cha hen CHGIN in bOVP,UsbOk]	0	rger		ger step-charge ger step-charge			
ThmBk1	2	Status of Bu	ck1 Thermal S	Shutdown			1 operating nor 1 in thermal shi			
ThmBk2	1	Status of Bu	Status of Buck2 Thermal Shutdown 0: Buck2 operating normally 1: Buck2 in thermal shutdown							
ThmBk3	0	Status of Bu	ck3 Thermal S	Shutdown			3 operating nor 3 in thermal shi			

Status4 (0x05)

BIT	7	6	5	4	3	2	1	0		
Field	BatGood	BatRegDon e	BstFault	-	_	-	_	-		
Access Type	Read Only	Read Only	Read Only	-	_	_	_	_		
BITFIELD	BITS		DESCRIPT	ION		DECODE				
BatGood	7	Valid only w	arger BatGood hen CHGIN inr [UsbOVP,Usb	out voltage is	0: V _B , 1: V _B , prese	AT < VBAT_UVLO AT > VBAT_UVLO nt	or CHGIN inpu	it voltage not		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BatRegDone	6	Status of charger BAT voltage regulation. Valid only when CHGIN input voltage is present, [UsbOVP,UsbOk] = "01", charger is enabled and SysBatLim = 0.	0: V _{BAT} < V _{BAT_REG} 1: V _{BAT} ≥ V _{BAT_REG}
BstFault	5	Status of Buck-Boost Fault	0: Buck-Boost operating normally 1: Buck-Boost under fault condition

Int0 (0x06)

BIT	7	6	5	4	3	2	1	0		
Field	ThmStatInt	ChgStatInt	ILimInt	UsbOVPInt	UsbOkInt	ChgJEITAS DInt	ChgJEITAR egInt	ChgTmoInt		
Access Type	Write, Read	Write, Read Write, I		d Write, Read	Write, Read	Write, Read	Write, Read	Write, Read		
BITFIEI	LD	BITS DESCRIPTION								
ThmStatInt		7	Cł	Change in ThmStat[2:0] caused an interrupt.						
ChgStatInt		6	Cł	Change in ChgStat[2:0] caused an interrupt.						
ILimInt		5	Cł	Change in ILim caused an interrupt.						
UsbOVPInt		4	Cł	ange in UsbOVP	caused an inte	errupt.				
UsbOkInt		3	Cł	ange in UsbOk ca	aused an interr	upt.				
ChgJEITASDIr	nt	2 Change in ChgJEITASD caused an interrupt.								
ChgJEITAReg	Int	1 Change in ChgJEITAReg caused an interrupt.								
ChgTmoInt		0	Cł	ange in ChgTmo	caused an inte	rrupt.				

<u>Int1 (0x07)</u>

BIT	7		6	5	5 4 3 2 1 0						
Field	ChgThmS nt	DI	-	ThmLE SWI	_	UVLOLDO2 Int	UVLOLDO1 Int	-	LSW1Tmol nt	LSW2Tmol nt	
Access Type	Write, Re	ad	_	Write, I	Write, Read Write, Read - Write, Read Write						
BITFIEI	D		BITS		DESCRIPTION						
ChgThmSDInt			7		Chan	ge in ChgThmS	SD caused an i	nterrupt.			
ThmLDO_LSW	/Int		5		Chan	ge in ThmLDO	LSW caused	an interrupt.			
UVLOLDO2Int			4		Chan	ge in UVLOLD	O2 caused an i	nterrupt.			
UVLOLDO1Int			3	Change in UVLOLDO1 caused an interrupt.							
LSW1TmoInt			1 Change in LSW1Tmo caused an interrupt.								
LSW2TmoInt			0		Chan	ge in LSW2Tm	o caused an in	terrupt.			

<u>Int2 (0x08)</u>

BIT	7	6	5	4	3	2	1	0
Field	BBstFaultInt	HrvBatCmpl nt	SysBatLiml nt	ChgSysLimI nt	ChgStepInt	ThmBk1Int	ThmBk2Int	ThmBk3Int
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
BBstFaultInt	7	Change in BBstFault caused an interrupt.
HrvBatCmpInt	6	Change in HrvBatCmp caused an interrupt.
SysBatLimInt	5	Change in SysBatLim caused an interrupt.
ChgSysLimInt	4	Change in ChgSysLim caused an interrupt.
ChgStepInt	3	Change in ChgStep caused an interrupt.
ThmBk1Int	2	Change in ThmBk1 caused an interrupt.
ThmBk2Int	1	Change in ThmBk2 caused an interrupt.
ThmBk3Int	0	Change in ThmBk3 caused an interrupt.

Int3 (0x09)

BIT	7	6	5		4	3	2	1	0		
Field	BatGoodInt	BatRegDon eInt	BstFau	ıltInt	-	l2cCrcFailIn t	l2cTmoInt	HptStatInt	ADCStatInt		
Access Type	Write, Read	Write, Read	Write, F	Read	-	Write, Read	Write, Read	Read Only	Read Only		
BITFIEI	LD	BITS	BITS DESCRIPTION								
BatGoodInt		7 Change in BatGood caused an interrupt.									
BatRegDoneIn	t	6		Change in BatRegDone caused an interrupt.							
BstFaultInt		5		Change in BstFault caused an interrupt.							
I2cCrcFailInt		3		CRC	Failure - I ² C w	rite not perform	ned				
I2cTmoInt		2			Vatchdog Timer	•	o 100ms bus in	activity betwee	n START		
HptStatInt		1		Haptic driver general status interrupt. HptStatInt is issued in case any other haptic driver related interrupt is issued.							
ADCStatInt		0			general status ed interrupt is is		StatInt is issued	d in case any o	ther ADC		

IntMask0 (0x0A)

BIT	7	6	5	4		3	2	1	0		
Field	ThmStatInt M	ChgStatInt M	ILimIntM	UsbOVPInt M	Ust	oOkIntM	ChgJEITAS DIntM	ChgJEITAR egIntM	ChgTmoInt M		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	e, Read	Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPT	ION			D	ECODE			
ThmStatIntM	7		ThmStatIntM masks the ThmStatInt interrupt in the Int0 register (0x06).				0: Masked 1: Not masked				
ChgStatIntM	6		I masks the Ch egister (0x06).	gStatInt interru	pt	0: Masked 1: Not masked					
ILimIntM	5	ILimIntM ma Int0 register		interrupt in the)	0: Mask 1: Not m					
UsbOVPIntM	4		UsbOVPIntM masks the UsbOVPInt interrupt in the Int0 register (0x06).			0: Mask 1: Not m					
UsbOkIntM	3	UsbOkIntM the Int0 regi		OkInt interrupt	in	0: Mask 1: Not m					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
ChgJEITASD IntM	2	ChgJEITASDIntM masks the ChgJEITASDInt interrupt in the Int0 register (0x06).	0: Masked 1: Not masked
ChgJEITARe gIntM	1	ChgJEITARegIntM masks the ChgJEITARegInt interrupt in the Int0 register (0x06).	0: Masked 1: Not masked
ChgTmoIntM	0	ChgTmoIntM masks the ChgTmoInt interrupt in the Int0 register (0x06).	0: Masked 1: Not masked

IntMask1 (0x0B)

BIT	7	6	5	4		3	2	1	0			
Field	ChgThmSDI ntM	-	ThmLDO_L SWIntM	UVLOLDO2 IntM	-	_OLDO1 IntM	-	LSW1Tmol ntM	LSW2Tmol ntM			
Access Type	Write, Read	_	Write, Read	Write, Read	Writ	te, Read	-	Write, Read	Write, Read			
BITFIELD	BITS		DESCRIPT	ION			D	ECODE				
ChgThmSDIn tM	7						0: Masked 1: Not masked					
ThmLDO_LS WIntM	5	_	ThmLDO_LSWIntM masks the ThmLDO_LSWInt interrupt in the Int1 register (0x07).				0: Masked 1: Not masked					
UVLOLDO2I ntM	4		IntM masks the he Int1 register	UVLOLDO2In (0x07).	t	0: Maske 1: Not m						
UVLOLDO1I ntM	3		IntM masks the he Int1 register	e UVLOLDO1In (0x07).	ıt	0: Maske 1: Not m						
LSW1TmoInt M	1	LSW1TmoIntM masks the LSW1TmoInt interrupt in the Int1 register (0x07).				0: Maske 1: Not m						
LSW2TmoInt M	0		tM masks the he Int1 register			0: Masked 1: Not masked						

IntMask2 (0x0C)

BIT	7	6	5	4		3	2	1	0	
Field	BBstFaultInt M	HrvBatCmpl ntM	SysBatLiml ntM	ChgSysLimI ntM	Chę	gStepInt M	ThmBk1Int M	ThmBk2Int M	ThmBk3Int M	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
BBstFaultInt M	7		M masks the E he Int2 register			0: Masked 1: Not masked				
HrvBatCmpIn tM	6		ntM masks the he Int2 register	HrvBatCmpInt (0x08).		0: Mask 1: Not m				
SysBatLimInt M	5		ntM masks the he Int2 register			0: Mask 1: Not m				
ChgSysLimIn tM	4		ChgSysLimIntM masks the ChgSysLimInt interrupt in the Int2 register (0x08).				ed nasked			
ChgStepIntM	3		/I masks the Cl egister (0x08).	ngStepInt interr	upt	0: Mask 1: Not m				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
ThmBk1IntM	2	ThmBk1IntM masks the ThmBk1Int interrupt in the Int2 register (0x08).	0: Masked 1: Not masked
ThmBk2IntM	1	ThmBk2IntM masks the ThmBk2Int interrupt in the Int2 register (0x08).	0: Masked 1: Not masked
ThmBk3IntM	0	ThmBk3IntM masks the ThmBk3Int interrupt in the Int2 register (0x08).	0: Masked 1: Not masked

IntMask3 (0x0D)

BIT	7	6	5	4		3	2	1	0	
Field	BatGoodInt M	BatRegDon eIntM	BstFaultInt M	_	l2c0	CrcFailIn tM	I2cTmoIntM	HptStatIntM	ADCStatInt M	
Access Type	Write, Read	Write, Read	Write, Read	-	Wri	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
BatGoodIntM	7		/I masks the Ba gister (0x09).	atGoodInt inter	rupt	0: Mask 1: Not m				
BatRegDonel ntM	6	-	eIntM masks th he Int3 register	e BatRegDone (0x09).	elnt	0: Masked 1: Not masked				
BstFaultIntM	5		l masks the Bs egister (0x09).	tFaultInt interru	ıpt	0: Masked 1: Not masked				
I2cCrcFailInt M	3		IntM masks the he Int3 register	e I2CCRCFaillr (0x09).	nt	0: Masked 1: Not masked				
I2cTmoIntM	2	I2CTmoIntM the Int3 regi		CTmoInt interru	pt in	0: Mask 1: Not m				
HptStatIntM	1		HptStatIntM masks the HptStatInt interrupt in the Int3 register (0x09).				n 0: Masked 1: Not masked			
ADCStatIntM	0		/I masks the All egister (0x09).	DCStatInt inter	rupt	0: Mask 1: Not m				

ILimCntl (0x0F)

BIT	7	6	6 5 4 3					1	0	
Field		SysMinVIt[2:0]		ILimBla	ink[1:0]		ILimCntl[2:0]			
Access Type		Write, Read		Write,	Write, Read W			Write, Read		
BITFIELD	BITS		DESCRIPT	ION			[DECODE		
SysMinVlt	7:5	SYS voltage	below which c	mum threshold harging curren rom collapsing.	001: 010: 011: 100: 101: 110:	000: 3.6V 001: 3.7V 010: 3.8V 011: 3.9V 100: 4.0V 101: 4.1V 110: 4.2V 111: 4.3V				
ILimBlank	4:3		t current limiter h the current is	•	resa 01: (10: ⁻	111: 4.3V 00: No debounce (allow a few clock cycles t resampling) 01: 0.5ms 10: 1.0ms 11: 10.0ms				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
ILimCntl	2:0	CHGIN programmable input current limit.	000: 50mA 001: 90mA 010: 150mA 011: 200mA 100: 300mA 101: 400mA 110: 450mA 111: 1000mA

ChgCntl0 (0x10)

BIT	7	6	5	4		3	2	1	0
Field	FrcPChg	ChgBatRe	eChg[1:0]		•	ChgBat	Reg[3:0]		ChgEn
Access Type	Write, Read	Write,	Read			Write,		Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
FrcPChg	7	Charger forc ChgEn = 1.	Charger forced precharge mode. Valid only if ChgEn = 1.				ger operating n ger current is fo	ormally prced to precha	rge value
ChgBatReCh g	6:5	Charger recl ChgBatReg[•	d in relation to		01: Chg 10: Chg	BatReg[3:0] -7 BatReg[3:0] -1 BatReg[3:0] -1 BatReg[3:0] -2	20mV 70mV	
ChgBatReg	4:1	Charger batt	ery regulation	voltage.		0000: 4. 0001: 4. 0010: 4. 0010: 4. 0110: 4. 0100: 4. 0101: 4. 0110: 4. 0111: 4. 1000: 4. 1001: 4. 1001: 4. 1001: 4. 1001: R 1101: R 1110: R 1111: R	10V 15V 20V 25V 30V 35V 40V 45V 50V 55V 60V eserved eserved eserved		
ChgEn	0	Charger on/o Does not aff		er and SYS nod	e.	0: Charger disabled 1: Charger enabled			

<u>ChgCntl1 (0x11)</u>

BIT	7	6	6 5 4		3	2	1	0	
Field	BatPD		VPChg[2:0]		IPCh	g[1:0]	IChgDone[1:0]		
Access Type	Write, Read	Write, Read			Write	, Read	Write, Read		
BITFIELD	BITS		DESCRIPT	ION	DECODE				
BatPD	7	Pulldown res	sistor enable o	n BAT.		own resistor dis own resistor en			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
VPChg	6:4	Charger precharge voltage rising threshold.	000: 2.10V 001: 2.25V 010: 2.40V 011: 2.55V 100: 2.70V 101: 2.85V 110: 3.00V 111: 3.15V
IPChg	3:2	Charger precharge current.	00: 0.05 x I _{FCHG} 01: 0.10 x I _{FCHG} 10: 0.20 x I _{FCHG} 11: 0.30 x I _{FCHG}
IChgDone	1:0	Charger charge-done current threshold.	00: 0.05 x I _{FCHG} 01: 0.10 x I _{FCHG} 10: 0.20 x I _{FCHG} 11: 0.30 x I _{FCHG}

<u>ChgTmr (0x12)</u>

BIT	7	6	5	4	3		2	1	0	
Field	ChgAutoSto p	ChgAutoRe Sta	MtChg	MtChgTmr[1:0]			[mr[1:0]	PChgTmr[1:0]		
Access Type	Write, Read	Write, Read	Write	, Read	V	Vrite	, Read	Write,	Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
ChgAutoStop	7	Controls the to maintain-		n maintain-char See Figure 32, †		0: Auto-stop disabled 1: Auto-stop enabled				
ChgAutoReS ta	6		o-restart contro 32, the Battery	ol. Charger-State	wh 1: (0: Charger remains in maintain-charge done even when V_{BAT} is less than recharge threshold. 1: Charger automatically restarts when V_{BAT} drops below recharge threshold. 				
MtChgTmr	5:4	Charger mai	ntain-charge t	imer.	01: 10:	00: Omin 01: 15min 10: 30min 11: 60min				
FChgTmr	3:2	Charger fast	fast-charge timer.				nin min min min			
PChgTmr	1:0	Charger pre	charge timer.		01: 10:	00: 30min 01: 60min 10: 120min 11: 240min				

StepChgCfg0 (0x13)

BIT	7	6	5	4	3	2	1	0	
Field	-	C	ChgStepHys[2:0	0]	ChgStepRise[3:0]				
Access Type	-		Write, Read		Write, Read				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
ChgStepHys	6:4	Charger step-charge voltage threshold hysteresis.	000: 100mV 001: 200mV 010: 300mV 011: 400mV 100: 500mV 101: 600mV 110: Reserved 111: Reserved
ChgStepRise	3:0	Charger step-charge voltage rising threshold.	0000: 3.80V 0001: 3.85V 0010: 3.90V 0011: 3.95V 0100: 4.00V 0101: 4.05V 0110: 4.10V 0111: 4.15V 1000: 4.20V 1001: 4.25V 1000: 4.20V 1011: 4.35V 1010: 4.30V 1011: 4.45V 1110: 4.45V 1110: 4.55V

StepChgCfg1 (0x14)

BIT	7	6	5	4		3	2 1		
Field	_	_	_	VSysU	vlo[1:0	0]		ChgIStep[2:0]	
Access Type	-	-	-	Write, Read			Write, Read		
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
VSysUvlo	4:3	SYS UVLO	falling voltage t	threshold selec	tor.	00: 2.7V 01: 2.9V 10: 3.0V 11: 3.2V			
ChglStep	2:0	Sets the mo ChgStepRis fast-charge value set by charger curr thermistor m	p-charge curren dified fast-char e[3:0] threshold current is the n ChglStep[2:0] rent reduction r nonitoring (see hg[2:0], ChgRc chg[2:0]).	ge current onc d is exceeded. ninimum of the and the applic elated to	The	000: 0.2 001: 0.3 010: 0.4 011: 0.5 100: 0.6 101: 0.7 110: 0.8 111: 1.0			

ThmCfg0 (0x15)

BIT	7	6	5	4	3	2	1	0
Field	_	ChgThn	ChgThmEn[1:0]		atReg[1:0]	ChgCoolFChg[2:0]		
Access Type	-	Write,	Read	Write, Read			Write, Read	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE			
ChgThmEn	6:5	 6:5 Charger thermistor monitoring related control. Valid only when CHGIN input voltage is present. 6:5 Othermistor monitoring related control. Valid only when CHGIN input voltage is present. 00: Thermistor monitoring permanently en and charger enabled in the room and warr temperature zones 10: Thermistor monitoring permanently en and charger enabled in the room and warr temperature zones 11: Thermistor monitoring permanently en and charger enabled in the cool, room, and temperature zones 				
ChgCoolBat Reg	Bat 4:3 Charger cool zone battery regulation voltage reduction. Sets the modified battery regulation voltage when the cool temperature zone is entered according to thermistor monitoring.		00: ChgBatReg[3:0] -150mV 01: ChgBatReg[3:0] -100mV 10: ChgBatReg[3:0] -50mV 11: ChgBatReg[3:0]			
ChgCoolFCh g	Charger cool zone fast-charge current		000: 0.2 x I _{FCHG} 001: 0.3 x I _{FCHG} 010: 0.4 x I _{FCHG} 011: 0.5 x I _{FCHG} 100: 0.6 x I _{FCHG} 101: 0.7 x I _{FCHG} 110: 0.8 x I _{FCHG} 111: 1.0 x I _{FCHG}			

ThmCfg1 (0x16)

BIT	7	6	5	4		3	2	1	0	
Field	-	_	_	ChgRoom	BatRe	g[1:0]	Ch	gRoomIFChg[2	::0]	
Access Type	-	-	-	Write,	Read	b	Write, Read			
BITFIELD	BITS		DESCRIPT	TION DECODE						
ChgRoomBat Reg	4:3	reduction. Sets the mo when the roo	dified battery re	regulation volt egulation voltag e zone is enter nitoring.	ge	00: ChgBatReg[3:0] -150mV 01: ChgBatReg[3:0] -100mV 10: ChgBatReg[3:0] -50mV 11: ChgBatReg[3:0]				
ChgRoomIF Chg	2:0	reduction. Sets the mo the room ter	m zone fast-ch dified fast-char nperature zone thermistor mo	ge current whe	n	000: 0.2 x I _{FCHG} 001: 0.3 x I _{FCHG} 010: 0.4 x I _{FCHG} 011: 0.5 x I _{FCHG} 100: 0.6 x I _{FCHG} 101: 0.7 x I _{FCHG} 110: 0.8 x I _{FCHG} 111: 1.0 x I _{FCHG}				

ThmCfg2 (0x17)

BIT	7	6	5	4	3	2	1	0		
Field	HrvThm	1En[1:0]	_	ChgWarmE	ChgWarmBatReg[1:0]		ChgWarmIFChg[2:0]			
Access Type	Write,	Read	-	Write, Read		Write, Read				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE		
HrvThmEn	7:6	Periodic thermistor monitoring related control. Valid when CHGIN input voltage is not present and interaction with harvester is enabled when HrvEn = 1. If HrvThmEn[1:0] is different from "00", thermistor (V _{THM}) is periodically monitored by exploiting Fuel Gauge periodic measurements timing.	 00: Periodic thermistor monitoring disabled. 01: Periodic thermistor monitoring enabled and harvester charging enabled in the cool and room temperature zones. 10: Periodic thermistor monitoring enabled and harvester charging enabled in the room and warm temperature zones. 11: Periodic thermistor monitoring enabled and harvester charging enabled in the cool, room, and warm temperature zones. 		
ChgWarmBat Reg	2 4:3 Sets the modified pattery redulation voltage		00: ChgBatReg[3:0] -150mV 01: ChgBatReg[3:0] -100mV 10: ChgBatReg[3:0] -50mV 11: ChgBatReg[3:0]		
ChgWarmIF Chg	2:0	Charger warm zone fast-charge current reduction. Sets the modified fast-charge current when the warm temperature zone is entered according to thermistor monitoring.	000: 0.2 x I _{FCHG} 001: 0.3 x I _{FCHG} 010: 0.4 x I _{FCHG} 011: 0.5 x I _{FCHG} 100: 0.6 x I _{FCHG} 101: 0.7 x I _{FCHG} 110: 0.8 x I _{FCHG} 111: 1.0 x I _{FCHG}		

