

Design Example Report

Title	High Efficiency (≥75%), 3.6 W Isolated LED Driver Using LinkSwitch [™] -II LNK605DG
Specification	90 VAC – 265 VAC Input; 12 V, 0.3 A Output
Application	LED Driver for GU10 Lamp
Author	Applications Engineering Department
Document Number	DER-261
Date	September 24, 2010
Revision	1.5

Summary and Features

- Low cost, low component count and small printed circuit board footprint solution
 - o Frequency jitter for smaller, lower cost EMI filter components
 - Primary side control eliminates secondary side control and optocoupler and provides +/-5% CV and +/-10% CC accuracy
- Integrated protection and reliability features
 - o Output open circuit / output short-circuit protected with auto-recovery
 - Over-temperature protection tight tolerance (+/-5%) with hysteretic recovery for safe PCB temperature under all conditions
 - Extended package pin creepage distance for reliable operation in humid environments
 >3.2mm at package
- Designed to meet
 - EN55015B conducted EMI with >10 dBµV margin
 - o IEC61000-4-5 Class 3 AC line surge
 - IEC61000-4-2 ESD at 4 kV contact / 8 kV air.
 - o Ultra-low AC leakage current: <5 μA at 265 VAC input (no Y capacitor required)
- EcoSmart[™]
 - No-load consumption: <50 mW at 265 VAC
 - Efficiency: ≥75% at both 115 VAC and 230 VAC

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

Table of Contents

1	Introduction	5
2	Power Supply Specification	7
3	Schematic	8
4	Circuit Description	9
4.	1 Input Filtering	9
4.	2 LinkSwitch-II Primary	9
4.	3 Output Rectification	9
5	PCB Layout	10
6	Bill of Materials	11
7	Transformer Specification	12
7.		
7.		12
7.		
7.		
7.		
7.		
7.	· · · · · · · · · · · · · · · · · · ·	
7.	· ··· · · · · · · · · ·	
8	Transformer Design Spreadsheet	
9	Performance Data	
9.		
9.		
9.		
10	Thermal Performance	
1(0.1 Measurement with Infrared Camera (Open Frame)	
	10.1.1 $V_{IN} = 115 \text{ VAC}$	
	10.1.2 $V_{IN} = 230 \text{ VAC}$	
	0.2 Measurement with Thermocouples (Inside Enclosure)	
11	Waveforms	
	1.1 Drain Voltage and Current	
	1.2 Drain Voltage and Current Start-up Profile	
12 13	Line Surge	
13 14	Hipot Test ESD Test	
14 15	Conducted EMI	
15 16		
10	Revision History	აა

Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

The document describes a high efficiency LED driver designed to drive 12 V at 0.3 A from an input voltage range of 90 VAC to 265 VAC. The LED driver uses the LNK605DG from the LinkSwitch-II family by Power Integrations.

LinkSwitch-II ICs allow the implementation of cost effective and low component count LED drivers meeting the compact design and high efficiency requirements necessary for high temperature operating environments.

The topology used is an isolated flyback operating in discontinuous conduction mode. Output current regulation is sensed entirely from the primary side eliminating the need for secondary side feedback components. No external current sensing is required on the primary side either as this is performed inside the IC further reducing components and losses.

The LNK605DG also provides a sophisticated range of protection features including autorestart for open control loop and output short-circuit conditions. Accurate hysteretic thermal shutdown ensures safe average PCB temperatures under all conditions.

In LED luminaires the driver determines many of the performance attributes experienced by the end user including startup time and unit to unit consistency. For this design, the LNK605DG device ensures unit to unit consistency with an output CC tolerance of < \pm 10%, fast startup time of <5 ms for instant on performance and long lifetime and high reliability due to the low component count.

This document contains the LED driver specification, schematic, PCB diagram, bill of materials, transformer documentation and typical performance characteristics.