HrvCfg0 (0x18)

BIT	7	6	5	4	3	2	1	0		
Field	HrvBatS	Sys[1:0]	HrvBatRe	eChg[1:0]		HrvBatReg[3:0]				
Access Type	Write,	Read	Write,	Read		Write, Read				
BITFIELD	BITS		DESCRIPT	ION		D	ECODE			
HrvBatSys	7:6	Valid when 0 present and enabled whe CHGIN inpu SYS FET is input voltage	t voltage is not fully on (direct-	oltage is not	 00: Direct-path (BAT-SYS FET fully on) forced active 01: Direct-path active if V_{BAT} < HrvBatReg[3:0] and ideal BAT-to-SYS diode active if V_{BAT} > HrvBatReg[3:0]. Once ideal diode has been activated, an hysteresis equal to HrvBatReChg is applied on HrvBatReg[3:0] threshold. 10: Ideal BAT-to-SYS diode (BAT-SYS FET 					
HrvBatReCh g	5:4	Harvester re HrvBatReg[•	old in relation to	01: Hrv 10: Hrv	00: HrvBatReg[3:0] -70mV 01: HrvBatReg[3:0] -120mV 10: HrvBatReg[3:0] -170mV 11: HrvBatReg[3:0] -220mV				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
HrvBatReg	3:0	Harvester battery-regulation voltage threshold.	0000: 4.05V 0001: 4.10V 0010: 4.15V 0011: 4.20V 0100: 4.25V 0101: 4.30V 0110: 4.35V 0111: 4.40V 1000: 4.45V 1001: 4.50V 1010: 4.55V 1011: 4.60V 1100: Reserved 1101: Reserved 1110: Reserved 1111: Reserved

HrvCfg1 (0x19)

BIT	7	6	5	4		3	2	1	0		
Field	_	HrvThmDis	HrvWarml	BatReg[1:0]	н	IrvRoom	BatReg[1:0]	HrvCoolBatReg[1:0]			
Access Type	-	Write, Read	Write	, Read		Write	, Read	Write	e, Read		
BITFIELD	BITS		DESCRIPT	TION			D	ECODE			
HrvThmDis	6	Valid when 0 present, inte via HrvEn = from "00" an where charg HrvEn = 1 a present, the	CHGIN input v raction with ha 1, HrvThmEn[d the tempera	arvester is enab [1:0] is different ture is in a zone ester is inhibited ut voltage is ermanently	oled e	 O: Harvester is disabled through the MPC6 output and the BAT-SYS FET is controlled through HrvBatSys[1:0]. 1: Harvester is not disabled through the MPC6 output and ideal BAT-to-SYS diode is forced act regardless of HrvBatSys[1:0]. 					
HrvWarmBat Reg	5:4	voltage three Sets the mo voltage three temperature	Harvester warm zone battery regulation voltage threshold reduction. Sets the modified harvester battery regulation voltage threshold when the warm temperature zone is entered according to thermistor monitoring.				00: HrvBatReg[3:0] -150mV 01: HrvBatReg[3:0] -100mV 10: HrvBatReg[3:0] -50mV 11: HrvBatReg[3:0]				
HrvRoomBat Reg	3:2	voltage three Sets the mo voltage three		n. er battery regula e room tempera							
HrvCoolBatR eg	1:0	voltage three Sets the mo voltage three	shold when the								

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

IVMONCfg (0x1A)

BIT	7	6	5	4	3	2	1	0						
Field	-	IVMONRatio	oConfig[1:0]	IVMONOffH iZ		IVMONCntl[3:0]								
Access Type	-	Write,	Read	Write, Read		Write, Read								
BITFIELD	BITS		DESCRIPT	TION		D	ECODE							
IVMONRatio Config	6:5	IVMON mult	iplexer resistiv	ve partition sele	ctor. 01: 2:1 10: 3:1	00: 1:1 01: 2:1 10: 3:1 11: 4:1								
IVMONOffHi Z	4	IVMON multiplexer disabled condition. Valid when IVMONCntl = "0000".				0: IVMON is pulled low by a 59kΩ (typ) resistor. 1: IVMON is Hi-Z.								
IVMONCntl	3:0	IVMON mult	iplexer input c	hannel selector	0001: (0010: f 0011: 5 0100: f 0101: f 0110: f 0111: f 1000: f 1011: f 1011: f 1001: f									

Buck1Ena (0x1B)

BIT	7	6	5	4	3	2	1	0
Field		Buck1Seq[2:0]		-	-	-	Buck1En[1:0]	
Access Type		Read Only		_	-	-	Write,	Read
BITFIELD	BITS		DESCRIPT	ION		D	ECODE	
Buck1Seq	7:5	Buck1 Enab	le Configuratic	on	Control 011: En: Control 100: En: Control 101: Re 110: Re 111: Co	served abled at 0% of abled at 25% o abled at 50% o served served	Boot/POR Prod f Boot/POR Pro f Boot/POR Pro k1En [1:0] after ay Control	ocess Delay

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
Buck1En	1:0	Buck1 Enable Configuration (effective only when Buck1Seq = 111)	00: Disabled: BK1OUT not actively discharged unless Hard-Reset/Shutdown/Off mode 01: Enabled 10: Controlled by MPC_ (See Buck1MPC_ bits) 11: Reserved

Buck1Cfg0 (0x1C)

BIT	7	6	5	4		3	2	1	0
Field	Buck1Integ Dis	Buck1PGO ODEn	Buck1Fast	Buck1PsvD sc	Buc				Buck1EnLX Sns
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Wri	Vrite, Read Write, Read Write, Read Write			
BITFIELD	BITS		DESCRIPTION DECODE						
Buck1IntegDi s	7	Buck1 integ	Buck1 integrator feedback disable				ator enabled ator disabled-	proportional co	ntrol only
Buck1PGOO DEn	6	Buck1 PGO	UCK1 PGOOD comparator control 0: PGOOD comparator disabled durin transition after startup 1: PGOOD comparator enabled durin transition after startup						
Buck1Fast	5	Buck1 pretri	Buck1 pretrigger mode setting				al, low quiesce ased quiescent e. Quiescent ci	mode for fast I	oad transient
Buck1PsvDs c	4	Buck1 passi	ve discharge c	ontrol			1 passively disc 1 passively disc Low.		
Buck1ActDsc	3	Buck1 active	e discharge cor	ntrol			1 actively disch 1 actively disch _ow		
Buck1LowE MI	2	Buck1 low E	MI mode				al operation rise/fall edges o	on BK1LX by 3	x
Buck1FETSc ale	1	Reduce the to optimize t when Buck1	Buck1 Force FET Scaling Reduce the FET size by a factor of two. Used to optimize the efficiency when Buck1ISet must be < 100mA (e.g., to mitigate noise at low frequencies).				0: FET scaling disabled 1: FET scaling enabled		
Buck1EnLXS ns	0			n-on frewheelir ∣Vset ≤ 1.6V	ıg	zero-cro 1: Enter	freewheeling n ssing freewheeling n uctor current z	node on V _{LX} hi	

Buck1Cfg1 (0x1D)

BIT	7	6	5	4		3	2	1	0
Field	-	-	Buck1MPC 2Fast	Buck1FPW M	Buc	k1IAdpt Dis	-	-	_
Access Type	-	-	Write, Read	Write, Read	Writ	e, Read	-	-	-
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
Buck1MPC2 Fast	5	Buck1 FAST	uck1 FAST mode by MPC2 control					ntrol by MPC2 on trol by MPC2 of the second se	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
Buck1FPWM	4	Buck1 forced PWM mode control	0: Normal operation 1: Forced PWM mode enabled
Buck1lAdptDi s	3	Buck1 adaptive peak current mode control	0: Adaptive peak current mode enabled 1: Peak current fixed at value set in Buck1ISet

Buck1Iset (0x1E)

BIT	7	6	5	4	3	2	1	0	
Field	Buck1ISetL ookUpDis	-	-	-	Buck1ISet[3:0]				
Access Type	Write, Read	-	-	-	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
Buck1ISetLo okUpDis	7	Buck1 Peak Current Set by Lookup Table Disable	0: Inductor current setting is set according to look- up table1: Inductor current setting is set by Buck1ISet
Buck1ISet	3:0	Buck1 Inductor Peak Current Setting. Valid only if Buck1ISetLookUpDis is high. For the best efficiency, use between 150mA and 200mA. Linear scale, 25mA increments, settings below 75mA can be limited by the minimum t _{ON}	0000: 0mA 0001: 25mA 0010: 50mA 0011: 75mA 0100: 100mA 0101: 125mA 0110: 150mA 0111: 175mA 1000: 200mA 1001: 225mA 1010: 250mA 1011: 275mA 1100: 300mA 1101: 325mA 1110: 350mA 1111: 375mA

Buck1VSet (0x1F)

BIT	7	6	5	5 4 3 2 1 0							
Field	-	-		Buck1VSet[5:0]							
Access Type	_	_		Write, Read							
BITFIEI	BITFIELD BITS			DESCRIPTION							
Buck1VSet		5:0	0.55 [\] e.g., 0000 0000	Buck1 Output Voltage Setting 0.55V to (63 x Bk1Step), linear scale, increments of Bk1Step. e.g., for Bk1Step = 10mV: 000000 = 0.55V 000001 = 0.56V 111111 = 1.18V							

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Buck1Ctr (0x20)

BIT	7	6	5	4		3	2	1	0
Field	Buck1MPC 7	Buck1MPC 6	Buck1MPC 5	Buck1MPC 4	Buc	k1MPC 3	Buck1MPC 2	Buck1MPC 1	Buck1MPC 0
Access Type	Write, Read	Write, Read	ite, Read Write, Read Write, Read Write, Read Write, Read Write, F						Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
Buck1MPC7	7	Only valid w Buck1En = ²				0: Buck1 not controlled by MPC7 1: Buck1 controlled by MPC7			
Buck1MPC6	6	Only valid w Buck1En = ²	ck1 MPC6 Enable Control. ly valid when Buck1Seq = 111 and ck1En = 10. If mutliple MPCs are selected, ck1 is controlled by the logical OR of the						
Buck1MPC5	5	Only valid w Buck1En = ²	Buck1 MPC5 Enable Control. Only valid when Buck1Seq = 111 and Buck1En = 10. If mutliple MPCs are selected, Buck1 is controlled by the logical OR of the				0: Buck1 not controlled by MPC5 1: Buck1 controlled by MPC5		
Buck1MPC4	4	Only valid w Buck1En = ²	Buck1 MPC4 Enable Control. Only valid when Buck1Seq = 111 and Buck1En = 10. If mutliple MPCs are selected, Buck1 is controlled by the logical OR of the				0: Buck1 not controlled by MPC4 1: Buck1 controlled by MPC4		
Buck1MPC3	3	Only valid w Buck1En = ²					I not controlled I controlled by		
Buck1MPC2	2	Only valid w Buck1En = ²					I not controlled I controlled by		
Buck1MPC1	1	Only valid w Buck1En = ²	Buck1 MPC1 Enable Control. Only valid when Buck1Seq = 111 and Buck1En = 10. If mutliple MPCs are selected, Buck1 is controlled by the logical OR of the MPCs				I cot controlled I controlled by		
Buck1MPC0	0	Only valid w Buck1En =					I not controlled I controlled by		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BIT	7	6	5	4	3	2	1	0		
Field	-	_	-		Bı	uck1DVSCfg[4:	:0]			
Access Type	_	_	-		Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DI	ECODE			
Buck1DVSCf g	4:0				00001: N 00010: N 00010: N 00100: N 00100: N 00101: N 01100: N 01001: N 01001: N 01011: N 01100: N 01111: N 10001: N 10011: N 10011: N 10011: N 1001: N 1000: N 1001: N 1000: N 1001: N 1000: N 100: N 100: N 1000: N 1000: N	DVS Modes Dis MPC0/MPC1 MPC0/MPC2 MPC0/MPC3 MPC0/MPC4 MPC0/MPC5 MPC0/MPC5 MPC0/MPC7 MPC1/MPC2 MPC1/MPC3 MPC1/MPC4 MPC1/MPC5 MPC1/MPC5 MPC2/MPC3 MPC2/MPC4 MPC2/MPC5 MPC2/MPC5 MPC2/MPC5 MPC2/MPC5 MPC3/MPC6 MPC3/MPC5 MPC3/MPC6 MPC3/MPC7 MPC3/MPC6 MPC3/MPC7 MPC4/MPC5 MPC4/MPC5 MPC4/MPC7 MPC5/MPC6 MPC5/MPC7 MPC5/MPC7 MPC6/MPC7 SPI Mode RESERVED	sabled			

Buck1DvsCfg1 (0x22)

BIT	7	6	5	5 4 3 2 1 0										
Field	-	-		Buck1DVSVIt0[5:0]								Buck1DVSVIt0[5:0]		
Access Type	_	_		Write, Read										
BITFIE	BITFIELD BITS				DE	SCRIPTION								
Buck1DVSVlt0		5:0	0.55\ e.g., 0000 0000	Buck1 alternate output voltage setting 0 (Controlling MPCs = 00) 0.55V to (63 x Bk1Step), linear scale, increments of Bk1Step. e.g., for Bk1Step = 10mV: 000000 = 0.55V 000001 = 0.56V 111111 = 1.18V										

Buck1DvsCfg0 (0x21)

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Buck1DvsCfg2 (0x23)

BIT	7	6	5	5 4 3 2 1							
Field	-	-		Buck1DVSVIt1[5:0]							
Access Type	-	-	Write, Read								
BITFIELD BITS			DESCRIPTION								
Buck1DVSVlt1		5:0	0.55\ e.g., 0000 0000	Buck1 alternate output voltage setting 1 (Controlling MPCs = 01) 0.55V to (63 x Bk1Step), linear scale, increments of Bk1Step. e.g., for Bk1Step = 10mV: 000000 = 0.55V 000001 = 0.56V 111111 = 1.18V							

Buck1DvsCfg3 (0x24)

BIT	7	7 6 5 4 3 2 1										
Field	-	-		Buck1DVSVIt2[5:0]								
Access Type	_	_		Write, Read								
BITFIELD BITS			DESCRIPTION									
Buck1 alternate output voltage setting 2 (Controlling MPCs = 10) 0.55V to (63 x Bk1Step), linear scale, increments of Bk1Step. e.g., for Bk1Step = 10mV: 000000 = 0.55V 000001 = 0.56V 111111 = 1.18V												

Buck1DvsCfg4 (0x25)

BIT	7	6	5	5 4 3 2 1 0								
Field	-	-		Buck1DVSVIt3[5:0]								
Access Type	_	_		Write, Read								
BITFIE	LD	BITS		DESCRIPTION								
Buck1 alternate output voltage setting 3 (Controlling MPCs = 11) 0.55V to (63 x Bk1Step), linear scale, increments of Bk1Step. e.g., for Bk1Step = 10mV: 000000 = 0.55V 000001 = 0.56V 111111 = 1.18V												

Buck1DvsSpi (0x26)

BIT	7	6	5	4	3	2	1	0			
Field	-	-		Buck1SPIVIt[5:0]							
Access Type	-	-			Read	Only					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
Buck1SPIVIt	5:0	Buck1 SPI DVS Readback 0.55V to (63 x Bk1Step), linear scale, increments of Bk1Step. e.g., for Bk1Step = 10mV: 000000 = 0.55V 000001 = 0.56V 111111 = 1.18V

Buck2Ena (0x27)

BIT	7	6	5	4	3	2	1	0
Field		Buck2Seq[2:0]		-	-	-	Buck2	En[1:0]
Access Type		Read Only		-	_	_	Write	, Read
BITFIELD	BITS	DESCRIPTION DECODE						
Buck2Seq	7:5	Buck2 Enab	le Configuratio	n	000: Disabled 001: Reserved 101: Enabled at 0% of Boot/POR Process Delay Control 11: Enabled at 25% of Boot/POR Process Delay Control 100: Enabled at 50% of Boot/POR Process Delay Control 101: Reserved 101: Reserved 11: Controlled by Buck2En [1:0] after 100% of Boot/POR Process Delay Control			
Buck2En	1:0	Buck2 Enab when Buck2	0	n (effective only	bisabled: BK2OU ss Hard-Reset/Sh inabled Controlled by MPC Reserved	utdown/Off mod	de	

Buck2Cfg (0x28)

BIT	7	6	6 5 4			3	2	1	0	
Field	Buck2Enbl NTGR	Buck2PGO ODena	Buck2Fast		Buc	k2ActDs c	Buck2LowE MI	Buck2FETS cale	Buck2EnLx Sns	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read Write, F			Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
Buck2EnbIN TGR	7	Buck2 integ	rator feedback	disable		0: Integrator enabled 1: Integrator disabled–proportional control only				
Buck2PGOO Dena	6	Buck2 PGO	OD comparato	r control		 0: PGOOD comparator disabled during voltage transition after startup 1: PGOOD comparator enabled during voltage transition after startup 				
Buck2Fast	5	Buck2 pretri	Buck2 pretrigger mode setting				0: Normal, low quiescent current operation 1: Increased quiescent mode for fast load transient response. Quiescent current increased to 30µA.			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
Buck2PsvDs c	4	Buck2 passive discharge control	0: Buck2 passively discharged only in Hard-Reset 1: Buck2 passively discharged in Hard-Reset or Enable Low.
Buck2ActDsc	3	Buck2 active discharge control	0: Buck2 actively discharged only in Hard-Reset 1: Buck2 actively discharged in Hard-Reset or Enable Low
Buck2LowE MI	2	Buck2 low EMI mode	0: Normal operation 1: Slow rise/fall edges on BK2LX by 3x
Buck2FETSc ale	1	Buck2 FET Scaling Control. Reduce the FET size by a factor of two. Used to optimize the efficiency when Buck1ISet must be < 100mA (e.g., to mitigate noise at low frequencies).	0: FET scaling disabled 1: FET scaling enabled
Buck2EnLxS ns	0	Buck2 LX Sense Control Selects the condition to turn-on frewheeling FET. Keep it to 0 for Buck2Vset ≤ 1.6V	 0: Enter freewheeling mode after inductor current zero-crossing 1: Enter freewheeling mode on V_{LX} high detection after inductor current zero-crossing

Buck2Cfg1 (0x29)

BIT	7	6	6 5 4				2	1	0	
Field	-	-	Buck2MPC Fast	Buck2FPW M	Buck2IAdpt Dis		_	-	-	
Access Type	-	-	Write, Read	Write, Read	Write, Read – –			-	-	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
Buck2MPCF ast	5	Buck2 FAST	r mode by MPC	C3 control		0: Buck2 FAST mode control by MPC3 disabled 1: Buck2 FAST mode control by MPC3 enabled				
Buck2FPWM	4	Buck2 force	d PWM mode o	control		0: Normal operation 1: Forced PWM mode enabled				
Buck2lAdptDi s	3	Buck2 adap	tive peak curre	nt mode contro	l			nt mode enable t value set in B		

Buck2lset (0x2A)

BIT	7	6	5	4	3 2 1 0						
Field	Buck2ISetL ookUpDis	-	-	-	Buck2ISet[3:0]						
Access Type	Write, Read	_	-	_	Write, Read						
BITFIELD	BITS		DESCRIPT	ION		D	ECODE				
Buck2lSetLo okUpDis	7	Buck2 peak disabled	current set by lookup table 0: Inductor current setting is lookup table 1: Inductor current setting is					-			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
Buck2ISet	3:0	Buck2 Inductor Peak Current Setting. Valid only if Buck2ISetLookUpDis is high. For the best efficiency, use between 150mA and 200mA. Linear scale, 25mA increments, settings below 75mA can be limited by the minimum t _{ON}	0000: 0mA 0001: 25mA 0010: 50mA 0011: 75mA 0100: 100mA 0101: 125mA 0110: 150mA 0111: 175mA 1000: 200mA 1001: 225mA 1010: 250mA 1011: 275mA 1100: 300mA 1101: 325mA 1110: 350mA 1111: 375mA

Buck2VSet (0x2B)

BIT	7	6	5	4	3	2	1	0			
Field	-	-		Buck2VSet[5:0]							
Access Type	-	-	Write, Read								
BITFIE	BITFIELD BITS		DESCRIPTION								
Buck2VSet	Buck2 Output Voltage Setting 0.55V to (63 x Bk2Step), linear scale, increments of Bk2Step. e.g., for Bk2Step = 25mV: 000000 = 0.55V 0000001 = 0.55V 000001 = 0.575V 111111 = 2.125V										

Buck2Ctr (0x2C)