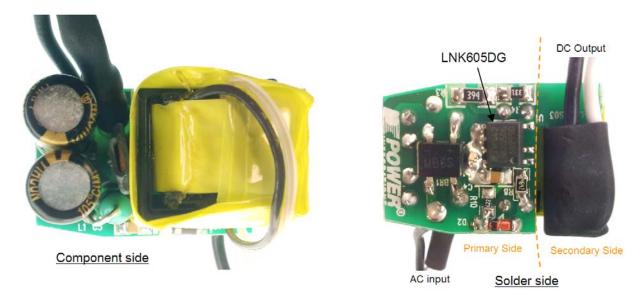
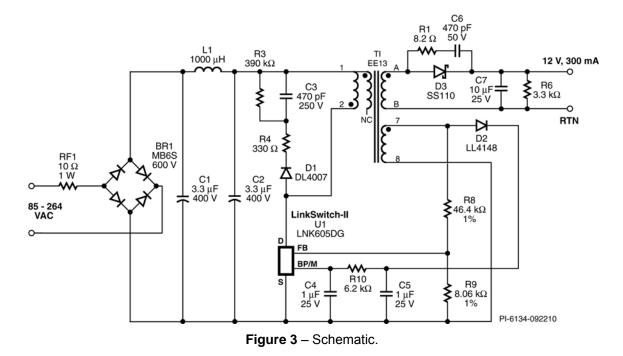


Figure 1 – Populated Circuit Board Photograph.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.


Description	Symbol	Min	Тур	Max	Units	Comment
Input Voltage Frequency	V _{IN} f _{LINE}	90 47	115/230 50/60	265 64	VAC Hz	2 Wire – no P.E.
Output Output Voltage Output Current	V _{out} I _{out}	10.5	11 0.3	12.1	V A	V _{OUT} = 12, V _{IN} = 230 / 115 VAC, 25°C
Total Output Power Continuous Output Power	Ρουτ		3.6		W	
Efficiency Full Load	η	75			%	Measured at P _{out} 25 °C and input 115 / 230 VAC
Environmental Conducted EMI Safety			ets CISPR ² to meet IEC		5015B 1950 Class II	
ESD		4 8			kV kV	Contact Discharge Air Discharge
Ring Wave (100 kHz) Differential Mode (L1-L2)			2		kV	EN 61000-4-5 , 200 A
Ambient Temperature	T _{AMB}		70		О°	Free convection, sea level

Notes:

 Ambient temperature is specified with a small heatsink added on the PCB next to LinkSwitch-II device.

3 Schematic

4 Circuit Description

The LinkSwitch-II device is an integrated controller plus 700 V power MOSFET intended for use in LED driver or charger applications. The LinkSwitch-II is configured for use in a single-stage discontinuous conduction mode flyback topology and provides a primary side regulated constant voltage and current output.

4.1 Input Filtering

AC input power is rectified by bridge rectifier BR1. The rectified DC is filtered by the bulk storage capacitors C1 and C2. Inductors L1, C1 and C2 form a pi (π) filter, which attenuates conducted differential-mode EMI noise. This configuration along with Power Integrations transformer E-shieldTM technology allow this design to meet EMI standard EN55015 Class B with good margin without requiring a Y capacitor. The transformer construction also gives very good EMI repeatability. Fusible resistor RF1 provides protection against catastrophic failure. This should be a wire wound type to withstand the instantaneous dissipation when first connected to AC while the input capacitors charge.

4.2 LinkSwitch-II Primary

The LNK605DG device (U1) incorporates the power switching device, oscillator, CC/CV control engine, startup, and protection functions. The integrated 700 V power MOSFET allows for sufficient voltage margin in universal input AC applications. The device is powered from the BYPASS pin via the decoupling capacitor C4 during startup.

The rectified and filtered input voltage is applied to one end of the primary winding of T1. The other side of the transformer's primary winding is driven by the integrated 700 V power MOSFET in U1. The leakage inductance drain voltage spike is limited by an RCD-R clamp consisting of D1, R3, R4, and C3.

Diode D2, C5 and R10 create the primary bias supply. This voltage created from the transformer bias winding supplies bias current into the BYPASS pin through D2 and R10. The LNK605DG can be configured with or without an optional bias supply. When configured to be supplied from a bias supply (as in this design), the no-load power consumption reduces to <50 mW.

4.3 Output Rectification

The secondary of the transformer is rectified by D3; a Schottky barrier type was selected for higher efficiency, and filtered by C7. For this application a ceramic capacitor was selected for C7 to provide longer life time compared to an electrolytic type due to the high operating ambient temperature. Resistor R1 and C6 dampen high frequency ringing and reduce the diode voltage stress.

5 PCB Layout

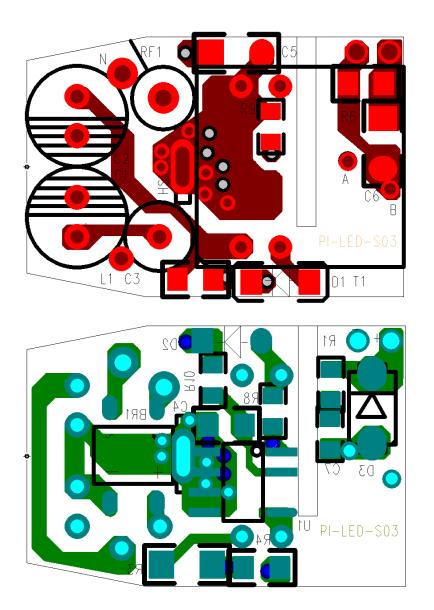


Figure 4 – Printed Circuit Layout (Designed to Fit Inside GU10 Lamp Form Factor). 24.31 mm (L) x 16.50 mm x 13.50 mm.

6 Bill of Materials

Item	Qty.	Ref Des	Description	Mfg Part Number	Manufacturer
1	1	BR1	600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC	MB6S	Micro Commercial
2	1	C1 C2	3.3 μF, 400 V, Electrolytic, (6.3 x 12)	TM1332PE12MCP	YIH HONG MAO Electronics Co.
3	1	C3	470 pF, 250 V, Ceramic, X7R, 0805	ECJ-2VB2A471K	Panasonic
4	2	C4 C5	1 μF, 25 V, Ceramic, X7R, 0805	ECJ-2FB1E105K	Panasonic
5	1	C6	470 pF 50 V, Ceramic, X7R, 0603	ECJ-1VC1H471J	Panasonic
6	1	C7	10 μF, 25 V, Ceramic, X7R, 1206	ECJ-3YB1E106M	Panasonic
7	1	D1	1000 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF)	DL4007-13-F	Diodes Inc
8	1	D2	75 V, 0.15 A, Fast Switching, 4 ns, MELF	LL4148-13	Diode Inc.
9	1	D3	100 V, 1 A, Schottky, DO-214AC (SMA)	SS110	Micro commercial.
10	1	L1	1000 μH, 0.08 A, Ferrite Core, Shielded	1641-105K	API Delevan
11	1	R1	8.2 Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ8R2V	Panasonic
12	1	R3	390 k Ω, 5%, 1/4 W, Thick Film, 1206	ERJ-8GEYJ394V	Panasonic
13	1	R4	330 Ω, 5%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ331V	Panasonic
14	1	R6	3.3 k Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ332V	Panasonic
15	1	R8	46.4 k Ω, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF4642V	Panasonic
16	1	R9	8.06 k Ω, 1%, 1/16 W, Thick Film, 0603	ERJ-3EKF8061V	Panasonic
17	1	R10	6.2 k Ω, 5%, 1/10 W, Thick Film, 0603	ERJ-3GEYJ622V	Panasonic
18	1	RF1	10 Ω , 1 W, Fusible/Flame Proof Wire Wound	CRF251-4 10R	Vitrohm
19	1	T1	Bobbin, EE13, Vertical, 8 pins	BE13-1110CPSFR	TDK
20	1	U1	LinkSwitch-II, LNK605DG, CV/CC, SO-8C	LNK605DG	Power Integrations