BIT	7	6	5	4		3	2	1	0
Field	Buck2MPC 7	Buck2MPC 6					Buck2MPC 2	Buck2MPC 1	Buck2MPC 0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
Buck2MPC7	7	Only valid w Buck2En = 7		•••		0: Buck2 not controlled by MPC7 1: Buck2 Controlled by MPC7			
Buck2MPC6	6	Only valid w Buck2En = 7		•••			2 not controlled 2 controlled by	,	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE		
Buck2MPC5	5	Buck2 MPC5 Enable Control. Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs	0: Buck2 not controlled by MPC5 1: Buck2 controlled by MPC5		
Buck2MPC4	4	Buck2 MPC4 Enable Control. Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs	0: Buck2 not controlled by MPC4 1: Buck2 controlled by MPC4		
Buck2MPC3	3	Buck2 MPC3 Enable Control. Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs	0: Buck2 not controlled by MPC3 1: Buck2 controlled by MPC3		
Buck2MPC2	2	Buck2 MPC2 Enable Control. Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs	0: Buck2 not controlled by MPC2 1: Buck2 controlled by MPC2		
Buck2MPC1	1	Buck2 MPC1 Enable Control. Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs	0: Buck2 not controlled by MPC1 1: Buck2 controlled by MPC1		
Buck2MPC0	0	Buck2 MPC0 Enable Control. Only valid when Buck2Seq = 111 and Buck2En = 10. If multiple MPCs are selected, Buck2 is controlled by the logical OR of the MPCs	0: Buck2 not controlled by MPC0 1: Buck2 controlled by MPC0		

Buck2DvsCfg0 (0x2D)

BIT	7	6	5	4	3	2	1	0	
Field	-	-	_	Buck2DvsCfg[4:0]					
Access Type	-	-	-	Write, Read					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
			00000: DVS Modes Disabled 00001: MPC0/MPC1
			00001: MPC0/MPC1 00010: MPC0/MPC2
			00010: MPC0/MPC2 00011: MPC0/MPC3
			00100: MPC0/MPC4
			00101: MPC0/MPC5
			00110: MPC0/MPC6
			00111: MPC0/MPC7
			01000: MPC1/MPC2
			01001: MPC1/MPC3
			01010: MPC1/MPC4
			01011: MPC1/MPC5
			01100: MPC1/MPC6
			01101: MPC1/MPC7
			01110: MPC2/MPC3
Buck2DvsCfg	4:0		01111: MPC2/MPC4
			10000: MPC2/MPC5
			10001: MPC2/MPC6
			10010: MPC2/MPC7
			10011: MPC3/MPC4
			10100: MPC3/MPC5
			10101: MPC3/MPC6
			10110: MPC3/MPC7
			10111: MPC4/MPC5
			11000: MPC4/MPC6
			11001: MPC4/MPC7
			11010: MPC5/MPC6 11011: MPC5/MPC7
			11100: MPC6/MPC7 11101: SPI Mode
			>11101: RESERVED
			PITIVI. RESERVED

Buck2DvsCfg1 (0x2E)

BIT	7	6	5	4	3	2	1	0		
Field	-	-		Buck2DvsVlt0[5:0]						
Access Type	_	-		Write, Read						
BITFIE	LD	BITS DESCRIPTION		DESCRIPTION						
Buck2DvsVlt0 5:0 Buck2 alternate output voltage setting 0 (Controlling MPCs = 00) 0.55V to (63 x Bk2Step), linear scale, increments of Bk2Step. e.g., for Bk2Step = 25mV: 000000 = 0.55V 000001 = 0.575V)				

Buck2DvsCfg2 (0x2F)

BIT	7	6	5	4	3	2	1	0		
Field	-	-		Buck2DvsVlt1[5:0]						
Access Type	-	-			Write,	Read				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
Buck2DvsVlt1	5:0	Buck2 alternate output voltage setting 1 (Controlling MPCs = 01) 0.55V to (63 x Bk2Step), linear scale, increments of Bk2Step. e.g., for Bk2Step = 25mV: 000000 = 0.55V 000001 = 0.575V 111111 = 2.125V

Buck2DvsCfg3 (0x30)

BIT	7	6	5	5 4 3 2 1						
Field	-	-		Buck2DvsVlt2[5:0]						
Access Type	-	_		Write, Read						
BITFIE	LD	BITS		DESCRIPTION						
Buck2DvsVlt2 5:0 Buck2 alternate output voltage setting 2 (Controlling MPCs = 1 0.55V to (63 x Bk2Step), linear scale, increments of Bk2Step. e.g., for Bk2Step = 25mV: 000000 = 0.55V 000001 = 0.575V)			

Buck2DvsCfg4 (0x31)

BIT	7	6	5	4	3	2	1	0		
Field	-	_		Buck2DvsVlt3[5:0]						
Access Type	-	-		Write, Read						
BITFIE	ELD BITS				DE	SCRIPTION				
Buck2DvsVlt3 5:0 Buck2 alternate output voltage setting 3 (Controlling MPCs = 11) 0.55V to (63 x Bk2Step), linear scale, increments of Bk2Step. e.g., for Bk2Step = 25mV: 000000 = 0.55V 000001 = 0.575V)				

Buck2DvsSpi (0x32)

BIT	7	6	5	5 4 3 2 1 0							
Field	-	-		Buck2SPIVIt[5:0]							
Access Type	_	-		Read Only							
BITFIE	LD	BITS	DESCRIPTION								
Birrield Birs Description Buck2SPIVIt 5:0 Buck2 SPI DVS Readback. 0.55V to (63 x Bk2Step), linear scale, increments of Bk2Step. e.g., for Bk2Step = 25mV: 000000 = 0.550V 000001 = 0.525V 000000 = 0.550V 000001 = 0.525V											

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Buck3Ena (0x34)

BIT	7	6	5	4		3	2	1	0	
Field		Buck3Seq[2:0]		-		-	_	Buck3	En[1:0]	
Access Type		Read Only		_		– – Write, Read			Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
Buck3Seq	7:5						 000: Disabled 001: Reserved 010: Enabled at 0% of Boot/POR process delay control 011: Enabled at 25% of Boot/POR process delay control 100: Enabled at 50% of Boot/POR process delay control 101: Reserved 110: Reserved 111: Controlled by Buck3En [1:0] after 100% of Boot/POR process delay control 			
Buck3En	1:0	Buck3 enabl when Buck3	•	n (effective only	/	unless F 01: Enat	lard-Reset/Shu bled trolled by MPC	not actively dis utdown/Off mod _ (See Buck3M	le	

Buck3Cfg (0x35)

BIT	7	6	5	4		3	2	1	0	
Field	Buck3Enbl NTGR	Buck3PGO ODena	Buck3Fast	Buck3PsvD sc	Buc	k3ActDs c	Buck3LowE MI	Buck3FETS cale	Buck3EnLx Sns	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Wri	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
Buck3EnblN TGR	7	Buck3 integ	rator feedback	disable			ator enabled ator disabled–	proportional co	ntrol only	
Buck3PGOO Dena	6	Buck3 PGO	Buck3 PGOOD Comparator Control				0: PGOOD comparator disabled during voltage transition after startup1: PGOOD comparator enabled during voltage transition after startup			
Buck3Fast	5	Buck3 pretri	gger mode sett	ting		 0: Normal, low quiescent current operation 1: Increased quiescent mode for fast load transient response. Quiescent current increased to 30μA. 				
Buck3PsvDs c	4	Buck3 Pass	ive Discharge (Control		0: Buck3 passively discharged only in Hard-Reset 1: Buck3 passively discharged in Hard-Reset or Enable Low.				
Buck3ActDsc	3	Buck3 Activ	Buck3 Active Discharge Control				0: Buck3 actively discharged only in Hard-Reset 1: Buck3 actively discharged in Hard-Reset or Enable Low			
Buck3LowE MI	2	Buck3 Low	EMI Mode			0: Normal operation 1: Slow rise/fall edges on BK3LX by 3x			x	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
Buck3FETSc ale	1	Buck3 Force FET Scaling Reduce the FET size by a factor of two. Used to optimize the efficiency when Buck1ISet must be < 100mA (e.g., to mitigate noise at low frequencies).	0: FET scaling disabled 1: FET scaling enabled
Buck3EnLxS ns	0	Buck3 LX Sense Control Selects the condition to turn-on frewheeling FET. Keep it to 0 for Buck3Vset ≤ 1.6V	 0: Enter freewheeling mode after inductor current zero-crossing 1: Enter freewheeling mode on V_{LX} high detection after inductor current zero-crossing

Buck3Cfg1 (0x36)

BIT	7	6	5	4		3	2	1	0	
Field	-	Buck3DisLD O	Buck3MPC Fast	Buck3FPW M	Buc	k3IAdpt Dis	_	_	_	
Access Type	-	Write, Read	Write, Read	Write, Read	Writ	te, Read	-	-	-	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
Buck3DisLD O	6	LDO mode of	control			0: Enable low dropout mode with LDO at low buck ratios1: Disable LDO mode at low buck ratios				
Buck3MPCF ast	5	Buck3 FAST	mode by MPC	C4 control		0: Buck3 FAST mode control by MPC4 disabled 1: Buck3 FAST mode control by MPC4 enabled				
Buck3FPWM	4	Buck3 force	d PWM mode o	control			al operation d PWM mode	enabled		
Buck3lAdptDi s	3	Buck3 adap	tive peak curre	nt mode contro	I	0: Adaptive peak current mode enabled 1: Peak current fixed at value set in Buck3ISet				

Buck3lset (0x37)

BIT	7	6	5	4	3	3 2 1 0					
Field	Buck3ISetL ookUpDis	-	-	-	Buck3ISet[3:0]						
Access Type	Write, Read	_	_	_	Write, Read						
BITFIELD	BITS		DESCRIPT	ION		D	ECODE				
Buck3lSetLo okUpDis	7	Buck3 peak disabled	current set by	lookup table	0: Inductor current setting is set according to lookup table 1: Inductor current setting is set by Buck3ISet						

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
Buck3lSet	3:0	Buck3 Inductor Peak Current Setting. Valid only if Buck3ISetLookUpDis is high. For the best efficiency, use between 150mA and 200mA. Linear scale, 25mA increments, settings below 75mA can be limited by the minimum t _{ON}	0000: 0mA 0001: 25mA 0010: 50mA 0011: 75mA 0100: 100mA 0101: 125mA 0110: 150mA 0111: 175mA 1000: 200mA 1001: 225mA 1010: 250mA 1011: 275mA 1100: 300mA 1101: 325mA 1110: 350mA 1111: 375mA

Buck3VSet (0x38)

BIT	7	6	5 4 3 2 1						
Field	_	-	Buck3VSet[5:0]						
Access Type	_	-	Write, Read						
BITFIE	LD	BITS	DESCRIPTION						
Buck3VSet		5:0	0.55\ e.g., 0000 0000	Buck3 Output Voltage Setting. 0.55V to (63 x Bk3Step), linear scale, increments of Bk3Step. e.g., for Bk3Step = 50mV: 000000 = 0.55V 000001 = 0.6V 111111 = 3.7V					

Buck3Ctr (0x39)

BIT	7	6	5	4		3	2	1	0		
Field	Buck3MPC 7	Buck3MPC 6	Buck3MPC 5	Buck3MPC Buck3M 4 3		•	Buck3MPC 2	Buck3MPC 1	Buck3MPC 0		
Access Type	Write, Read	Write, Read	e, Read Write, Read Write, Read Write, I			te, Read	Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPT	ION			D	DECODE			
Buck3MPC7	7	Only valid w Buck3En = 7	Buck3 MPC7 Enable Control. Only valid when Buck3Seq = 111 and Buck3En = 10. If mutliple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs				ck3 not controlled by MPC7 ck3 controlled by MPC7				
Buck3MPC6	6	Only valid w Buck3En = 7	Buck3 MPC6 Enable Control. Only valid when Buck3Seq = 111 and Buck3En = 10. If mutliple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs				d, 0: Buck3 not controlled by MPC6 1: Buck3 controlled by MPC6				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
Buck3MPC5	5	Buck3 MPC5 Enable Control. Only valid when Buck3Seq = 111 and Buck3En = 10. If mutliple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs	0: Buck3 not controlled by MPC5 1: Buck3 controlled by MPC5
Buck3MPC4	4	Buck3 MPC4 Enable Control. Only valid when Buck3Seq = 111 and Buck3En = 10. If mutliple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs	0: Buck3 not controlled by MPC4 1: Buck3 controlled by MPC4
Buck3MPC3	3	Buck3 MPC3 Enable Control. Only valid when Buck3Seq = 111 and Buck3En = 10. If mutliple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs	0: Buck3 not controlled by MPC3 1: Buck3 controlled by MPC3
Buck3MPC2	2	Buck3 MPC2 Enable Control. Only valid when Buck3Seq = 111 and Buck3En = 10. If mutliple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs	0: Buck3 not controlled by MPC2 1: Buck3 controlled by MPC2
Buck3MPC1	1	Buck3 MPC1 Enable Control. Only valid when Buck3Seq = 111 and Buck3En = 10. If mutliple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs	0: Buck3 not controlled by MPC1 1: Buck3 controlled by MPC1
Buck3MPC0	0	Buck3 MPC0 Enable Control. Only valid when Buck3Seq = 111 and Buck3En = 10. If mutliple MPCs are selected, Buck3 is controlled by the logical OR of the MPCs	0: Buck3 not controlled by MPC0 1: Buck3 controlled by MPC0

Buck3DvsCfg0 (0x3A)

BIT	7	6	5	4	3	2	1	0		
Field	-	-	-	Buck3DvsCfg[4:0]						
Access Type	-	-	-		Write, Read					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BITFIELD Buck3DvsCfg	BITS 4:0	DESCRIPTION	00000: DVS modes disabled 00001: MPC0/MPC1 00010: MPC0/MPC2 00011: MPC0/MPC3 00100: MPC0/MPC4 00101: MPC0/MPC5 00110: MPC0/MPC6 00111: MPC0/MPC7 01000: MPC1/MPC2 01001: MPC1/MPC3 01010: MPC1/MPC5 01101: MPC1/MPC5 01100: MPC1/MPC6 01101: MPC1/MPC7 01110: MPC2/MPC3 01111: MPC2/MPC4 10000: MPC2/MPC5 10001: MPC2/MPC5 10001: MPC2/MPC7 10011: MPC3/MPC4 10100: MPC3/MPC4 10100: MPC3/MPC5
Buck3DvsCfg	4:0		01101: MPC1/MPC7 01110: MPC2/MPC3 01111: MPC2/MPC4 10000: MPC2/MPC5 10001: MPC2/MPC6 10010: MPC2/MPC7 10011: MPC3/MPC4
			11000: MPC4/MPC6 11001: MPC4/MPC7 11010: MPC5/MPC6 11011: MPC5/MPC7 11100: MPC6/MPC7 11101: SPI Mode >11101: RESERVED

Buck3DvsCfg1 (0x3B)

BIT	7	6	5	4	3	2	1	0	
Field	-	-	Buck3DvsVlt0[5:0]						
Access Type	_	-	Write, Read						
BITFIELD BITS DESCRIPTION									
Buck3 alternate output voltage setting 0 (Controlling N 0.55V to (63 x Bk3Step), linear scale, increments of E e.g., for Bk3Step = 50mV: 000000 = 0.55V 000000 = 0.6V 111111 = 3.7V)			

Buck3DvsCfg2 (0x3C)

BIT	7	6	5	4	3	2	1	0		
Field	-	-	Buck3DvsVlt1[5:0]							
Access Type	-	-		Write, Read						

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
Buck3DvsVlt1	5:0	Buck3 alternate output voltage setting 1 (Controlling MPCs = 01) 0.55V to (63 x Bk3Step), linear scale, increments of Bk3Step. e.g., for Bk3Step = 50mV: 000000 = 0.55V 000001 = 0.6V 111111 = 3.7V

Buck3DvsCfg3 (0x3D)

BIT	7	6	5	4	3	2	1	0	
Field	-	-	Buck3DvsVlt2[5:0]						
Access Type	_	-	Write, Read						
BITFIE	BITFIELD BITS		BITS DESCRIPTION						
Buck3 alternate output voltage setting 2 (C 0.55V to (63 x Bk3Step), linear scale, incree e.g., for Bk3Step = 50mV: 000000 = 0.55V 000001 = 0.6V 111111 = 3.7V)		

Buck3DvsCfg4 (0x3E)

BIT	7	6	5	4	3	2	1	0	
Field	-	-	Buck3DvsVlt3[5:0]						
Access Type	_	-	Write, Read						
BITFIE	LD	BITS		DESCRIPTION					
Buck3 alternate output voltage setting 3 (Controlling MPCs = 11) 0.55V to (63 x Bk3Step), linear scale, increments of Bk3Step. e.g., for Bk3Step = 50mV: 000000 = 0.55V 000000 = 0.6V 111111 = 3.7V									

Buck3DvsSpi (0x3F)

BIT	7	6	5	4	3	2	1	0		
Field	_	-		Buck3SPIVIt[5:0]						
Access Type	_	-	Read Only							
BITFIE	LD	BITS	DESCRIPTION							
Buck3 SPI DVS Readback. 0.55V to (63 x Bk3Step), linear scale, increments of Bk3Step e.g., for Bk3Step = 50mV: 000000 = 0.55V 000000 = 0.6V 111111 = 3.7V					s of Bk3Step.					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BBstEna (0x40)

BIT	7	6	6 5 4		3	2	1	0	
Field		BBstSeq[2:0]		-	_	– – BBstEn			
Access Type		Read Only		-	_	– – Write, Read			
BITFIELD	BITS		DESCRIPT	ION		D	ECODE		
BBstSeq	7:5	Buck-Boost	enable configu	ıration	001: Re 010: Er control 011: Er control 100: Er control 101: Re 110: Re 111: Co	011: Enabled at 25% of Boot/POR process delay control 100: Enabled at 50% of Boot/POR process delay			
BBstEn	1:0		enable configu BstSeq = 111)	iration (effective	00: Disabled: BBOUT not actively disch				

BBstCfg (0x41)

BIT	7	6	5	4		3	2	1	0	
Field	BBstlSetLo okUpDis	-	-	BBstLowEM I	BBs	stActDsc	BBstRampE n	BBstMode	BBstPsvDis c	
Access Type	Write, Read	_	-	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
BBstlSetLook UpDis	7	Buck-Boost disable	peak current s	et by lookup tal	ole	up table	tor current sett	•	-	
BBstLowEMI	4	Buck-Boost	Buck-Boost low EMI mode				0: Normal operation 1: Slow rise/fall edges on HVLX/LVLX by 3x			
BBstActDsc	3	Buck-Boost	active discharg	ge control		 0: Buck-Boost actively discharged only in Hard- Reset 1: Buck-Boost actively discharged in Hard-Reset or Enable Low 				
BBstRampEn	2	Buck-Boost	ramp enable			intermed 1: Voltag	ge setting trans diate steps ge setting trans ed with increme	ition to a highe	r value is	
BBstMode	1	Buck-Boost	Buck-Boost operating mode				0: Buck-Boost 1: Buck Only			
BBstPsvDisc	0	Buck-Boost	Buck-Boost passive discharge control				Boost passivel Boost passivel le Low.		-	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BBstVSet (0x42)

BIT	7	6	5	5 4 3 2 1						
Field	-	-			BBstV	Set[5:0]				
Access Type	_	-		Write, Read						
BITFIE	LD	BITS	DESCRIPTION							
BBstVSet		5:0	2.5V interf 0000 0000 1111	-Boost Output V to 5.5V, Linear ere with V _{BBOL} 00 = 2.5V 01 = 2.55V 00 = 5.5V 100 = N/A	Scale, 50mV i	ncrements, co		010 can		

BBstlSet (0x43)

BIT	7	6	5	4	3	2	1	0		
Field		BBstIPS	Set2[3:0]	·		BBstIPs	Set1[3:0]			
Access Type		Write,	Read			Write, Read				
BITFIELD	BITS		DESCRIP	ΓΙΟΝ		D	ECODE			
BBstIPSet2	7:4	setting. Valid only if See Buck-Bu description of to 375mA, lii settings belo minimum t _O Recommeno V _{BBOUT} ≤ 2 2.7V < V _{BBO} 3.1V < V _{BBO}	BBstlSetLook oost Regulato of the peak cu near scale, 25 ow 75mA can N. ded settings: .65V: 250mA $OUT \le 3.05V$: 2 $OUT \le 4.35V$:	00mA	nt 0001: E 0010: E 0010: E 0010: E 0100: E 0100: E 0111: E 1000: E 1011: E 1011: E 1100: E 1110: E	BstiPSet1 + 0r BstiPSet1 + 25 BstiPSet1 + 50 BstiPSet1 + 75 BstiPSet1 + 75 BstiPSet1 + 10 BstiPSet1 + 12 BstiPSet1 + 22 BstiPSet1 + 22 BstiPSet1 + 22 BstiPSet1 + 24 BstiPSet1 + 25 BstiPSet1 + 26 BstiPSet1 + 27 BstiPSet1 + 27 BstiPSet1 + 32 BstiPSet1 + 37	5mA 0mA 25mA 25mA 25mA 25mA 25mA 25mA 25mA 25			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BBstIPSet1	3:0	Buck-Boost nominal peak current setting. Valid only if BBstlSetLookUpDis is high. Nominal peak current when charging inductor between V _{IN} and GND. See Buck-Boost Regulator section for a description of the peak current settings. 0mA to 375mA, linear scale, 25mA increments, settings below 75mA may be limited by the minimum t _{ON} Recommended settings: V _{BBOUT} ≤ 2.65 V: 50mA 2.7V < V _{BBOUT} ≤ 3.05 V: 75mA 3.1V < V _{BBOUT} ≤ 3.6 V: 100mA 3.45V < V _{BBOUT} ≤ 3.4 V: 100mA 3.85V < V _{BBOUT} ≤ 4.15 V: 150mA 4.2V < V _{BBOUT} ≤ 4.5 V: 175mA 4.6V < V _{BBOUT} ≤ 5.3 V: 225mA V _{BBOUT} ≥ 5.3 V: 250mA	0000: 0mA 0001: 25mA 0010: 50mA 0011: 75mA 0100: 100mA 0101: 125mA 0110: 150mA 0111: 175mA 1000: 200mA 1001: 225mA 1010: 250mA 1011: 325mA 1110: 350mA 1111: 375mA

BBstCfg1 (0x44)

BIT	7	6	5	4		3	2	1	0		
Field	-	BBstlAdptDi s	BBstFast	BstFast BBstZCCm BBstFETSc BBstMPC1F BBF		BBFHig	lighSh[1:0]				
Access Type	_	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write,	Read		
BITFIELD	BITS		DESCRIPT	ION			DE	ECODE			
BBstlAdptDis	6	Adaptive pe enable	ak/valley curre	nt adjustment			led led, peak curre Set1,2. Valley cu		,		
BBstFast	5	Buck-Boost	Buck-Boost pretrigger mode setting 1: Ir					 0: Normal, low quiescent current operation 1: Increased quiescent mode for fast load transient response. Quiescent current increased to 30µA. 			
BBstZCCmp Dis	4	Buck-Boost	zero-crossing o	comparator dis	able	0: Enab 1: Disab					
BBstFETScal e	3	Reduce the	Force FET Sca FET size by far y at light loads	aling. ctor 2 to optimi	ze	0: FET scaling disabled 1: FET scaling enabled					
BBstMPC1Fa stCntl	2	Improves int 171. Tie MP	Buck-Boost FAST Mode Enable by MPC1. Improves interoperability with MAX86170/ 171. Tie MPC1 to INT2 on MAX86170/171 if this mode is used.				0: FAST status controlled by BBstFast Register 1: FAST mode controlled by MPC1. MPC1 = 0: FAST disabled MPC1 = 1: FAST enabled, IQ increased by 30µA				
BBFHighSh	1:0	Selects the s f _{HIGH} . If f _{SW} ON (I _Q is high	Buck-Boost f_{HIGH} Thresholds. Selects the switching frequency threshold f_{HIGH} . If $f_{SW} > f_{HIGH}$ all the blocks are kept ON (I_Q is higher). A small glitch on V _{BBOUT} can be present at the f_{HIGH} crossoverover.				Hz/6.125kHz Hz/8.25kHz Hz/12.5kHz KHz/25kHz				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BBstCtr0 (0x45)

BIT	7	6	5	4		3	2	1	0
Field	BBstMPC7	BBstMPC6	BBstMPC6 BBstMPC5 BBstMPC4 BBs				BBstMPC2	BBstMPC1	BBstMPC0
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
BBstMPC7	7	Only valid w = 10. If mult	uck-Boost MPC7 Enable Control. Inly valid when BBstSeq = 111 and BBstEn 10. If multiple MPCs are selected, the Buck- oost is controlled by the logical OR of the IPCs						7
BBstMPC6	6	Only valid w = 10. If mult	iple MPCs are	Control. = 111 and BBst selected, the B ogical OR of th	uck-	0: Buck- 1: Buck-	Boost not cont Boost controlle	rolled by MPC6 ed by MPC6)
BBstMPC5	5	Only valid w = 10. If mult	iple MPCs are	Control. = 111 and BBst selected, the B ogical OR of th	uck-	0: Buck-Boost not controlled by MPC5 1: Buck-Boost controlled by MPC5			
BBstMPC4	4	Only valid w = 10. If mult	iple MPCs are	Control. = 111 and BBst selected, the B ogical OR of th	uck-	0: Buck-Boost not controlled by MPC4 1: Buck-Boost controlled by MPC4			
BBstMPC3	3	Only valid w = 10. If mult	iple MPCs are	Control. = 111 and BBst selected, the B ogical OR of th	uck-		Boost not cont Boost controlle		3
BBstMPC2	2	Only valid w = 10. If mult	Buck-Boost MPC2 Enable Control. Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck- Boost is controlled by the logical OR of the				Boost not cont Boost controlle		2
BBstMPC1	1	Only valid w = 10. If mult	Buck-Boost MPC1 Enable Control. Only valid when BBstSeq = 111 and BBstEn = 10. If multiple MPCs are selected, the Buck- Boost is controlled by the logical OR of the MPCs				ick-		
BBstMPC0	0	Only valid w = 10. If mult	iple MPCs are	Control. = 111 and BBst selected, the B ogical OR of th	uck-		Boost not cont Boost controlle)

BBstCtr1 (0x46)

BIT	7	6	5	4	3	2	1	0
Field	_	_	-		E	BstDvsCfg[4:0)]	
Access Type	-	-	-			Write, Read		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BBstDvsCfg	4:0	Buck-Boost DVS configuration	00000: DVS modes disabled 00001: MPC0/MPC1 00010: MPC0/MPC2 00011: MPC0/MPC3 00100: MPC0/MPC5 00110: MPC0/MPC6 00111: MPC0/MPC7 01000: MPC1/MPC2 01001: MPC1/MPC3 01010: MPC1/MPC4 01011: MPC1/MPC5 01100: MPC1/MPC6 01101: MPC1/MPC7 01110: MPC2/MPC3 01111: MPC2/MPC4 10000: MPC2/MPC5 10001: MPC2/MPC5 10001: MPC2/MPC5 10001: MPC3/MPC4 10100: MPC3/MPC5 10101: MPC3/MPC5 10101: MPC3/MPC6 10110: MPC3/MPC7 10111: MPC4/MPC5 11000: MPC4/MPC6 11001: MPC4/MPC7 11010: MPC4/MPC7 11010: MPC5/MPC7 11101: MPC3/MPC7 11101: RESERVED

BBstDvsCfg0 (0x47)

BIT	7	6	5	4	3	2	1	0		
Field	-	-		•	BBstDv	sVIt0[5:0]				
Access Type	-	-		Write, Read						
BITFIE	BITFIELD BITS		DESCRIPTION							
BBstDvsVlt0		5:0	Buck-Boost alternate output voltage setting 0 (Controlling MPCs = 2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 interfere with V _{BBOUT_UVLO} and are not guaranteed 000000 = 2.5V 000001 = 2.55V 111100 = 5.5V >111100 = N/A							

BBstDvsCfg1 (0x48)

BIT	7	6	5	4	3	2	1	0
Field	-	-			BBstDvs	sVlt1[5:0]		
Access Type	-	-			Write,	Read		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
BBstDvsVlt1	5:0	Buck-Boost alternate output voltage setting 1 (Controlling MPCs = 01) 2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 can interfere with V_{BBOUT_UVLO} and are not guaranteed 000000 = 2.5V 000001 = 2.55V
		111100 = 5.5V >111100 = N/A

BBstDvsCfg2 (0x49)

BIT	7	6	5	4	3	2	1	0		
Field	-	-		BBstDvsVlt2[5:0]						
Access Type	-	_		Write, Read						
BITFIE	LD	BITS		DESCRIPTION						
BBstDvsVlt2 5:0				to 5.5V, Linear	Scale, 50mV	ge setting 2 (Co increments, co are not guarant	des below 0000			

BBstDvsCfg3 (0x4A)

BIT	7	6	5	4	3	2	1	0		
Field	-	-		BBstDvsVlt3[5:0]						
Access Type	_	_		Write, Read						
BITFIE	LD	BITS		DESCRIPTION						
BBstDvsVlt3 5:0				-Boost alternate to 5.5V, Linear ere with V _{BBOL} 00 = 2.5V 01 = 2.55V 00 = 5.5V 100 = N/A	Scale, 50mV i	ncrements, co	des below 0000			

BBstDvsSpi (0x4B)

BIT	7	6	5	4	3	2	1	0			
Field	—	_	BBstSPIVIt[5:0]								
Access Type	-	_		Read Only							

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
BBstSPIVIt	5:0	Buck-Boost SPI DVS Readback. 2.5V to 5.5V, Linear Scale, 50mV increments, codes below 000010 can interfere with V _{BBOUT_UVLO} and are not guaranteed 000000 = 2.5V 000001 = 2.55V
		111100 = 5.5V >111100 = N/A

LDO1Ena (0x51)

BIT	7	6	5	4	3	2	1	0	
Field	LDO1Seq[2:0]			_	-	_	LDO1En[1:0]		
Access Type	Read Only			-	-	-	Write,	Read	

BITFIELD	BITS	DESCRIPTION	DECODE
LDO1Seq	7:5	LDO1 enable configuration (read only)	000: Disabled 001: Reserved 010: Enabled at 0% of Boot/POR process delay control 011: Enabled at 25% of Boot/POR process delay control 100: 100 = Enabled at 50% of Boot/POR process delay control 101: Reserved 110: Reserved 111: Controlled by LDO1En [1:0] after 100% of Boot/POR process delay control
LDO1En	1:0	LDO1 enable configuration (effective only when LDO1Seq = 111)	00: Disabled 01: Enabled 10: Controlled by MPC_ (See LDO1Ctr register 0x54) 11: Reserved

LDO1Cfg (0x52)

BIT	7	6	5	4		3	2	1	0		
Field	-	_	-	-		D1_MPC CNT	LDO1ActDs c	LDO1Mode	LDO1PsvDs c		
Access Type	_	-	-	Write, Read	Write, Read		Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPTION				DECODE				
LDO1_MPC0 CNF	4	MPC0 config	MPC0 configuration bit				0: MPC0 controls LDO/SW mode of LDO1 (MPC0 = 0 LDO mode, MPC0 = 1 SW mode) 1: MPC0 controls Enable of LDO1 (MPC0 = 0 disabled, MPC0 = 1 enabled in SW mode)				
LDO1_MPC0 CNT	3	LDO1/MPC	LDO1/MPC0 control bit			0: MPC0 has no effect on the LDO 1: LDO1_MPC0CNF is valid and MPC0 function is enabled					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LDO1ActDsc	2	LDO1 active discharge control	0: LDO1 output is actively discharged only in Hard- Reset mode 1: LDO1 output is actively discharged in Hard- Reset mode and also when its Enable goes Low
LDO1Mode	1	LDO1 Mode Control. When FET is On, the output is unregulated. This setting is internally latched and can change only when the LDO is disabled	0: Normal LDO operating mode 1: Load switch mode. FET is either fully On or Off depending on state of LDO1En.
LDO1PsvDsc	0	LDO1 passive discharge control	 0: LDO1 output is discharged only entering Off and Hard-Reset modes 1: LDO1 output is discharged only entering Off and Hard-Reset modes and when the enable is Low

LDO1VSet (0x53)

BIT	7	6	5	5 4 3 2 1									
Field	-	_	LDO1VSet[5:0]				LDO1VSet[5:0]						
Access Type	-	_	Write, Read										
BITFIE	LD	BITS		DESCRIPTION									
LDO1VSet	b1VSet 5:0 LDO1 Output Voltage Setting. Limited by input supply 0.5V to 1.95V, Linear Scale, 25mV increments 000000 = 0.5V 000001 = 0.525V 111010 = 1.95V >111010 = Limited by input supply												

LDO1Ctr (0x54)

BIT	7	6	5	4		3	2	1	0	
Field	LDO1MPC7	LDO1MPC6	LDO1MPC5	LDO1MPC4	LDC	D1MPC3	LDO1MPC2	LDO1MPC1	LDO1MPC0	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
LDO1MPC7	7	Only valid w LDO1En = 1				0: LDO1 not controlled by MPC7 1: LDO1 controlled by MPC7				
LDO1MPC6	6	Only valid w LDO1En = 1				0: LDO1 not controlled by MPC6 1: LDO1 controlled by MPC6				
LDO1MPC5	5	Only valid w LDO1En = 1					not controlled controlled by I			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LDO1MPC4	4	LDO1 MPC4 Enable Control. Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs	0: LDO1 not controlled by MPC4 1: LDO1 controlled by MPC4
LDO1MPC3	3	LDO1 MPC3 Enable Control. Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs	0: LDO1 not controlled by MPC3 1: LDO1 controlled by MPC3
LDO1MPC2	2	LDO1 MPC2 Enable Control. Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs	0: LDO1 not controlled by MPC2 1: LDO1 controlled by MPC2
LDO1MPC1	1	LDO1 MPC1 Enable Control. Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs	0: LDO1 not controlled by MPC1 1: LDO1 controlled by MPC1
LDO1MPC0	0	LDO1 MPC0 Enable Control. Only valid when LDO1Seq = 111 and LDO1En = 10. If multiple MPCs are selected, LDO1 is controlled by the logical OR of the MPCs	0: LDO1 not controlled by MPC0 1: LDO1 controlled by MPC0

LDO2Ena (0x55)

BIT	7	6	5	4		3	2	1	0	
Field		LDO2Seq[2:0]		-				LDO2En[1:0]		
Access Type		Read Only		-		– – Write, Read				
BITFIELD	BITS		DESCRIPT	ION		DECODE				
LDO2Seq	7:5	LDO2 Enabl	e Configuratio	n (Read only)		000: 000 = Disabled001: Enabled always when BAT/SYS is present010: Enabled at 0% of Boot/POR process delaycontrol011: Enabled at 25% of Boot/POR process delaycontrol100: Enabled at 50% of Boot/POR process delaycontrol101: Reserved110: Reserved111: Controlled by LDO2En [1:0] after 100% ofBoot/POR process delay control				
LDO2En	1:0		00: Disab 00: Disab 01: Enable					_ (See LDO2C	tr register	

PMIC with Ultra-Low IQ Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

1

LDO2Mode

Write, Read

0

LDO2PsvDs

С

Write, Read

LDO2Cfg (0x56) 7 3 2 BIT 6 5 4 LDO2Suppl LDO2ActDs Field _ С y Access Write, Read Write, Read _ _ Туре DECODE BITFIELD BITS DESCRIPTION 0: L2IN must be provided externally 1: L2IN is internally connected to V_{CCINT} with a LDO2Supply 3 AON LDO internal switchover supply control TYP 15kΩ resistor. Bypass L2IN with 1µF 0: LDO2 output is actively discharged only in Hard-Reset mode LDO2ActDsc 2 LDO2 active discharge control 1: LDO2 output is actively discharged in Hard-Reset mode and also when its Enable goes Low LDO2 Mode Control. 0: I DO2 output is actively discharged only in Hard

LDO2Mode	1	When FET is On, the output is unregulated. This setting is internally latched and can change only when the LDO is disabled.	1: LDO2 output is actively discharged only in Hard- Reset mode 1: LDO2 output is actively discharged in Hard- Reset mode and also when its Enable goes Low		
LDO2PsvDsc	0	LDO2 passive discharge control	0: LDO2 output is passively discharged only in Hard-Reset mode 1: LDO2 output is passively discharged in Hard- Reset mode and also when its Enable goes Low		

LDO2VSet (0x57)

BIT	7	6	5		4	3	2	1	0		
Field	-	-	-		LDO2VSet[4:0]						
Access Type	_	_	_		Write, Read						
BITFIE	LD	BITS		DESCRIPTION							
LDO2VSet		4:0		Limite 0.9V 0000 0000 1111	2 Output Voltag ed by input sup to 4V, Linear S 00 = 0.9V 01 = 1V 0 = 3.9V 1 = 4V	ply.	increments				

LDO2Ctr (0x58)

BIT	7	6	5	4	3	2	1	0
Field	LDO2MPC7	LDO2MPC6	LDO2MPC5	LDO2MPC4	LDO2MPC3	LDO2MPC2	LDO2MPC1	LDO2MPC0
Access Type	Write, Read							

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LDO2MPC7	7	LDO2 MPC7 Enable Control. Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs	0: LDO2 not controlled by MPC7 1: LDO2 controlled by MPC7
LDO2MPC6	6	LDO2 MPC6 Enable Control. Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs	0: LDO2 not controlled by MPC6 1: LDO2 controlled by MPC6
LDO2MPC5	5	LDO2 MPC5 Enable Control. Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs	0: LDO2 not controlled by MPC5 1: LDO2 controlled by MPC5
LDO2MPC4	4	LDO2 MPC4 Enable Control. Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs	0: LDO2 not controlled by MPC4 1: LDO2 controlled by MPC4
LDO2MPC3	3	LDO2 MPC3 Enable Control. Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs	0: LDO2 not controlled by MPC3 1: LDO2 controlled by MPC3
LDO2MPC2	2	LDO2 MPC2 Enable Control. Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs	0: LDO2 not controlled by MPC2 1: LDO2 controlled by MPC2
LDO2MPC1	1	LDO2 MPC1 Enable Control. Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs	0: LDO2 not controlled by MPC1 1: LDO2 controlled by MPC1
LDO2MPC0	0	LDO2 MPC0 Enable Control. Only valid when LDO2Seq = 111 and LDO2En = 10. If multiple MPCs are selected, LDO2 is controlled by the logical OR of the MPCs	0: LDO2 not controlled by MPC0 1: LDO2 controlled by MPC0

<u>LSW1Ena (0x59)</u>

BIT	7	6	5	4	3	2	1	0	
Field		LSW1Seq[2:0]		-	-	-	LSW1En[1:0]		
Access Type	Read Only			-	-	-	Write,	Read	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LSW1Seq	7:5	LSW1 enable configuration (read only)	000: Disabled 001: Reserved 010: Enabled at 0% of Boot/POR process delay control 011: Enabled at 25% of Boot/POR process delay control 100: Enabled at 50% of Boot/POR process delay control 101: Reserved 110: Reserved 110: Reserved 111: Controlled by LSW1En [1:0] after 100% of Boot/POR process delay control
LSW1En	1:0	LSW1 enable configuration (effective only when LSW1Seq = 111)	00: Disabled 01: Enabled 10: Controlled by MPC_ (See LSW1MPC_ bits in register 0x5B) 11: Reserved

LSW1Cfg (0x5A)

BIT	7	6	5	4		3	2	1	0		
Field	-	-	_	-		_	LSW1ActDs c	LSW1Lowlq	LSW1PsvD sc		
Access Type	-	-	-	-		_	Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPTION				DECODE				
LSW1ActDsc	2	LSW1 active	LSW1 active discharge control				 0: LSW1 output is actively discharged only in Hard- Reset mode 1: LSW1 output is actively discharged in Hard- Reset mode and also when its Enable goes Low 				
LSW1Lowlq	1	Low quiesce	LSW1 Low Quiescent Control. Low quiescent mode is achieved by disabling the voltage protection of LSW1				0: Voltage protection enabled. If V _{SYS} - V _{LSW1OUT} exceeds V _{LSW_PROT} , the output is disabled to protect from overcurrent. 1: Voltage protection disabled and quiescent is reduced				
LSW1PsvDs c	0	LSW1 passi	LSW1 passive discharge control				 0: LSW1 output is discharged only entering Off and Hard-Reset modes 1: LSW1 output is discharged only entering Off and Hard-Reset modes and when the enable is Low 				

LSW1Ctr (0x5B)

BIT	7	6	5	4		3	2	1	0	
Field	LSW1MPC7	LSW1MPC6	LSW1MPC5	LSW1MPC4	LSV	V1MPC3	LSW1MPC2	LSW1MPC1	LSW1MPC0	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	e, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
LSW1MPC7	7	Only valid w LSW1En = 1	_SW1 MPC7 Enable Control. Only valid when LSW1Seq = 111 and _SW1En = 10. If multiple MPCs are selected, _SW1 is controlled by the logical OR of the				I not controlled I controlled by	,		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LSW1MPC6	6	LSW1 MPC6 Enable Control. Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs	0: LSW1 not controlled by MPC6 1: LSW1 controlled by MPC6
LSW1MPC5	5	LSW1 MPC5 Enable Control. Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs	0: LSW1 not controlled by MPC5 1: LSW1 controlled by MPC5
LSW1MPC4	4	LSW1 MPC4 Enable Control. Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs	0: LSW1 not controlled by MPC4 1: LSW1 controlled by MPC4
LSW1MPC3	3	LSW1 MPC3 Enable Control. Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs	0: LSW1 not controlled by MPC3 1: LSW1 controlled by MPC3
LSW1MPC2	2	LSW1 MPC2 Enable Control. Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs	0: LSW1 not controlled by MPC2 1: LSW1 controlled by MPC2
LSW1MPC1	1	LSW1 MPC1 Enable Control. Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs	0: LSW1 not controlled by MPC1 1: LSW1 controlled by MPC1
LSW1MPC0	0	LSW1 MPC0 Enable Control. Only valid when LSW1Seq = 111 and LSW1En = 10. If multiple MPCs are selected, LSW1 is controlled by the logical OR of the MPCs	0: LSW1 not controlled by MPC0 1: LSW1 controlled by MPC0

LSW2Ena (0x5C)