7 Transformer Specification

7.1 Electrical Diagram

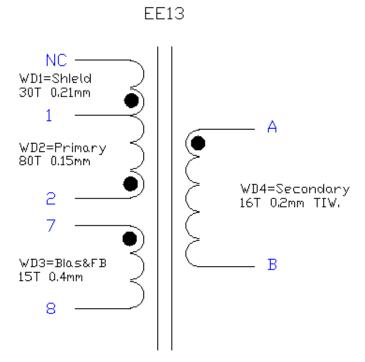


Figure 5 – Transformer Electrical Diagram.

7.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins 1, 2, 7, 8 to A, B	3000 VAC
Primary Inductance	Pins 1 - 2, all other windings open, measured at 100 kHz, 0.4 VRMS	1.10 mH ±10%
Resonant Frequency	Pins 1 - 2, all other windings open	750 kHz (Min.)
Primary Leakage Inductance	Pins 1 - 2 with A - B shorted, measured at 100 kHz, 0.4 VRMS	35 μH ±10%

7.3 Materials

Item	Description
[1]	Core: PC40 from TDK or equivalent, ALG = 1130.00nH/n ²
[2]	Bobbin: 8 pin vertical, BE13-1110CPSFR from TDK, or equivalent
[3]	Magnet Wire: 0.21mm Diameter.
[4]	Magnet Wire: 0.15mm Diameter.
[5]	Magnet Wire: 0.4mm Diameter.
[6]	Magnet Wire: 0.2mm Diameter T.I.W.
[7]	Tape: 3M 1298 Polyester Film, 8 mm wide.
[8]	Tape: 3M 1298 Polyester Film, 12 mm wide and 156 mm long.
[9]	Tape: 3M 1298 Polyester Film, 14 mm wide and 182 mm long.
[10]	Varnish.

7.4 Transformer Build Diagram

Pins Side

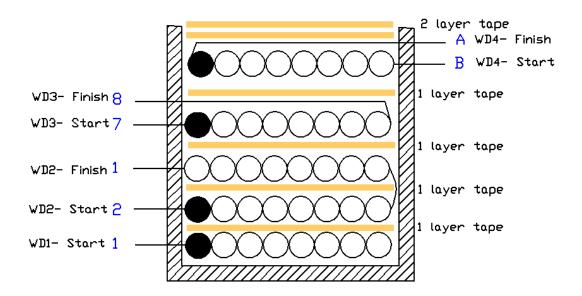
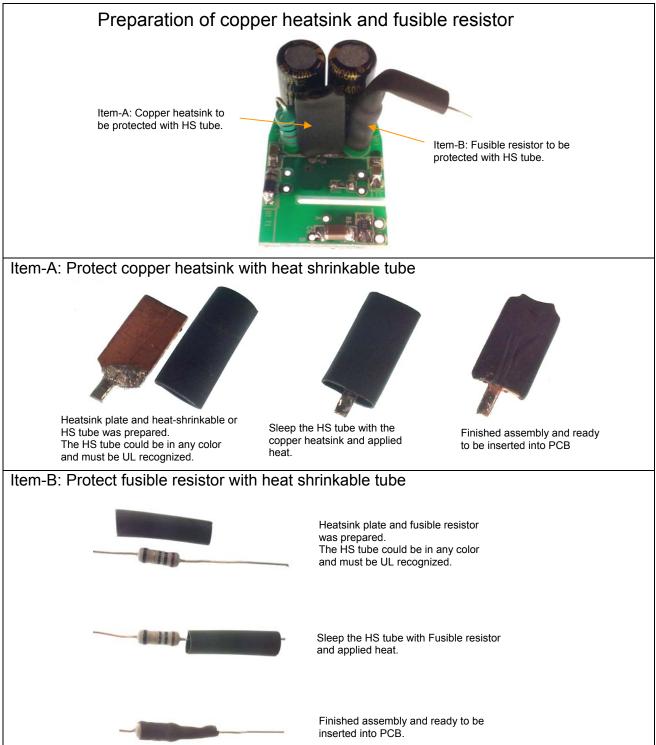


Figure 6 – Transformer Build Diagram.