BIT	7	6	5	4	3	2	1	0	
Field		LSW2Seq[2:0]		-	—	—	LSW2En[1:0]		
Access Type	Read Only			-	-	-	Write,	Read	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LSW2Seq	7:5	LSW2 enable configuration (read only)	000: Disabled 001: Reserved 010: Enabled at 0% of Boot/POR process delay control 011: Enabled at 25% of Boot/POR process delay control 100: Enabled at 50% of Boot/POR process delay control 101: Reserved 110: Reserved 110: Reserved 111: Controlled by LSW2En [1:0] after 100% of Boot/POR process delay control
LSW2En	1:0	LSW2 enable configuration (effective only when LSW2Seq = 111)	00: Disabled 01: Enabled 10: Controlled by MPC_ (See LSW2MPC_ bits in register 0x5E) 11: Reserved

LSW2Cfg (0x5D)

BIT	7	6	5	4		3	2	1	0		
Field	-	-	_	-		_	LSW2ActDs c	LSW2Lowlq	LSW2PsvD sc		
Access Type	-	-	-	-		_	Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPTION				DECODE				
LSW2ActDsc	2	LSW2 active	LSW2 active discharge control				0: LSW2 output is actively discharged only in Hard- Reset mode1: LSW2 output is actively discharged in Hard- Reset mode and also when its Enable goes Low				
LSW2Lowlq	1	Low quiesce	LSW2 Low Quiescent Control. Low quiescent mode is achieved by disabling the voltage protection of LSW2				 0: Voltage protection enabled. If V_{SYS} - V_{LSW2OUT} exceeds V_{LSW_PROT}, the output is disabled to protect from overcurrent. 1: Voltage protection disabled and quiescent is reduced 				
LSW2PsvDs c	0	LSW2 passi	LSW2 passive discharge control				 0: LSW2 output is discharged only entering Off and Hard-Reset modes 1: LSW2 output is discharged only entering Off and Hard-Reset modes and when the enable is Low 				

LSW2Ctr (0x5E)

BIT	7	6	5	4		3	2	1	0	
Field	LSW2MPC7	LSW2MPC6	LSW2MPC5	LSW2MPC4	LSV	V2MPC3	LSW2MPC2	LSW2MPC1	LSW2MPC0	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	e, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPTION			DECODE				
LSW2MPC7	7	Only valid w LSW2En = 1	LSW2 MPC7 Enable Control. Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the				2 not controlled 2 controlled by	,		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LSW2MPC6	6	LSW2 MPC6 Enable Control. Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs	0: LSW2 not controlled by MPC6 1: LSW2 controlled by MPC6
LSW2MPC5	5	LSW2 MPC5 Enable Control. Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs	0: LSW2 not controlled by MPC5 1: LSW2 controlled by MPC5
LSW2MPC4	4	LSW2 MPC4 Enable Control. Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs	0: LSW2 not controlled by MPC4 1: LSW2 controlled by MPC4
LSW2MPC3	3	LSW2 MPC3 Enable Control. Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs	0: LSW2 not controlled by MPC3 1: LSW2 controlled by MPC3
LSW2MPC2	2	LSW2 MPC2 Enable Control. Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs	0: LSW2 not controlled by MPC2 1: LSW2 controlled by MPC2
LSW2MPC1	1	LSW2 MPC1 Enable Control. Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs	0: LSW2 not controlled by MPC1 1: LSW2 controlled by MPC1
LSW2MPC0	0	LSW2 MPC0 Enable Control. Only valid when LSW2Seq = 111 and LSW2En = 10. If multiple MPCs are selected, LSW2 is controlled by the logical OR of the MPCs	0: LSW2 not controlled by MPC0 1: LSW2 controlled by MPC0

ChgPmpEna (0x5F)

BIT	7	6	5	4	3	2	1	0
Field	ChgPmpSeq[2:0]			-	-	-	ChgPm	pEn[1:0]
Access Type	Read Only			-	_	-	Write,	Read

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
ChgPmpSeq	7:5	Charge pump enable configuration (read only)	000: Disabled 001: Reserved 010: Enabled at 0% of Boot/POR process delay control 011: Enabled at 25% of Boot/POR process delay control 100: Enabled at 50% of Boot/POR process delay control 101: Reserved 110: Reserved 110: Reserved 111: Controlled by ChgPmpEn [1:0] after 100% of Boot/POR process delay control
ChgPmpEn	1:0	Charge pump enable configuration (effective only when ChgPmpSeq = 111)	00: Disabled 01: Enabled 10: Controlled by MPC_ (See ChgPmpMPC_ bits in register 0x61) 11: Reserved

ChgPmpCfg (0x60)

BIT	7	6	5	4		3	2	1	0
Field	-	-	-	-		-	-	CPVSet	ChgPmpPs v
Access Type	_	-	-	-	-		-	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPTION			DECODE			
CPVSet	1	Charge pum	ip voltage cont	rol		0: 6.6V 1: 5V			
ChgPmpPsv	0	Charge pum	np passive discharge control			Reset 1: Charg		vely discharged	

ChgPmpCtr (0x61)

BIT	7	6	5	4		3	2	1	0		
Field	CHGPMPM PC7	CHGPMPM PC6	CHGPMPM PC5	CHGPMPM PC4		GPMPM PC3	CHGPMPM PC2	CHGPMPM PC1	CHGPMPM PC0		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPTION				DECODE				
CHGPMPMP C7	7	Only valid w ChgPmpEn selected, Ch	(ndPmp=n = 1) if militiple MPCs are			0: Charge pump not controlled by MPC7 1: Charge pump controlled by MPC7					
CHGPMPMP C6	6	Only valid w ChgPmpEn selected, Ch	Charge Pump MPC6 Enable Control. Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs				ge pump not co ge pump contro	ntrolled by MP lled by MPC6	C6		

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE		
CHGPMPMP C5	5	Charge Pump MPC5 Enable Control. Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs	0: Charge pump not controlled by MPC5 1: Charge pump controlled by MPC5		
CHGPMPMP C4	4	Charge Pump MPC4 Enable Control. Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs	0: Charge pump not controlled by MPC4 1: Charge pump controlled by MPC4		
CHGPMPMP C3	3	Charge Pump MPC3 Enable Control. Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs	0: Charge pump not controlled by MPC3 1: Charge pump controlled by MPC3		
CHGPMPMP C2	2	Charge Pump MPC2 Enable Control. Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs	0: Charge pump not controlled by MPC2 1: Charge pump not controlled by MPC2		
CHGPMPMP C1	1	Charge Pump MPC1 Enable Control. Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs	0: Charge pump not controlled by MPC1 1: Charge pump controlled by MPC1		
CHGPMPMP C0	0	Charge Pump MPC0 Enable Control. Only valid when ChgPmpSeq = 111 and ChgPmpEn = 10. If multiple MPCs are selected, ChgPmp is controlled by the logical OR of the MPCs	0: Charge pump not controlled by MPC0 1: Charge pump controlled by MPC0		

BoostEna (0x62)

BIT	7	6	5	4	3	2	1	0
Field		BoostSeq[2:0]		-	-	-	BstEn[1:0]	
Access Type		Read Only		-	_	-	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE			
BoostSeq	7:5	Boost enable configuration (read only)	000: Disabled 001: Reserved 010: Enabled at 0% of Boot/POR process delay control 011: Enabled at 25% of Boot/POR process delay control 100: Enabled at 50% of Boot/POR process delay control 101: Reserved 110: Reserved 110: Reserved 111: Controlled by BoostEn [1:0] after 100% of Boot/POR process delay control			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE		
BstEn	1:0	Boost enable configuration (effective only when BoostSeq = 111)	00: Disabled 01: Enabled 10: Controlled by MPC_ (See BoostMPC_ bits in register 0x66) 11: Reserved		

BoostCfg (0x63)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	-	BstPsvDsc	BstlAdptEn	BstFastStrt	BstFETScal e
Access Type	_	_	_	_	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
BstPsvDsc	3	Boost passive discharge control	0: Boost output is discharged only when entering Off and Hard-Reset modes1: Boost output is discharged only when entering Off and Hard-Reset modes and when BoostEn is set to 000
BstlAdptEn	2	Boost adaptive peak current control	0: Inductor peak current fixed at the programmed value by means of BstlSet1: Inductor peak current automatically increased to provide better load regulation
BstFastStrt	1	Boost fast start time	0: Time to full current capability during Startup =100ms. Precharge with fixed BstlSet = 100mA 1: Time to full current capability during Startup = 50ms.
BstFETScale	0	Boost FET scaling	0: No FET scaling 1: Active boost FET size scaled down by half to optimize efficiency for low inductor peak current settings

BoostlSet (0x64)

BIT	7	6	5	4	3	2	1	0		
Field	BstlSetLook UpDis	-	_	_		BstlS	et[3:0]			
Access Type	Write, Read	_	-	-	Write, Read					
BITFIELD	BITS		DESCRIPT	ION		DECODE				
BstlSetLook UpDis	7	Boost peak disable	current set by I	ookup table	0: Inductor current setting is set according to look up table1: Inductor current setting is set by BstISet					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BstlSet	3:0	Boost Nominal inductor Peak Current Setting. Valid only if BstlSetLookUpDis is high. 25mA step resolution	0000: 100mA 0001: 125mA 0010: 150mA 0011: 175mA 0100: 200mA 0101: 225mA 0111: 225mA 0111: 275mA 1001: 325mA 1001: 325mA 1011: 375mA 1100: 400mA 1101: 425mA 1110: 450mA 1111: 475mA

BoostVSet (0x65)

BIT	7	6	5	4	3	2	1	0		
Field	-	-	BstVSet[5:0]							
Access Type	-	-		Write, Read						

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BstVSet	BITS	DESCRIPTION Boost Output Voltage Setting. Linear scale from 5V to 20V in 250mV increments	DECODE 000000: 5.00V 000010: 5.25V 00010: 5.50V 00010: 6.00V 00010: 6.25V 00010: 6.25V 00010: 6.25V 00010: 7.0V 00100: 7.0V 00101: 7.25V 00101: 7.25V 00101: 7.50V 00110: 8.0V 00110: 9.0V 010001: 9.25V 010001: 9.25V 010011: 9.75V 010001: 9.25V 01011: 10.25V 01010: 11.00V 01100: 11.00V 01100: 11.00V 01100: 11.25V 01100: 11.25V 01100: 12.00V 01110: 12.50V 01110: 12.50V 01110: 12.50V 01110: 13.50V

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
			111001: 19.25V 111010: 19.50V 111011: 19.75V 111100: 20.00V >111100: Reserved

BoostCtr (0x66)

BIT	7	6	5	4		3	2	1	0		
Field	BstMPC7	BstMPC6	BstMPC5	BstMPC4	Bs	tMPC3	BstMPC2	BstMPC1	BstMPC0		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	/rite, Read Write, Read Write, Read Wr			Write, Read		
BITFIELD	BITS		DESCRIPT	ION			D	ECODE			
BstMPC7	7	Only valid w 10. If multipl	e MPCs are se	111 and BstEn		0: Boost not controlled by MPC7 1: Boost controlled by MPC7					
BstMPC6	6	Only valid w 10. If multipl	bost MPC6 Enable Control. hly valid when BstSeq = 111 and BstEn = . If multiple MPCs are selected, Buck- bost is controlled by the logical OR of the PCs 0: Boost not controlled by MPC6 1: Boost controlled by MPC6								
BstMPC5	5	Only valid w 10. If multipl	Boost MPC5 Enable Control. Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck- Boost is controlled by the logical OR of the MPCs				0: Boost not controlled by MPC5 1: Boost controlled by MPC5				
BstMPC4	4	Only valid w 10. If multipl	Boost MPC4 Enable Control. Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck- Boost is controlled by the logical OR of the				t not controlled t controlled by I				
BstMPC3	3	Only valid w 10. If multipl	e MPCs are se	111 and BstEn		0: Boost not controlled by MPC3 1: Boost controlled by MPC3					
BstMPC2	2	Only valid w 10. If multipl	Boost MPC2 Enable Control. Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck- Boost is controlled by the logical OR of the MPCs								
BstMPC1	1	Only valid w 10. If multipl	e MPCs are se	111 and BstEn			t not controlled t controlled by I				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BstMPC0	0	Boost MPC0 Enable Control. Only valid when BstSeq = 111 and BstEn = 10. If multiple MPCs are selected, Buck- Boost is controlled by the logical OR of the MPCs	0: Boost not controlled by MPC0 1: Boost controlled by MPC0

MPC0Cfg (0x67)

BIT	7	6	5	4		3	2	1	0	
Field	MPC0Read	_	_	MPC0Out	MF	PC0OD	MPC0HiZB	MPC0Res	MPC0Pup	
Access Type	Read Only	_	-	Write, Read	Wri	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPTION DECODE							
MPC0Read	7	MPC0 State				0: MPC0 Low 1: MPC0 High (if MPC0OD = 0) or Hi-Z (if MPC0OD = 1)				
MPC0Out	4	Valid only if	MPC0 Output Value. Valid only if MPC0 is configured as output (MPC0HiZB = 1)				0: MPC0 connected to GND 1: MPC0 open drain off (MPC0OD = 1) or connected to BK1OUT (MPC0OD = 0)			
MPC0OD	3			n. gured as output	t	0: MPC0 is push-pull connected to BK1OUT 1: MPC0 is open drain				
MPC0HiZB	2	MPC0 Direc	tion				MPC0 is Hi-Z. Input buffer enabled. MPC0 is not Hi-Z. Output buffer enabled.			
MPC0Res	1	Valid only if	MPC0 Resistor Presence. Valid only if MPC0 is configured as input (MPC0HiZB = 0)				: Resistor not connected to MPC0 : Resistor connected to MPC0			
MPC0Pup	0	Valid only if	MPC0 Resistor Configuration. /alid only if there is a resistor on MPC0 MPC0Res = 1) 0: Pulldown connected to MPC0 1: Pullup to V _{CCINT} connected MCP0							

MPC1Cfg (0x68)

BIT	7	6	5	4		3	2	1	0	
Field	MPC1Read	-	_	MPC1Out MPC1OD		MPC1HiZB	MPC1Res	MPC1Pup		
Access Type	Read Only	-	-	Write, Read	ite, Read Write, Read		Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
MPC1Read	7	MPC1 State	MPC1 State				/IPC1 Low /IPC1 High (if MPC1OD = 0) or Hi-Z (if C1OD = 1)			
MPC1Out	4	Valid only if	MPC1 Output Value. Valid only if MPC1 is configured as output (MPC1HiZB = 1)			1: MPC connect	C1 connected to GND C1 open drain off (MPC1OD = 1) or ected to BK1OUT 1OD = 0)			
MPC10D	3	Valid only if	MPC1 OOutput Configuration. Valid only if MPC1 is configured as output (MPC1HiZB = 1)				1 is push-pull c 1 is open drain	onnected to Bk	(10UT	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
MPC1HiZB	2	MPC1 Direction	0: MPC1 is Hi-Z. Input buffer enabled. 1: MPC1 is not Hi-Z. Output buffer enabled.
MPC1Res	1	MPC1 Resistor Presence. Valid only if MPC1 is configured as input (MPC1HiZB = 0)	0: Resistor not connected to MPC1 1: Resistor connected to MPC1
MPC1Pup	0	MPC1 Resistor Configuration. Valid only if there is a resistor on MPC1 (MPC1Res = 1)	0: Pulldown connected to MPC1 1: Pullup to V _{CCINT} connected MCP1

MPC2Cfg (0x69)

BIT	7	6	5	4		3	2	1	0	
Field	MPC2Read	_	_	MPC2Out	MF	PC2OD	MPC2HiZB	MPC2Res	MPC2Pup	
Access Type	Read Only	-	-	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
MPC2Read	7	MPC2 State				0: MPC2 Low 1: MPC2 High (if MPC2OD = 0) or Hi-Z (if MPC2OD = 1)				
MPC2Out	4	Valid only if	MPC2 Output Value. Valid only if MPC2 is configured as output (MPC2HiZB = 1)				: MPC2 connected to GND : MPC2 open drain off (MPC2OD = 1) or onnected to BK1OUT MPC2OD = 0)			
MPC2OD	3			n. gured as output	t		0: MPC2 is push-pull connected to BK1OUT 1: MPC2 is open drain			
MPC2HiZB	2	MPC2 Direc	tion				0: MPC2 is Hi-Z. Input buffer enabled. 1: MPC2 is not Hi-Z. Output buffer enabled.			
MPC2Res	1	Valid only if	MPC2 Resistor Presence. Valid only if MPC2 is configured as input (MPC2HiZB = 0)			0: Resistor not connected to MPC2 1: Resistor connected to MPC2				
MPC2Pup	0		stor Configurati there is a resis = 1)				own connected to V _{CCINT} co			

MPC3Cfg (0x6A)

				ſ				1	ſ	
BIT	7	6	5	4		3	2	1	0	
Field	MPC3Read	-	-	MPC3Out	MF	PC3OD	MPC3HiZB	MPC3Res	MPC3Pup	
Access Type	Read Only	-	-	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPTION				DECODE			
MPC3Read	7	MPC3 State					PC3 Low PC3 High (if MPC3OD = 0) or Hi-Z (if BOD = 1)			
MPC3Out	4	MPC3 Outpu Valid only if (MPC3HiZB	MPC3 is config	configured as output 0: MPC3 connected to GND 1: MPC3 open drain off (MPC3OD = 1) connected to BK1OUT (MPC3OD = 0)			l) or			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
MPC3OD	3	MPC3 Output Configuration. Valid only if MPC3 is configured as output (MPC3HiZB = 1)	0: MPC3 is push-pull connected to BK1OUT 1: MPC3 is open drain
MPC3HiZB	2	MPC3 Direction	0: MPC3 is Hi-Z. Input buffer enabled. 1: MPC3 is not Hi-Z. Output buffer enabled.
MPC3Res	1	MPC3 Resistor Presence. Valid only if MPC3 is configured as input (MPC3HiZB = 0)	0: Resistor not connected to MPC3 1: Resistor connected to MPC3
MPC3Pup	0	MPC3 Resistor Configuration. Valid only if there is a resistor on MPC3 (MPC3Res = 1)	0: Pulldown connected to MPC3 1: Pullup to V _{CCINT} connected MCP3

MPC4Cfg (0x6B)

BIT	7	6	5	4		3	2	1	0	
Field	MPC4Read	_	_	MPC4Out	MF	PC4OD	MPC4HiZB	MPC4Res	MPC4Pup	
Access Type	Read Only	-	_	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
MPC4Read	7	MPC4 State				0: MPC4 Low 1: MPC4 High (if MPC4OD = 0) or Hi-Z (if MPC4OD = 1)				
MPC4Out	4	MPC4 Outp Valid only if (MPC4HiZB	MPC4 is config	gured as output	t	0: MPC4 connected to GND 1: MPC4 open drain off (MPC4OD = 1) or connected to BK1OUT (MPC4OD = 0)				
MPC4OD	3			n. gured as output	t	0: MPC4 is push-pull connected to BK1OUT 1: MPC4 is open drain				
MPC4HiZB	2	MPC4 Direc	tion			0: MPC4 is Hi-Z. Input buffer enabled. 1: MPC4 is not Hi-Z. Output buffer enabled.				
MPC4Res	1	Valid only if	MPC4 Resistor Presence. Valid only if MPC4 is configured as input (MPC4HiZB = 0)				0: Resistor not connected to MPC4 1: Resistor connected to MPC4			
MPC4Pup	0	Valid only if	MPC4 Resistor Configuration. Valid only if there is a resistor on MPC4 (MPC4Res = 1)				0: Pulldown connected to MPC4 1: Pullup to V _{CCINT} connected MCP4			

MPC5Cfg (0x6C)

BIT	7	6	5	4		3	2	1	0
Field	MPC5Read	-	-	MPC5Out	MF	PC5OD	MPC5HiZB	MPC5Res	MPC5Pup
Access Type	Read Only	_	-	Write, Read	Writ	e, Read	Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
MPC5Read	7	MPC5 State				0: MPC8 1: MPC8 MPC50	5 High (if MPC	50D = 0) or Hi-	Z (if

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
MPC5Out	4	MPC5 Output Value. Valid only if MPC5 is configured as output (MPC5HiZB = 1)	0: MPC5 connected to GND 1: MPC5 open drain off (MPC5OD = 1) or connected to BK10UT (MPC5OD = 0)
MPC5OD	3	MPC5 Output Configuration. Valid only if MPC5 is configured as output (MPC5HiZB = 1)	0: MPC5 is push-pull connected to BK1OUT 1: MPC5 is open drain
MPC5HiZB	2	MPC5 Direction	0: MPC5 is Hi-Z. Input buffer enabled. 1: MPC5 is not Hi-Z. Output buffer enabled.
MPC5Res	1	MPC5 Resistor Presence. Valid only if MPC5 is configured as input (MPC5HiZB = 0)	0: Resistor not connected to MPC5 1: Resistor connected to MPC5
MPC5Pup	0	MPC5 Resistor Configuration Valid only if there is a resistor on MPC5 (MPC5Res = 1)	0: Pulldown connected to MPC5 1: Pullup to V _{CCINT} connected MCP5

MPC6Cfg (0x6D)

BIT	7	6	5	4		3	2	1	0	
Field	MPC6Read	_	_	MPC6Out	MF	PC6OD	MPC6HiZB	MPC6Res	MPC6Pup	
Access Type	Read Only	-	-	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
MPC6Read	7	MPC6 State				0: MPC6 Low 1: MPC6 High (if MPC6OD = 0) or Hi-Z (if MPC6OD = 1)				
MPC6Out	4	MPC6 Outp Valid only if (MPC6HiZB	MPC6 is config	gured as output	t	0: MPC6 connected to GND 1: MPC6 open drain off (MPC6OD = 1) or connected to BK1OUT (MPC6OD = 0)				
MPC6OD	3			n. gured as output	t	0: MPC6 is push-pull connected to BK1OUT 1: MPC6 is open drain				
MPC6HiZB	2	MPC6 Direc	tion			0: MPC6 is Hi-Z. Input buffer enabled. 1: MPC6 is not Hi-Z. Output buffer enabled.				
MPC6Res	1	Valid only if	MPC6 Resistor Presence. Valid only if MPC6 is configured as input (MPC6HiZB = 0)				0: Resistor not connected to MPC6 1: Resistor connected to MPC6			
MPC6Pup	0	Valid only if	MPC6 Resistor Configuration. Valid only if there is a resistor on MPC6 (MPC6Res = 1)				own connected o to V _{CCINT} co			

MPC7Cfg (0x6E)

BIT	7	6	5	4	3	2	1	0
Field	MPC7Read	_	-	MPC7Out	MPC7OD	MPC7HiZB	MPC7Res	MPC7Pup
Access Type	Read Only	_	-	Write, Read				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
MPC7Read	7	MPC7 State	0: MPC7 Low 1: MPC7 High (if MPC7OD = 0) or Hi-Z (if MPC7OD = 1)
MPC7Out	4	MPC7 Output Value. Valid only if MPC7 is configured as output (MPC7HiZB = 1)	0: MPC7 connected to GND 1: MPC7 open drain off (MPC7OD = 1) or connected to BK1OUT (MPC7OD = 0)
MPC7OD	3	MPC7 Output Configuration. Valid only if MPC7 is configured as output (MPC7HiZB = 1)	0: MPC7 is push-pull connected to BK1OUT 1: MPC7 is open drain
MPC7HiZB	2	MPC7 Direction	0: MPC7 is Hi-Z. Input buffer enabled. 1: MPC7 is not Hi-Z. Output buffer enabled.
MPC7Res	1	MPC7 Resistor Presence. Valid only if MPC7 is configured as input (MPC7HiZB = 0)	0: Resistor not connected to MPC7 1: Resistor connected to MPC7
MPC7Pup	0	MPC7 Resistor Configuration. Valid only if there is a resistor on MPC7 (MPC7Res = 1)	0: Pulldown connected to MPC7 1: Pullup to V _{CCINT} connected MCP7

MPCItrSts (0x6F)

BIT	7	6	5	4		3	2	1	0		
Field	-	-	USBOkMP CSts	-		_	BK3PgMPC Sts	BK2PgMPC Sts	BK1PgMPC Sts		
Access Type	_	_	Read Only			-	Read Only	Read Only	Read Only		
BITFIELD	BITS		DESCRIPT	ION			DECODE				
USBOkMPC Sts	5	USBOk ded	icated MPC into	errupt status bi	t		0: USBOk MPC power good interrupt not active 1: USBOk MPC power good interrupt active				
BK3PgMPCS ts	2	Buck3 dedic	ated MPC inter	rrupt status bit		0: Buck3 MPC power good interrupt not active 1: Buck3 MPC power good interrupt active					
BK2PgMPCS ts	1	Buck2 dedic	Buck2 dedicated MPC interrupt status bit				0: Buck2 MPC power good interrupt not active 1: Buck2 MPC power good interrupt active				
BK1PgMPCS ts	0	Buck1 dedic	ated MPC inter	rrupt status bit				ood interrupt n ood interrupt a			

BK1DedIntCfg (0x70)

BIT	7	6	6 5 4			3	2	1	0		
Field	BK1PGMP CInt	BK1MPC6S el	BK1MPC5S el	BK1MPC4S el	BK1	MPC3S el	BK1MPC2S el	BK1MPC1S el	BK1MPC0S el		
Access Type	Read Only	Write, Read	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read	Write, Read		
BITFIELD	BITS		DESCRIPT	ION			DECODE				
BK1PGMPCI nt	7	Buck1 dedic	Buck1 dedicated power-good interrupt				0: No power-good status change 1: Buck1 power-good status change caused interrupt				
BK1MPC6Se I	6	Buck1 PGO control	Buck1 PGOOD Interrupt MPC6 assignment control				I PGOOD Inter I PGOOD Inter				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BK1MPC5Se	5	Buck1 PGOOD Interrupt MPC5 assignment	0: Buck1 PGOOD Interrupt not routed to MPC5
I		control	1: Buck1 PGOOD Interrupt routed to MPC5
BK1MPC4Se	4	Buck1 PGOOD Interrupt MPC4 assignment	0: Buck1 PGOOD Interrupt not routed to MPC4
I		control	1: Buck1 PGOOD Interrupt routed to MPC4
BK1MPC3Se	3	Buck1 PGOOD Interrupt MPC3 assignment	0: Buck1 PGOOD Interrupt not routed to MPC3
I		control	1: Buck1 PGOOD Interrupt routed to MPC3
BK1MPC2Se	2	Buck1 PGOOD Interrupt MPC2 assignment	0: Buck1 PGOOD Interrupt not routed to MPC2
I		control	1: Buck1 PGOOD Interrupt routed to MPC2
BK1MPC1Se I	1	Buck1 PGOOD Interrupt MPC1 assignment control	0: Buck1 PGOOD Interrupt not routed to MPC1 1: Buck1 PGOOD Interrupt routed to MPC1
BK1MPC0Se	0	Buck1 PGOOD Interrupt MPC0 assignment	0: Buck1 PGOOD Interrupt not routed to MPC0
I		control	1: Buck1 PGOOD Interrupt routed to MPC0

BK2DedIntCfg (0x71)

BIT	7	6	5	4		3	2	1	0	
Field	BK2PGMP CInt	BK2MPC6S el	BK2MPC5S el	BK2MPC4S el	BK2	2MPC3S el	BK2MPC2S el	BK2MPC1S el	BK2MPC0S el	
Access Type	Read Only	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
BK2PGMPCI nt	7	Buck2 dedic	ated power-go	od interrupt		0: No power-good status change 1: Buck2 power-good status change caused interrupt				
BK2MPC6Se I	6	Buck2 PGO control	OD Interrupt M	PC6 assignme	nt	0: Buck2 PGOOD Interrupt not routed to MPC6 1: Buck2 PGOOD Interrupt routed to MPC6				
BK2MPC5Se I	5	Buck2 PGO control	OD Interrupt M	PC5 assignme	nt	0: Buck2 PGOOD Interrupt not routed to MPC5 1: Buck2 PGOOD Interrupt routed to MPC5				
BK2MPC4Se I	4	Buck2 PGO control	OD Interrupt M	PC4 assignme	nt	0: Buck2 PGOOD Interrupt not routed to MPC4 1: Buck2 PGOOD Interrupt routed to MPC4				
BK2MPC3Se I	3	Buck2 PGO control	OD Interrupt M	PC3 assignme	nt		2 PGOOD Inter 2 PGOOD Inter			
BK2MPC2Se I	2	Buck2 PGO control	Buck2 PGOOD Interrupt MPC2 assignment control				2 PGOOD Inter 2 PGOOD Inter			
BK2MPC1Se I	1	Buck2 PGO control	Buck2 PGOOD Interrupt MPC1 assignment control				0: Buck2 PGOOD Interrupt not routed to MPC1 1: Buck2 PGOOD Interrupt routed to MPC1			
BK2MPC0Se I	0	Buck2 PGO control	OD Interrupt M	PC0 assignme	nt	0: Buck2 PGOOD Interrupt not routed to MPC0 1: Buck2 PGOOD Interrupt routed to MPC0				

BK3DedIntCfg (0x72)

BIT	7	6	5	4	3	2	1	0
Field	BK3PGMP CInt	BK3MPC6S el	BK3MPC5S el	BK3MPC4S el	BK3MPC3S el	BK3MPC2S el	BK3MPC1S el	BK3MPC0S el
Access Type	Read Only	Write, Read						

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE			
BK3PGMPCI nt	7	Buck3 dedicated power-good interrupt	0: No power-good status change 1: Buck3 power-good status change caused interrupt			
BK3MPC6Se	6	Buck3 PGOOD Interrupt MPC6 assignment	0: Buck3 PGOOD Interrupt not routed to MPC6			
I		control	1: Buck3 PGOOD Interrupt routed to MPC6			
BK3MPC5Se	5	Buck3 PGOOD Interrupt MPC5 assignment	0: Buck3 PGOOD Interrupt not routed to MPC5			
I		control	1: Buck3 PGOOD Interrupt routed to MPC5			
BK3MPC4Se	4	Buck3 PGOOD Interrupt MPC4 assignment	0: Buck3 PGOOD Interrupt not routed to MPC4			
I		control	1: Buck3 PGOOD Interrupt routed to MPC4			
BK3MPC3Se	3	Buck3 PGOOD Interrupt MPC3 assignment	0: Buck3 PGOOD Interrupt not routed to MPC3			
I		control	1: Buck3 PGOOD Interrupt routed to MPC3			
BK3MPC2Se	2	Buck3 PGOOD Interrupt MPC2 assignment	0: Buck3 PGOOD Interrupt not routed to MPC2			
I		control	1: Buck3 PGOOD Interrupt routed to MPC2			
BK3MPC1Se	1	Buck3 PGOOD Interrupt MPC1 assignment	0: Buck3 PGOOD Interrupt not routed to MPC1			
I		control	1: Buck3 PGOOD Interrupt routed to MPC1			
BK3MPC0Se	0	Buck3 PGOOD Interrupt MPC0 assignment	0: Buck3 PGOOD Interrupt not routed to MPC0			
I		control	1: Buck3 PGOOD Interrupt routed to MPC0			

HptDedIntCfg (0x73)

BIT	7	6	5	4		3	2	1	0	
Field	HptStatDedI nt	HPTMPC6S el	HPTMPC5S el	HPTMPC4S el	HPT	MPC3S el	HPTMPC2S el	HPTMPC1S el	HPTMPC0S el	
Access Type	Read Only	Write, Read	Write, Read	Write, Read	Writ	ite, Read Write, Read Write, Read Write, Read			Write, Read	
BITFIELD	BITS		DESCRIPTION				DECODE			
HptStatDedIn t	7	Haptic Drive	Haptic Driver dedicated interrupt				0: No Haptic driver status change 1: Haptic driver status change caused interrupt			
HPTMPC6Se I	6	Haptic Drive control	Haptic Driver Interrupt MPC6 assignment control				0: Haptic Driver Interrupt not routed to MPC6 1: Haptic Driver Interrupt routed to MPC6			
HPTMPC5Se I	5	Haptic Drive control	Haptic Driver Interrupt MPC5 assignment control				0: Haptic Driver Interrupt not routed to MPC5 1: Haptic Driver Interrupt routed to MPC5			
HPTMPC4Se I	4	Haptic Drive control	Haptic Driver Interrupt MPC4 assignment control				0: Haptic Driver Interrupt not routed to MPC4 1: Haptic Driver Interrupt routed to MPC4			
HPTMPC3Se I	3	Haptic Drive control	r Interrupt MP0	C3 assignment		0: Haptic Driver Interrupt not routed to MPC3 1: Haptic Driver Interrupt routed to MPC3				
HPTMPC2Se I	2	Haptic Driver Interrupt MPC2 assignment control				0: Haptic Driver Interrupt not routed to MPC2 1: Haptic Driver Interrupt routed to MPC2				
HPTMPC1Se I	1	Haptic Drive control	Haptic Driver Interrupt MPC1 assignment control				0: Haptic Driver Interrupt not routed to MPC1 1: Haptic Driver Interrupt routed to MPC1			
HPTMPC0Se I	0	Haptic Drive control	r Interrupt MPC	C0 assignment		0: Haptic Driver Interrupt not routed to MPC0 1: Haptic Driver Interrupt routed to MPC0				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

ADCDedIntCfg (0x74)

BIT	7	6	5	4		3	2	1	0	
Field	ADCStatMP CInt	ADCMPC6 Sel	ADCMPC5 Sel	ADCMPC4 Sel	AD	CMPC3 Sel	ADCMPC2 Sel	ADCMPC1 Sel	ADCMPC0 Sel	
Access Type	Read Only	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read			
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
ADCStatMP CInt	7	ADC Conve interrupt	rsion complete	dedicated			DC end of conv end of convers			
ADCMPC6S el	6		DC End Of Conversion Interrupt MPC6 ssignment control 0: ADC End of Conversion Interrupt r MPC6 1: ADC End of Conversion Interrupt r MPC6							
ADCMPC5S el	5	ADC End Of assignment	f Conversion Ir control	iterrupt MPC5		0: ADC End of Conversion Interrupt not routed to MPC5 1: ADC End of Conversion Interrupt routed to MPC5				
ADCMPC4S el	4	ADC End O assignment	f Conversion In control	iterrupt MPC4		MPC4	End of Convers			
ADCMPC3S el	3	ADC End O assignment	f Conversion In control	iterrupt MPC3		MPC3	End of Convers			
ADCMPC2S el	2		ADC End Of Conversion Interrupt MPC2 assignment control				End of Convers			
ADCMPC1S el	1		ADC End Of Conversion Interrupt MPC1 assignment control 0: ADC End of Conversion Interrupt MPC1 1: ADC End of Conversion Interrupt MPC1							
ADCMPC0S el	0		MPC1 0: ADC End of Conversion Interrupt MPC0 signment control 0: ADC End of Conversion Interrupt not MPC0 1: ADC End of Conversion Interrupt rout MPC0							

USBOkDedIntCfg (0x75)

BIT	7	6	5	4		3	2	1	0
Field	USBOkMP CInt	USBOkMP C6Sel	USBOkMP C5Sel	USBOkMP C4Sel		BOkMP C3Sel	USBOkMP C2Sel	USBOkMP C1Sel	USBOkMP C0Sel
Access Type	Read Only	Write, Read	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read	Write, Read
BITFIELD	BITS		DESCRIPT	ION			D	ECODE	
USBOkMPCI nt	7	USBOk dedi	icated Power-G	Good Interrupt			SBOk status ch Ok status chang	0	rupt
USBOkMPC 6Sel	6		JSBOk Dedicated Interrupt MPC6 assignment control				Dk Interrupt not Dk Interrupt rou		6

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
USBOkMPC	5	USBOk Dedicated Interrupt MPC5	0: USBOk Interrupt not routed to MPC5
5Sel		assignment control	1: USBOk Interrupt routed to MPC5
USBOkMPC	4	USBOk Dedicated Interrupt MPC4	0: USBOk Interrupt not routed to MPC4
4Sel		assignment control	1: USBOk Interrupt routed to MPC4
USBOkMPC	3	USBOk Dedicated Interrupt MPC3	0: USBOk Interrupt not routed to MPC3
3Sel		assignment control	1: USBOk Interrupt routed to MPC3
USBOkMPC	2	USBOk Dedicated Interrupt MPC2	0: USBOk Interrupt not routed to MPC2
2Sel		assignment control	1: USBOk Interrupt routed to MPC2
USBOkMPC	1	USBOk Dedicated Interrupt MPC1	0: USBOk Interrupt not routed to MPC1
1Sel		assignment control	1: USBOk Interrupt routed to MPC1
USBOkMPC	0	USBOk Dedicated Interrupt MPC0	0: USBOk Interrupt not routed to MPC0
0Sel		assignment control	1: USBOk Interrupt routed to MPC0

LEDCommon (0x78)

BIT	7	6	5	4 3 2 1 0						
Field	LED_Boost Loop	-	_	LED_Open[2:0] LEDIStep[1:0]						
Access Type	Write, Read	-	_	Read Only Write, Read						
BITFIELD	BITS		DESCRIPT	TION DECODE						
LED_BoostL oop	7	Boost/LED0	closed-loop of	0: Boost voltage is unrelated to LED0 dropon voltage. 1: Boost voltage is incresed respect to BstV3 adjust LED0 dropout voltage according to LED0_REFSEL bits. Maximum increment is						
LED_Open	4:2	LEDx open	detection (Rea	d only)		Bit 0 = 0: 0 = $V_{LED0} > V_{LED_DET}$ or all LED disabled 1 = $V_{LED0} \le V_{LED_DET}$ or LED0 only disabled Bit 1 = 1: 0 = $V_{LED1} > V_{LED_DET}$ or all LED disabled 1 = $V_{LED1} \le V_{LED_DET}$ or LED1 only disabled Bit 2 = 1: 0 = $V_{LED2} > V_{LED_DET}$ or all LED disabled 1 = $V_{LED2} \le V_{LED_DET}$ or LED2 only disabled				
LEDIStep	1:0	LED current	step-size cont	00: 0.6mA						

LED0Ref (0x79)

BIT	7	6	5	4		3	2	1	0	
Field	-	-	-	-		– – LED0_REFSEL[FSEL[1:0]		
Access Type	_	_	-	_		– – Write, Read				
BITFIELD	BITS		DESCRIPT	ION			D	ECODE		
LED0_REFS EL	1:0	LED0 dropo LED_Boostl		oltage (valid on	ly if	00: 0.2V 01: 0.3V 10: 0.4V 11: 0.5V				

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

LED0Ctr (0x7A)

BIT	7	6	5	4	3	3 2 1					
Field		LED0En[2:0]		4 3 2 1 LED0ISet[4:0]							
Access Type		Write, Read			Write, Read						
BITFIELD	BITS		DESCRIP	TION DECODE							
LED0En	7:5	LED0 driver	enable		000: Off 001: LED0 On 010: Controlled by internal charger stat 011: Controlled by MPC3 100: Controlled by MPC4 101: Controlled by MPC5 110: Controlled by MPC6 111: Controlled by MPC7						
LED0ISet	4:0			en by (LED0_I[4:	00001: 0001: 00010: 0010: 00101: 00101: 00101: 00101: 00101: 00101: 01000: 01001: 01001: 01001: 01010: 01101: 01101: 01101: 10000: 10001: 10010: 10010: 10100: 10101: 10110: 10111:	0.6mA/1.0mA/ 1.2mA/2.0mA/ 1.8mA/3.0mA/ 2.4mA/4.0mA/ 3.0mA/5.0mA/ 3.6mA/6.0mA/ 4.2mA/7.0mA/ 4.2mA/7.0mA/ 4.8mA/8.0mA/ 5.4mA/9.0mA/ 6.0mA/10.0mA 6.6mA/11.0mA 7.2mA/12.0mA 7.2mA/12.0mA 7.8mA/13.0mA 9.0mA/15.0mA 9.0mA/15.0mA 10.2mA/17.0m 10.8mA/18.0m 11.4mA/19.0m 12.0mA/20.0m 13.2mA/22.0m 13.2mA/22.0m 13.8mA/23.0m	2.4mA 3.6mA 4.8mA 6.0mA 7.2mA 8.4mA 9.6mA 10.8mA 10.8mA 112.0mA 112.0mA 12.0mA 12.0mA 14.4mA 15.6mA 14.4mA 15.6mA 14.2mA 19.2mA				

LED1Ctr (0x7B)

BIT	7	6	5	4 3 2 1 0							
Field		LED1En[2:0]				LED1ISet[4:0]					
Access Type		Write, Read		Write, Read							

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LED1En	7:5	LED1 driver enable	000: Off 001: LED1 On 010: Controlled by internal charger status signal 011: Controlled by MPC3 100: Controlled by MPC4 101: Controlled by MPC5 110: Controlled by MPC6 111: Controlled by MPC7
LED1ISet	4:0	LED1 Direct Step Count. LED1 current in mA is given by (LED1_I[4:0] + 1) x LEDIStep[1:0]	00000: 0.6mA/1.0mA/1.2mA 00001: 1.2mA/2.0mA/2.4mA 00010: 1.8mA/3.0mA/2.6mA 00010: 1.8mA/3.0mA/4.8mA 00100: 3.0mA/5.0mA/6.0mA 00101: 3.6mA/6.0mA/7.2mA 00110: 4.2mA/7.0mA/8.4mA 00111: 4.8mA/8.0mA/9.6mA 01000: 5.4mA/9.0mA/10.8mA 01001: 6.6mA/11.0mA/12.0mA 01011: 7.2mA/12.0mA/14.4mA 01101: 6.6mA/11.0mA/13.2mA 01011: 7.8mA/13.0mA/15.6mA 01101: 8.4mA/14.0mA/16.8mA 01101: 8.4mA/14.0mA/16.8mA 01111: 9.0mA/15.0mA/18.0mA 01111: 9.6mA/16.0mA/19.2mA 10000: 10.2mA/17.0mA/20.4mA 10001: 10.8mA/18.0mA/21.6mA 10011: 11.4mA/19.0mA/25.2mA 10101: 13.2mA/22.0mA/26.4mA 10111: 14.4mA/24.0mA/28.8mA 11000: 15.0mA/25.0mA/30.0mA

LED2Ctr (0x7C)