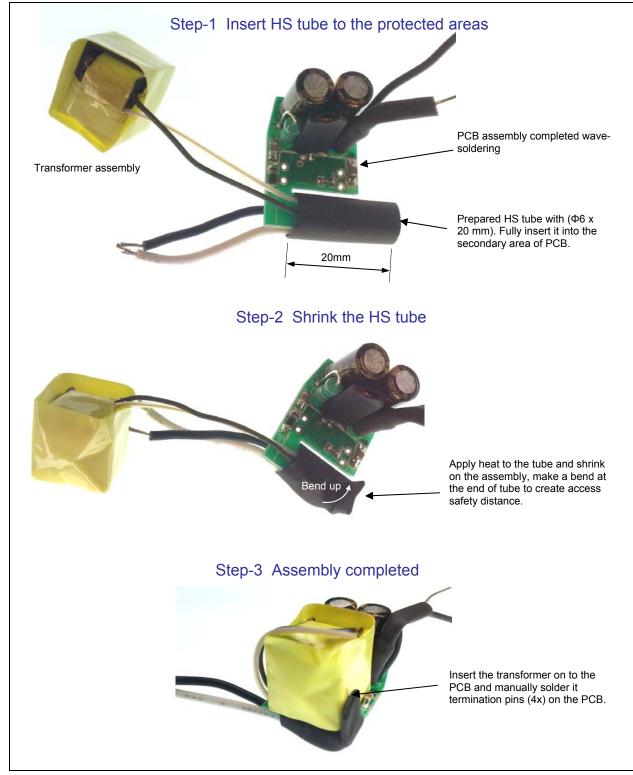
7.5 Transformer Construction

Bobbin Preparation	Place the bobbin item [2] on the mandrel such that pin side on the left side. Winding direction is the clockwise direction.
WD 1	Start at pin 1, wind 30 turns of 0.21 mm item [3] from left to right in one layer. Cut the end of the wire to leave it NC (no connection).
Insulation	Apply one layer of tape [7] for insulation.
WD 2	Start at pin 2, wind 40 turns of 0.15 mm item [4] from left to right with tight tension, and apply 1 layers layer of tape [7]. Continue winding 40 turns of item [4] from right to left and finished at pin 1.
Insulation	Apply one layer of tape [7] for insulation.
WD 3	Start at pin 7, wind 15 turns of 0.4 mm [5] wire from left to right. Finish at pin 8.
Insulation	Apply one layer of tape [7] for insulation.
WD 4	Continue to wind with floating wire, 16 turns of 0.2 mm T.I.W wire [6] from left to right. Start marked as A and finish marked as B.
Insulation	Apply two layers of tape [7] for insulation.
Final Assembly	Cut A, B wires length to 0.75". Grind core. Assemble core. Varnish using item [10] and wrap the transformer using item [8], [9]. Refer the 7.6 for transformer insulation wrap.



Step 1	No pin side to be covered with tape [8]	Transformer to be wrapped with all electrical tests and varnishing completed. The wrapping is started at the no-pin side. Wrap the insulation tape item [8] on to the no pin side area and make sure the tape has extended and covered the core by at least 6mm.
Step 2		Fully wrap the tape around the transformer with minimum 3 turns with item [8]
Step 3	Start to fold Completed all the folds (4x)	Bend the tape inward and make a complete fold to all the 4 sides.
Step 4	Item [9]	Wrap the insulation tape item [9] on to the core side of the assembly with minimum of 3 turns. Allow the tape to be covered up to the termination.
Step 5	Completed Assembly — Transformer's pins → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Complete assembly and leave ~4 mm of the lead for soldering.