BIT	7	6	5	4	3 2 1						
Field		LED2En[2:0]			LED2ISet[4:0]						
Access Type		Write, Read			Write, Read						
BITFIELD	BITS		DESCRIPTI	ON	DECODE						
LED2En	7:5	LED2 driver	enable		001: L 010: C 011: C 100: C 101: C 110: C	000: Off 001: LED2 On 010: Controlled by internal charger status si 011: Controlled by MPC3 100: Controlled by MPC4 101: Controlled by MPC5 110: Controlled by MPC6 111: Controlled by MPC7					

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LED2ISet	4:0	LED2 Direct Step Count. LED2 current in mA is given by (LED2_I[4:0] + 1) x LEDIStep[1:0]	00000: 0.6mA/1.0mA/1.2mA 00001: 1.2mA/2.0mA/2.4mA 00010: 1.8mA/3.0mA/3.6mA 00011: 2.4mA/4.0mA/4.8mA 00100: 3.0mA/5.0mA/6.0mA 00101: 3.6mA/6.0mA/7.2mA 00110: 4.2mA/7.0mA/8.4mA 00111: 4.8mA/8.0mA/9.6mA 01000: 5.4mA/9.0mA/10.8mA 01000: 5.4mA/9.0mA/10.8mA 01001: 6.0mA/10.0mA/12.0mA 01010: 6.6mA/11.0mA/13.2mA 01011: 7.2mA/12.0mA/14.4mA 01100: 7.8mA/13.0mA/15.6mA 01101: 8.4mA/14.0mA/16.8mA 01101: 9.0mA/15.0mA/18.0mA 01111: 9.6mA/16.0mA/19.2mA 10000: 10.2mA/17.0mA/20.4mA 10001: 10.8mA/18.0mA/21.6mA 10011: 12.0mA/20.0mA/24.0mA 10011: 12.6mA/21.0mA/25.2mA 10101: 13.8mA/23.0mA/27.6mA 10111: 14.4mA/24.0mA/28.8mA 11000: 15.0mA/25.0mA/30.0mA

PFN (0x7D)

BIT	7	6	5	4		3	2	1	0		
Field	_	_	-	-		-	_	PFN2Pin	PFN1Pin		
Access Type	_	_	_	_		-	-	Read Only	Read Only		
BITFIELD	BITS		DESCRIPT	ION		DECODE					
PFN2Pin	1	Status of PF	N2			0: PFN2 1: PFN2	not active active				
PFN1Pin	0	Status of PF	Status of PFN2				not active active				

BootCfg (0x7E)

BIT	7	6	6 5 4				3 2 1			
Field		PwrRst	Cfg[3:0]		RstCfg	BootD	0ly[1:0]	ChgAlwTry		
Access Type		Read Only Rea					Read Only Read Only Read Only			
BITFIELD	BITS	DESCRIPTION					D	ECODE		
PwrRstCfg	7:4	Determines enters hard- Settings (Ta	/soft-reset. See	e turns on, off, a e PwrRstCfg RstCfg values a						
SftRstCfg	3	Indicates wh	Configuration. tether registers ring a soft-rese	are held or res	set		register conten t registers to de			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
BootDly	2:1	Boot delay. The boot period when the sequencing engine turns on features with sequence bits 010, 011, and 100.	00: 80ms 01: 120ms 10: 220ms 11: 420ms
ChgAlwTry	0	SYS UVLO automatic retry. Determines what happens when a SYS UVLO event occurs during the boot process with CHGIN present.	0: Part latches off until CHGIN is removed 1: Part retries to boot after t _{CHG_RETRY_TMO} delay if CHGIN is still present

PwrCfg (0x7F)

BITFIELD BITS DESCRIPTION						D	ECODE	
Access Type	-	-	_	_	-	_	_	Write, Read
Field	_	_	-	-	-	-	-	StayOn
BIT	7	6	5	4	3	2	1	0

BIIFI	IELD	BITS	DESCRIPTION	DECODE
StayOn	1	0	This bit is used to ensure that the processor booted correctly. This bit must be set within 5s of power-on to prevent the part from shutting down and returning to the power-off condition. This bit has no effect after being set.	0: Shut down 5s after power-on 1: Stay on

PwrCmd (0x80)

BIT	7	6	5	4		3	2	1	0			
Field		PwrCmd[7:0]										
Access Type		Write, Read										
BITFIELD	BITS		DESCRIPT	ON		DECODE						
PwrCmd	7:0	Writing the f command lis After the wri the internal automaticall ignored. See	mand Register. following values sted. tten value has l logic, this regist y. Any other co e PwrRstCfg Se vrCmd for each	s issues the been validated ter is cleared mmands are ettings for the	by lue.	mode 0xC3: P cycle) 0xD4: P pulse or 0xE5: P' mode Available 0xF6: P' Recover	– – WR_HR_CME WR_SR_CME WR_SEAL_CI WR_SEAL_CI WR_BR_CMD	9: Issues a soft MD: Places the RstCfg 1011 a : Places the P	d-reset (power -reset (reset e part in Seal nd 1100			

BuckCfg (0x81)

BIT	7	6	5	4	3	2	1	0
Field	Bk2FrcDCM	Bk1FrcDCM	Bk3DVSCur	Bk2DVSCur	Bk1DVSCur	Bk3LowBW	Bk2LowBW	Bk1LowBW
Access Type	Write, Read							

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION
Bk2FrcDCM	7	Buck 2 Forced Discontinuous Conduction Mode (DCM). Improves light load efficiency at the expense of load regulation error at higher loads. This should only be used if the expected maximum load is less than 50mA 0 = Normal operation 1 = Forced DCM operation
Bk1FrcDCM	6	Buck 1 Forced Discontinuous Conduction Mode (DCM). Improves light load efficiency at the expense of load regulation error at higher loads. This should only be used if the expected maximum load is less than 50mA 0 = Normal operation 1 = Forced DCM operation
Bk3DVSCur	5	Buck 3 DVS Valley Current Selection. 0 = 500mA valley current during DVS transition 1 = 1000mA valley current during DVS transition
Bk2DVSCur	4	Buck 2 DVS Valley Current Selection. 0 = 500mA valley current during DVS transition 1 = 1000mA valley current during DVS transition
Bk1DVSCur	3	Buck 1 DVS Valley Current Selection. 0 = 500mA valley current during DVS transition 1 = 1000mA valley current during DVS transition
Bk3LowBW	2	Buck 3 Low Bandwidth Mode. This mode reduces the amount of capacitance required to minimize jitter when transitioning from DCM to CCM. If this bit is enabled, the output capacitance requirement is cut in half. 0 = High bandwidth mode 1 = Low bandwidth mode
Bk2LowBW	1	Buck 2 Low Bandwidth Mode. This mode reduces the amount of capacitance required to minimize jitter when transitioning from DCM to CCM. If this bit is enabled, the output capacitance requirement is cut in half. 0 = High bandwidth mode 1 = Low bandwidth mode
Bk1LowBW	0	Buck 1 Low Bandwidth Mode. This mode reduces the amount of capacitance required to minimize jitter when transitioning from DCM to CCM. If this bit is enabled, the output capacitance requirement is cut in half. 0 = High bandwidth mode 1 = Low bandwidth mode

LockMsk (0x83)

BIT	7	6	5	4		3	2	1	0	
Field	LD2Lck	LD1Lck	BBLck	BstLck	BK3Lck		BK2Lck	BK1Lck	ChgLck	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	e, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION			DECODE			
LD2Lck	7	Lock Mask f	Lock Mask for LDO2 registers				LDO2 registers not masked from locking/ locking LDO2 registers masked from locking/unlocking			

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
LD1Lck	6	Lock Mask for LDO1 registers	0: LDO1 registers not masked from locking/ unlocking 1: LDO1 registers masked from locking/unlocking
BBLck	5	Lock Mask for buck-boost registers	0: Buck-Boost registers not masked from locking/ unlocking1: Buck-Boost registers masked from locking/ unlocking
BstLck	4	Lock Mask for boost registers	0x0: Boost registers not masked from locking/ unlocking 0x1: Boost registers masked from locking/ unlocking
BK3Lck	3	Lock Mask for Buck3 registers	0x0: Buck3 registers not masked from locking/ unlocking 0x1: Buck3 registers masked from locking/ unlocking
BK2Lck	2	Lock Mask for Buck2 registers	0x0: Buck2 registers not masked from locking/ unlocking 0x1: Buck2 registers masked from locking/ unlocking
BK1Lck	1	Lock Mask for Buck1 registers	0x0: Buck1 registers not masked from locking/ unlocking 0x1: Buck1 registers masked from locking/ unlocking
ChgLck	0	Lock Mask for charger registers	0x0: Charger registers not masked from locking/ unlocking 0x1: Charger registers masked from locking/ unlocking

LockUnlock (0x84)

BIT	7	6	5	4	3	2	1	0			
Field		PASSWD[7:0]									
Access Type		Write, Read									
BITFIELD	BITS		DESCRIPT	ION		DECODE					
PASSWD	7:0	in the Lock I correct pass register retu functions. Lo unlocked fur	Password. locks all unmas Mask register 0 sword is written rns the current ocked functions nctions return 0 the same orde	x83 when the . Reading this lock state of th return 1 and . Functions are	0x55: 0 e 0xAA: All Oth	Jnlock unmask Lock unmaske er Codes: No e	d functions				

SFOUTCtr (0x86)

BIT	7	6	5	4	3	2	1	0
Field	SFOUTVSe t	-	-	-	-	-	SFOUTEn[1:0]	
Access Type	Write, Read	-	-	-	-	-	Write, Read	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIELD	BITS	DESCRIPTION	DECODE
SFOUTVSet	7	SFOUT LDO output voltage setting.	0: 5.0V 1: 3.3V
SFOUTEn	1:0	SFOUT LDO enable configuration.	0x0: Disabled (regardless of CHGIN state). 0x1: Enabled when CHGIN input voltage is present. 0x2: Enabled when CHGIN input voltage is present and controlled by MPC_ (see SFOUTMPC_ bits in register 0x87) 0x3: Reserved.

SFOUTMPC (0x87)

BIT	7	6	5	4		3	2	1	0	
Field	SFOUTMP C7	SFOUTMP C6	SFOUTMP C5	SFOUTMP C4	SF	OUTMP C3	SFOUTMP C2	SFOUTMP C1	SFOUTMP C0	
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Writ	te, Read	Write, Read	Write, Read	Write, Read	
BITFIELD	BITS		DESCRIPT	ION		DECODE				
SFOUTMPC 7	7	If multiple M	C7 Enable Con PCs are select y the logical OF				SFOUT not controlled by MPC7 SFOUT controlled by MPC7			
SFOUTMPC 6	6	If multiple M	C6 Enable Con PCs are select y the logical OF				SFOUT not controlled by MPC6 SFOUT controlled by MPC6			
SFOUTMPC 5	5	If multiple M	C5 Enable Con PCs are select y the logical OF				JT not controlle			
SFOUTMPC 4	4	If multiple M	C4 Enable Con PCs are select y the logical OF			0: SFOUT not controlled by MPC4 1: SFOUT controlled by MPC4				
SFOUTMPC 3	3	If multiple M	C3 Enable Con PCs are select y the logical OF			0: SFOUT not controlled by MPC3 1: SFOUT controlled by MPC3				
SFOUTMPC 2	2	If multiple M	C2 Enable Con PCs are select y the logical OF			0: SFOUT not controlled by MPC2 1: SFOUT controlled by MPC2				
SFOUTMPC 1	1	If multiple M	C1 Enable Con PCs are select y the logical OF			0: SFOUT not controlled by MPC1 1: SFOUT controlled by MPC1				
SFOUTMPC 0	0	If multiple M	C0 Enable Con PCs are select y the logical OF			0: SFOUT not controlled by MPC0 1: SFOUT controlled by MPC0				

<u>I2C_OTP (0x88)</u>

BIT	7	6	5	4	3	2	1	0
Field	OTPDIG_ADD[7:0]							
Access Type	Write, Read							

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

BITFIE	LD	BITS		DESCRIPTION				
OTPDIGAD	D	7:0		This is the address of the OTP reg file for OTP registers read back. OTP registers are filled with data from Sidense OTP block during boot.				
2C_OTP (0x	C_OTP (0x89)							
BIT	7	6	5	4	3	2	1	0
Field		OTPDIG_DAT[7:0]				•		
Access Type	Read Only							
DITEIE		DITE		DESCRIPTION				

BITFIELD	BITS	DESCRIPTION	
OTPDIGDAT	7:0	This is the OTP data read back.	

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Applications Information

I²C Interface

The MAX20360 contains an I²C-compatible interface for data communication with a host controller (SCL and SDA). The interface supports a clock frequency of up to 400kHz. SCL and SDA require pullup resistors that are connected to a positive supply.

Start, Stop, and Repeated Start Conditions

When writing to the MAX20360 using the I²C interface, the master sends a START condition (S) followed by the MAX20360 I²C address. After the address, the master sends the register address of the register that is to be programmed. The master then ends communication by issuing a STOP condition (P) to relinquish control of the bus, or a REPEATED START condition (Sr) to communicate to another I²C slave. See <u>Figure 36</u>.

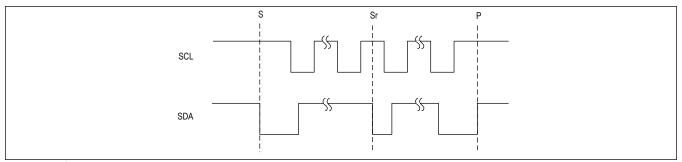


Figure 36. I²C START, STOP, and REPEATED START Conditions

Slave Address

Set the Read/Write bit high to configure the MAX20360 to read mode. Set the Read/Write bit low to configure the MAX20360 to write mode. The address is the first byte of information sent to the MAX20360 after the START condition. The MAX20360 has three slave addresses. For the ADC and haptic driver registers, the slave address is 0xA0/0xA1; for the PMIC the slave address is 0x50/0x51; and for the fuel gauge, the slave address is 0x6C/0x6D.

Bit Transfer

One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals (see the <u>Start, Stop, and Repeated Start Conditions</u> section). Both SDA and SCL remain high when the bus is not active.

Single-Byte Write

In this operation, the master sends an address and two data bytes to the slave device (Figure 37). The following procedure describes the single byte write operation:

- The master sends a START condition.
- The master sends the 7-bit slave address plus a write bit (low).
- The addressed slave asserts an ACK on the data line.
- The master sends the 8-bit register address.
- The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- The master sends 8 data bits.
- The slave asserts an ACK on the data line.
- The master generates a STOP condition.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

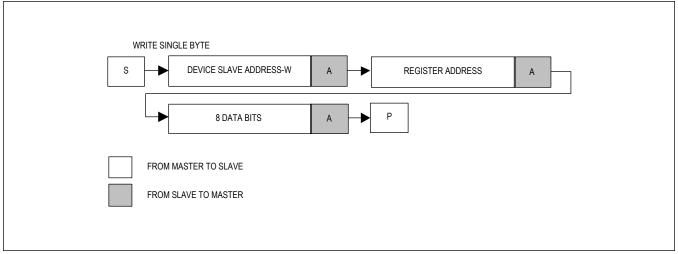


Figure 37. Write Byte Sequence

Burst Write

In this operation, the master sends an address and multiple data bytes to the slave device (Figure 38). The slave device automatically increments the register address after each data byte is sent, unless the register being accessed is 0x00, in which case the register address remains the same. The following procedure describes the burst write operation:

- The master sends a START condition.
- The master sends the 7-bit slave address plus a write bit (low).
- The addressed slave asserts an ACK on the data line.
- The master sends the 8-bit register address.
- The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- The master sends 8 data bits.
- The slave asserts an ACK on the data line.
- Repeat 6 and 7 N-1 times.
- The master generates a STOP condition.

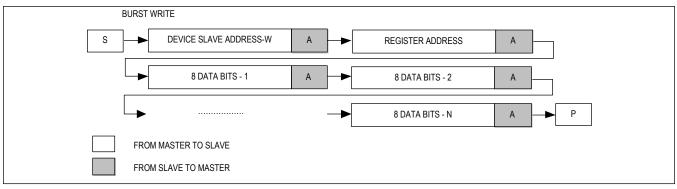


Figure 38. Burst Write Sequence

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Single Byte Read

In this operation, the master sends an address plus two data bytes and receives one data byte from the slave device (Figure 39). The following procedure describes the single byte read operation:

- The master sends a START condition.
- The master sends the 7-bit slave address plus a write bit (low).
- The addressed slave asserts an ACK on the data line.
- The master sends the 8-bit register address.
- The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- The master sends a REPEATED START condition.
- The master sends the 7-bit slave address plus a read bit (high).
- The addressed slave asserts an ACK on the data line.
- The slave sends 8 data bits.
- The master asserts a NACK on the data line.
- The master generates a STOP condition.

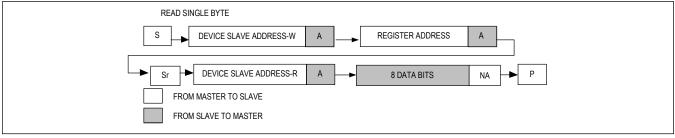


Figure 39. Read Byte Sequence

Burst Read

In this operation, the master sends an address plus two data bytes and receives multiple data bytes from the slave device (Figure 40). The following procedure describes the burst byte read operation:

- The master sends a START condition.
- The master sends the 7-bit slave address plus a write bit (low).
- The addressed slave asserts an ACK on the data line.
- The master sends the 8-bit register address.
- The slave asserts an ACK on the data line only if the address is valid (NAK if not).
- The master sends a REPEATED START condition.
- The master sends the 7-bit slave address plus a read bit (high).
- The slave asserts an ACK on the data line.
- The slave sends 8 data bits.
- The master asserts an ACK on the data line.
- Repeat 9 and 10 N-2 times.
- The slave sends the last 8 data bits.
- The master asserts a NACK on the data line.
- The master generates a STOP condition.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

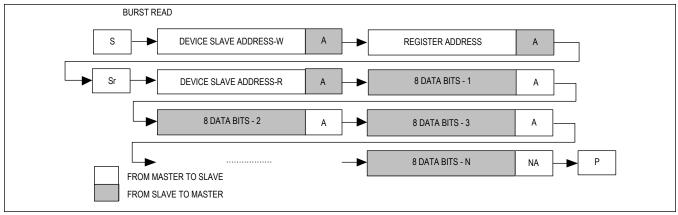


Figure 40. Burst Read Sequence

Acknowledge Bits

Data transfers are acknowledged with an acknowledge bit (ACK) or a not-acknowledge bit (NACK). Both the master and the MAX20360 generate ACK bits. To generate an ACK, pull SDA low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (see Figure 41). To generate a NACK, leave SDA high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. Monitoring for NACK bits allows for detection of unsuccessful data transfers.

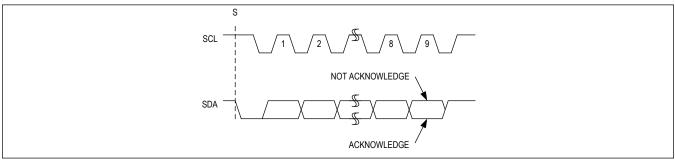


Figure 41. Acknowledge Bits

I²C Security Functions

Function Locking

All regulator voltages and the end-of-charge behavior of the charger can be locked. I²C writes to a locked bitfield have no effect. To lock a function, its lock mask must be removed in the LockMsk register (see <u>LockMsk</u>). To remove the lock mask, set the corresponding function mask bit to 0. By writing the lock password 0xAA to the LockUnlock register (see <u>LockUnlock</u>), all unmasked functions are locked. To unlock functions, repeat the mask/unmask process and write the unlock password 0x55 to the LockUnlock register (see <u>LockUnlock</u>). Registers covered by the lock functions are denoted by an asterisk in the register map.

Secure Writes with Fletcher-16 Checksum

The MAX20360 includes an optional safe I²C-write mode for the registers contained under the PMIC slave address (SLAVE_ID 0x50). When enabled, only single-byte writes are allowed on the PMIC address and each write sequence must be followed by a two-byte checksum (see Figure 42 for the write sequence). In the event that the checksum evaluation returns TRUE, the PMIC immediately writes the value of the write to the appropriate register. In the event that the checksum evaluation returns FALSE, the write is not performed and an interrupt indicating write failure is sent to the system microcontroller.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

The fletcher checksum is calculated using the below equations:

CSUM1 = (SLAVE_ID + REG_ADD + DATA) ÷ 255

 $CSUM2 = ((3 \times SLAVE_ID) + (2 \times REG_ADD) + (DATA)) \div 255$

Where SLAVE_ID = 0x50, REG_ADD is the register address being written, DATA is the byte of data to be written, and \div is the modulo function. The write sequence is as shown in <u>Figure 42</u> below.

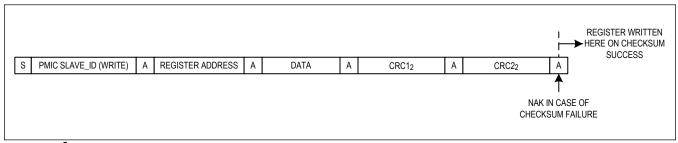


Figure 42. I²C Writes on PMIC Slave Address with Fletcher-16 Checksum

Default Bits

<u>Table 8</u> shows the default settings for different versions. These default values are OTP programmable. Some bits can be changed through the I^2C interface after power-up while some bits are set through OTP.

Table 8. Device Default Settings

FIELD	EV KIT	MAX20360A	MAX20360B
<u>SysMinVlt</u>	3.6V	4.0V	4.0V
<u>ILimBlank</u>	Disabled	Disabled	Disabled
<u>ILimCntl</u>	450mA	450mA	450mA
<u>IChgDone</u>	30% I _{FCHG}	10% I _{FCHG}	10% I _{FCHG}
<u>ChgBatReChg</u>	ChgBatReg - 70mV	ChgBatReg - 120mV	ChgBatReg - 120mV
<u>ChgBatReg</u>	4.35V	4.20V	4.20V
<u>ChgEn</u>	Enabled	Enabled	Enabled
<u>PChgTmr</u>	60min	30min	30min
<u>VPChg</u>	3.15V	3.00V	3.00V
<u>IPChg</u>	5% I _{FCHG}	10% I _{FCHG}	5% I _{FCHG}
<u>ChgStepHys</u>	400mV	400mV	400mV
<u>ChgStepRise</u>	3.80V	4.55V	4.55V
ChgAutoStop	Enabled	Enabled	Enabled
<u>ChgAutoReSta</u>	Enabled	Enabled	Enabled
<u>MtChgTmr</u>	60min	30min	30min
<u>FChgTmr</u>	600min	150min	150min
<u>ChglStep</u>	100% I _{FCHG}	100% I _{FCHG}	100% I _{FCHG}
<u>HrvBatReg</u>	N/A	N/A	4.20V
<u>HrvThmEn</u>	N/A	N/A	Cool/Room/Warm
<u>ChgThmEn</u>	Cool/Room	Cool/Room	Cool/Room
<u>VSysUvlo</u>	2.7V	3.0V	3.0V

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Table 8. Device Default Settings (continued)

FIELD	EV KIT	MAX20360A	MAX20360B
<u>HrvThmDis</u>	N/A	N/A	Force SYS-to-BAT Ideal Diode
<u>HrvBatSys</u>	N/A	N/A	Direct if V _{BAT} < HrvBatReg
<u>HrvBatReChg</u>	N/A	N/A	HrvBatReg - 120mV
Bk1Step	10mV	10mV	50mV
Buck1VSet	1.10V	0.70V	1.80V
Bk2Step	25mV	10mV	10mV
Buck2VSet	1.800V	1.05V	1.05V
Bk3Step	50mV	50mV	50mV
Buck3VSet	3.20V	1.85V	1.80V
Buck1FETScale	Disabled	Disabled	Disabled
<u>Buck1En</u>	Disabled	Disabled	Disabled
<u>Buck2En</u>	Disabled	Enabled	Enabled
Buck2FETScale	Disabled	Disabled	Disabled
Buck3FETScale	Disabled	Disabled	Disabled
<u>Buck3En</u>	Disabled	Enabled	Enabled
<u>Buck3DisLDO</u>	LDO Enabled	Buck Always	Buck Always
<u>BBstVSet</u>	5.00V	5.00V	5.00V
<u>BBstMode</u>	Buck-Boost	Buck-Boost	Buck-Boost
<u>BBstEn</u>	Disabled	Disabled	Disabled
LDO1Mode	LDO	Load Switch	Load Switch
<u>LDO1En</u>	Disabled	Disabled	Disabled
<u>BBstFast</u>	Low IQ	Low IQ	Low I _Q
<u>BBstFETScale</u>	Disabled	Disabled	Disabled
<u>LDO2En</u>	Disabled	Enabled	Enabled
<u>LDO1VSet</u>	0.500V	1.850V	1.800V
<u>LSW1En</u>	Disabled	Disabled	Disabled
<u>LDO2VSet</u>	0.9V	1.8V	1.8V
LDO2Supply	External	Internal	Internal
LDO2Mode	LDO	LDO	LDO
<u>CPVSet</u>	5.0V	5.0V	5.0V
<u>ChgPmpEn</u>	Disabled	Disabled	Disabled
<u>LSW2Lowlq</u>	Low-IQ	Protected	Protected
<u>LSW2En</u>	Disabled	Disabled	Disabled
<u>LSW1Lowlq</u>	Low-IQ	Protected	Protected
<u>BstVSet</u>	12.00V	20.00V	20.00V
<u>Bk1DVSCur</u>	1A	0.5A	0.5A
<u>Bk1LowBW</u>	Full BW	Full BW	Full BW

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Table 8. Device Default Settings (continued)

FIELD	EV KIT	MAX20360A	MAX20360B
<u>Bk1FrcDCM</u>	Normal Mode	Normal Mode	Normal Mode
<u>Bk2DVSCur</u>	1A	0.5A	0.5A
<u>Bk2LowBW</u>	Full BW	Full BW	Full BW
<u>Bk2FrcDCM</u>	Normal Mode	Normal Mode	Normal Mode
<u>Bk3DVSCur</u>	1A	0.5A	0.5A
<u>Bk3LowBW</u>	Full BW	Full BW	Full BW
INT_MSK_DIS	INT mask until 100% Boot	INT mask until 100% Boot	INT mask until 100% Boot
<u>BstEn</u>	Disabled	Disabled	Disabled
PwrRstCfg	1011	1011	1011
<u>SftRstCfg</u>	Reset Regs	Reset Regs	Reset Regs
<u>BootDly</u>	80ms	80ms	80ms
<u>ChgAlwTry</u>	Retry	Retry	Retry
<u>StayOn</u>	Enabled	Enabled	Enabled
<u>SFOUTVSet</u>	3.3V	3.3V	3.3V
<u>SFOUTEn</u>	CHGIN	CHGIN	CHGIN
UsbOkselect	CHGIN Rise	CHGIN Rise	CHGIN Rise
LDO1Seq	LDO1En After 100%	LDO1En After 100%	LDO1En After 100%
<u>BBstSeq</u>	BBstEn After 100%	BBstEn After 100%	BBstEn After 100%
IBatOc	1600mA	1400mA	1400mA
Buck1Seq	Buck1En After 100%	Buck1En After 100%	Buck1En After 100%
Buck2Seq	Buck2En After 100%	50%	50%
Buck3Seq	Buck3En After 100%	25%	25%
<u>LSW1Seq</u>	LSW1En After 100%	LSW1En After 100%	LSW1En After 100%
<u>BoostSeq</u>	BstEn After 100%	BstEn After 100%	BstEn After 100%
LDO2Seq	LDO2En After 100%	0%	0%
<u>ChgPmpSeq</u>	ChgPmpEn After 100%	ChgPmpEn After 100%	ChgPmpEn After 100%
<u>LSW2Seq</u>	LSW2En After 100%	LSW2En After 100%	LSW2En After 100%
PFN1RES	Connect Resistor	Connect Resistor	Connect Resistor
PFN1PU	Pullup	Pullup	Pullup
PFN2RES	No Resistor	No Resistor	No Resistor
PFN2PU	N/A	N/A	N/A
HrvEn	Disabled	Disabled	Enabled
i2c_crc_ena	Enabled	Enabled	Enabled
i2c_tmo_ena	Enabled	Enabled	Enabled
<u>DrvTmo</u>	Disabled	Disabled	Disabled
<u>HptSel</u>	LRA	LRA	LRA
ILimMax	1000mA	450mA	450mA

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Table 8. Device Default Settings (continued)

FIELD	EV KIT	MAX20360A	MAX20360B
JEITASet	T4 = 25.53%, T3 = 32.94%	T4 = 25.53%, T3 = 32.94%	T4_HARV = 14.51%, T3 = 32.94%
TShdn	120°C	120°C	120°C

Register Defaults

Table 9 shows the default values of all the registers.

Table 9. I²C Direct Register Defaults

SLAVE ADDRESS	REGISTER ADD	REGISTER NAME	EV KIT	MAX20360A	MAX20360B
0xA0	0x00	HptStatus0	0x00	0x00	0x00
0xA0	0x01	HptStatus1	0x00	0x00	0x00
0xA0	0x02	HptStatus2	0x00	0x00	0x00
0xA0	0x03	HptInt0	0x00	0x00	0x00
0xA0	0x04	HptInt1	0x00	0x00	0x00
0xA0	0x05	HptInt2	0x00	0x00	0x00
0xA0	0x06	HptIntMask0	0x00	0x00	0x00
0xA0	0x07	HptIntMask1	0x00	0x00	0x00
0xA0	0x08	HptIntMask2	0x00	0x00	0x00
0xA0	0x09	HptControl	0x00	0x00	0x00
0xA0	0x0A	HptRTI2CPat	0x00	0x00	0x00
0xA0	0x0B	HptRAMPatAdd	0x00	0x00	0x00
0xA0	0x0C	HptProt	0x04	0x04	0x04
0xA0	0x0D	HptUnlock	0x00	0x00	0x00
0xA0	0x11	HPTCfg0	0x0E	0x0E	0x0E
0xA0	0x12	HPTCfg1	0x8B	0x8B	0x8B
0xA0	0x13	HPTCfg2	0x8B	0x8B	0x8B
0xA0	0x14	HPTCfg3	0x19	0x19	0x19
0xA0	0x15	HPTCfg4	0x03	0x03	0x03
0xA0	0x16	HPTCfg5	0x05	0x05	0x05
0xA0	0x17	HPTCfg6	0x11	0x11	0x11
0xA0	0x18	HPTCfg7	0x08	0x08	0x08
0xA0	0x19	HPTCfg8	0x1F	0x1F	0x1F
0xA0	0x1A	HPTCfg9	0x84	0x84	0x84
0xA0	0x1B	HPTCfgA	0x07	0x07	0x07
0xA0	0x1C	HPTCfgB	0x40	0x40	0x40
0xA0	0x1D	HPTCfgC	0xD0	0xD0	0xD0
0xA0	0x1E	HPTCfgD	0x07	0x07	0x07
0xA0	0x1F	HPTCfgE	0x06	0x06	0x06
0xA0	0x20	HPTCfgF	0x24	0x24	0x24
0xA0	0x22	HptAutoTune	0x00	0x00	0x00
0xA0	0x23	BEMFPeriod0	0xD0	0xD0	0xD0
0xA0	0x24	BEMFPeriod1	0x07	0x07	0x07

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

SLAVE ADDRESS	REGISTER ADD	REGISTER NAME	EV KIT	MAX20360A	MAX20360B
0xA0	0x30	HptETRGOdAmp	0x7F	0x7F	0x7F
0xA0	0x31	HptETRGOdDur	0x04	0x04	0x04
0xA0	0x32	HptETRGActAmp	0x3F	0x3F	0x3F
0xA0	0x33	HptETRGActDur	0x32	0x32	0x32
0xA0	0x34	HptETRGBrkAmp	0xFF	0xFF	0xFF
0xA0	0x35	HptETRGBrkDur	0x20	0x20	0x20
0xA0	0x40	HptRAMAdd	0x00	0x00	0x00
0xA0	0x41	HptRAMDataH	-	-	-
0xA0	0x42	HptRAMDataM	-	-	-
0xA0	0x43	HptRAMDataL	-	-	-
0xA0	0x50	ADCEn	0x00	0x00	0x00
0xA0	0x51	ADCCfg	0x00	0x00	0x00
0xA0	0x53	ADCDatAvg	0x00	0x00	0x00
0xA0	0x54	ADCDatMin	0x00	0x00	0x00
0xA0	0x55	ADCDatMax	0x00	0x00	0x00
0x50	0x00	ChipID	0x02	0x02	0x02
0x50	0x01	Status0	0x38	0x38	0x10
0x50	0x02	Status1	0x20	0x20	0x20
0x50	0x03	Status2	0x00	0x00	0x00
0x50	0x04	Status3	0x00	0x00	0x00
0x50	0x05	Status4	0x80	0x80	0x80
0x50	0x06	IntO	0x00	0x00	0x00
0x50	0x07	Int1	0x00	0x00	0x00
0x50	0x08	Int2	0x00	0x00	0x00
0x50	0x09	Int3	0x00	0x00	0x00
0x50	0x0A	IntMask0	0x00	0x00	0x00
0x50	0x0B	IntMask1	0x00	0x00	0x00
0x50	0x0C	IntMask2	0x00	0x00	0x00
0x50	0x0D	IntMask3	0x00	0x00	0x00
0x50	0x0F	ILimCntl	0x06	0x86	0x86
0x50	0x10	ChgCntl0	0x0D	0x27	0x27
0x50	0x11	ChgCntl1	0x73	0x65	0x61
0x50	0x12	ChgTmr	0xFD	0xE4	0xE4
0x50	0x13	StepChgCfg0	0x30	0x3F	0x3F
0x50	0x14	StepChgCfg1	0x07	0x17	0x17
0x50	0x15	ThmCfg0	0x3F	0x3F	0x3F
0x50	0x16	ThmCfg1	0x1F	0x1F	0x1F
0x50	0x17	ThmCfg2	0x1F	0x1F	0xDF
0x50	0x18	HrvCfg0	0x00	0x00	0x53
	1				1

Table 9. I²C Direct Register Defaults (continued)

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

SLAVE ADDRESS **REGISTER ADD REGISTER NAME EV KIT** MAX20360A MAX20360B 0x10 0x50 0x1A **IVMONCfg** 0x10 0x10 0x50 0x1B Buck1Ena 0xE0 0xE0 0xE0 0x50 0x1C Buck1Cfg0 0x50 0x50 0x50 0x50 0x1D Buck1Cfg1 0x00 0x00 0x00 0x50 Buck1lset 0x00 0x1E 0x00 0x00 0x50 0x0F 0x19 0x1F Buck1VSet 0x37 0x50 0x20 Buck1Ctr 0x01 0x01 0x01 0x50 0x21 Buck1DvsCfg0 0x00 0x00 0x00 0x00 0x50 0x22 Buck1DvsCfg1 0x00 0x00 0x50 0x23 0x00 0x00 Buck1DvsCfg2 0x00 Buck1DvsCfg3 0x50 0x24 0x00 0x00 0x00 0x50 0x25 Buck1DvsCfg4 0x00 0x00 0x00 0x50 0x26 Buck1DvsSpi 0x00 0x81 0x00 0x50 0x27 Buck2Ena 0xE0 0x50 0x81 0x50 0x50 0x28 Buck2Cfg 0x51 0x00 0x50 0x29 Buck2Cfg1 0x00 0x00 0x00 0x50 0x2A Buck2lset 0x00 0x32 0x00 0x50 0x2B Buck2VSet 0x32 0x02 0x32 0x50 0x2C 0x00 0x02 Buck2Ctr 0x02 0x50 0x2D Buck2DvsCfg0 0x00 0x00 0x00 0x50 0x2E Buck2DvsCfg1 0x00 0x00 0x00 0x2F 0x50 Buck2DvsCfg2 0x00 0x00 0x00 0x50 0x30 Buck2DvsCfq3 0x00 0x00 0x00 0x50 0x31 Buck2DvsCfg4 0x00 0x00 0x00 0x50 0x32 Buck2DvsSpi 0x00 0x00 0x00 0x50 0x34 Buck3Ena 0xE0 0x61 0x61 0x50 0x35 Buck3Cfg 0x51 0x51 0x51 0x40 0x40 0x50 0x36 Buck3Cfg1 0x00 0x50 0x37 Buck3lset 0x00 0x00 0x00 0x50 0x38 Buck3VSet 0x35 0x1A 0x19 0x50 0x39 Buck3Ctr 0x04 0x04 0x04 0x50 0x3A Buck3DvsCfg0 0x00 0x00 0x00 0x50 0x3B Buck3DvsCfg1 0x00 0x00 0x00 0x50 0x3C Buck3DvsCfg2 0x00 0x00 0x00 0x50 0x3D Buck3DvsCfg3 0x00 0x00 0x00 0x50 0x3E Buck3DvsCfg4 0x00 0x00 0x00 0x3F Buck3DvsSpi 0x00 0x00 0x50 0x00 0x50 0x40 BBstEna 0xE0 0xE0 0xE0 0x50 0x41 BBstCfg 0x05 0x05 0x05 0x50 0x42 **BBstVSet** 0x32 0x32 0x32

Table 9. I²C Direct Register Defaults (continued)

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Table 9. I²C Direct Register Defaults (continued) SLAVE ADDRESS REGISTER ADD REGISTER NAME

SLAVE ADDRESS	REGISTER ADD	REGISTER NAME	EV KIT	MAX20360A	MAX20360E
0x50	0x43	BBstlSet	0x00	0x00	0x00
0x50	0x44	BBstCfg1	0x13	0x13	0x13
0x50	0x45	BBstCtr0	0x08	0x08	0x08
0x50	0x46	BBstCtr1	0x00	0x00	0x00
0x50	0x47	BBstDvsCfg0	0x00	0x00	0x00
0x50	0x48	BBstDvsCfg1	0x00	0x00	0x00
0x50	0x49	BBstDvsCfg2	0x00	0x00	0x00
0x50	0x4A	BBstDvsCfg3	0x00	0x00	0x00
0x50	0x4B	BBstDvsSpi	0x00	0x00	0x00
0x50	0x51	LDO1Ena	0xE0	0xE0	0xE0
0x50	0x52	LDO1Cfg	0x01	0x03	0x03
0x50	0x53	LDO1VSet	0x00	0x36	0x34
0x50	0x54	LDO1Ctr	0x00	0x00	0x00
0x50	0x55	LDO2Ena	0xE0	0x41	0x41
0x50	0x56	LDO2Cfg	0x01	0x09	0x09
0x50	0x57	LDO2VSet	0x00	0x09	0x09
0x50	0x58	LDO2Ctr	0x00	0x00	0x00
0x50	0x59	LSW1Ena	0xE0	0xE0	0xE0
0x50	0x5A	LSWCfg	0x03	0x01	0x01
0x50	0x5B	LSW1Ctr	0x00	0x00	0x00
0x50	0x5C	LSW2Ena	0xE0	0xE0	0xE0
0x50	0x5D	LSW2Cfg	0x03	0x01	0x01
0x50	0x5E	LSW2Ctr	0x00	0x00	0x00
0x50	0x5F	ChgPmpEna	0xE0	0xE0	0xE0
0x50	0x60	ChgPmpCfg	0x03	0x03	0x03
0x50	0x61	ChgPmpCtr	0x00	0x00	0x00
0x50	0x62	BoostEna	0xE0	0xE0	0xE0
0x50	0x63	BoostCfg	0x0E	0x0E	0x0E
0x50	0x64	BoostlSet	0x00	0x00	0x00
0x50	0x65	BoostVSet	0x1C	0x3C	0x3C
0x50	0x66	BoostCtr	0x00	0x00	0x00
0x50	0x67	MPC0Cfg	0x00	0x00	0x00
0x50	0x68	MPC1Cfg	0x00	0x00	0x00
0x50	0x69	MPC2Cfg	0x00	0x00	0x00
0x50	0x6A	MPC3Cfg	0x00	0x00	0x00
0x50	0x6B	MPC4Cfg	0x00	0x00	0x00
0x50	0x6C	MPC5Cfg	0x00	0x00	0x00
0x50	0x6D	MPC6Cfg	0x00	0x00	0x00
0x50	0x6E	MPC7Cfg	0x00	0x00	0x00
0x50	0x6F	MPCltrSts	0x00	0x06	0x06

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Table 9. I²C Direct Register Defaults (continued)

SLAVE ADDRESS	REGISTER ADD	REGISTER NAME	EV KIT	MAX20360A	MAX20360B
0x50	0x70	BK1DedIntCfg	0x00	0x00	0x00
0x50	0x71	BK2DedIntCfg	0x00	0x00	0x00
0x50	0x72	BK3DedIntCfg	0x00	0x00	0x00
0x50	0x73	HptDedIntCfg	0x00	0x00	0x00
0x50	0x74	ADCDedIntCfg	0x00	0x00	0x00
0x50	0x75	USBOkDedIntCfg	0x00	0x00	0x00
0x50	0x78	LEDCommon	0x00	0x00	0x00
0x50	0x79	LED0Ref	0x00	0x00	0x00
0x50	0x7A	LED0Ctr	0x00	0x00	0x00
0x50	0x7B	LED1Ctr	0x00	0x00	0x00
0x50	0x7C	LED2Ctr	0x00	0x00	0x00
0x50	0x7D	PFN	0x01	0x01	0x01
0x50	0x7E	BootCfg	0xB9	0xB9	0xB9
0x50	0x7F	PwrCfg	0x01	0x01	0x01
0x50	0x80	PwrCmd	0x00	0x00	0x00
0x50	0x81	BuckCfg	0x38	0x00	0x00
0x50	0x83	LockMsk	0x00	0x00	0x00
0x50	0x84	LockUnlock	0x00	0x00	0x00
0x50	0x86	SFOUTCtr	0x81	0x81	0x81
0x50	0x87	SFOUTMPC	0x00	0x00	0x00
0x50	0x88	I2C_OTP_ADD	0x00	0x00	0x00
0x50	0x89	I2C_OTP_DAT	-	-	-

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX20360AEWZ+	-40°C to +85°C	72 WLP
MAX20360AEWZ+T	-40°C to +85°C	72 WLP
MAX20360BEWZ+*	-40°C to +85°C	72 WLP
MAX20360BEWZ+T*	-40°C to +85°C	72 WLP

+ Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape-and-reel.

*Future product—contact factory for availability.

PMIC with Ultra-Low I_Q Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ System

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	9/20	Release for Market Intro	—

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.