7.6 Step and Procedure for Wrapping Insulation Tape on Transformer



7.7 Preparation of Assembly Details

7.8 Assembly of Transformer to PCB

Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

8 Transformer Design Spreadsheet

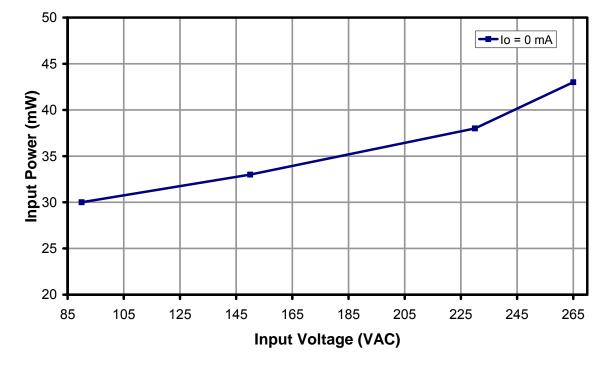
ACDC_LinkSwitch- II_120209; Rev.1.11; Copyright Power Integrations 2009	INPUT	INFO	OUTPUT	UNIT	ACDC_LinkSwitch-II_120209_Rev1- 11; LinkSwitch-II Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARI	ABLES				
VACMIN	90			V	Minimum AC Input Voltage
VACMAX	265			V	Maximum AC Input Voltage
fL	50			Hz	AC Mains Frequency
VO	12			V	Output Voltage (at continuous power)
Ю	0.3			A	Power Supply Output Current (corresponding to peak power)
Power			3.60	W	Continuous Output Power
n	0.76		0.76		Efficiency Estimate at output terminals. Under 0.7 if no better data available
Z			0.50		Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available
tC			3.00	ms	Bridge Rectifier Conduction Time Estimate
Add Bias Winding	YES		N/A		III Info. Bias winding is not necessary. The feedback winding itself can be used to provide exteral bias to the LinkSwitch
CIN	6.6			uF	Input Capacitance
ENTER LinkSwitch-II VARIA	BLES		•	•	
Chosen Device	LNK605		LNK605		Chosen LinkSwitch-II device
Package	DG		DG		Select package (PG, GG or DG)
ILIMITMIN			0.30	А	Minimum Current Limit
ILIMITTYP			0.31	А	Typical Current Limit
ILIMITMAX			0.35	А	Maximum Current Limit
FS	80		80.00	kHz	Typical Device Switching Frequency at maximum power
VOR			62.50	V	Reflected Output Voltage (VOR < 135 V Recommended)
VDS			10.00	V	LinkSwitch-II on-state Drain to Source Voltage
VD			0.50	V	Output Winding Diode Forward Voltage Drop
КР			1.88		Ensure KDP > 1.3 for discontinuous mode operation
FEEDBACK WINDING PARA	METERS				
NFB			15.00		Feedback winding turns
VFLY			11.72	V	Flyback Voltage - Voltage on Feedback Winding during switch off time
VFOR			14.71	V	Forward voltage - Voltage on Feedback Winding during switch on time
BIAS WINDING PARAMETER	RS				
VB			N/A	V	Feedback Winding Voltage (VFLY) is greater than 10 V. The feedback winding itself can be used to provide exteral bias to the LinkSwitch. Additional Bias winding is not required.

DER-261 3.6 W GU10 LED Driver Using LNK605DG

NB			N/A		Bias Winding number of turns	
REXT			N/A	k-ohm	Suggested value of BYPASS pin resistor (use standard 5% resistor)	
DESIGN PARAMETERS	;		<u> </u>		• • •	
DCON	4.6		4.60	us	Output diode conduction time	
TON			3.72	us	LinkSwitch-II On-time (calculated at minimum inductance)	
RUPPER			47.11	k-ohm	Upper resistor in Feedback resistor divider	
RLOWER			8.89	k-ohm	Lower resistor in resistor divider	
ENTER TRANSFORMER	R CORE/CONSTRUC	TION VAR	IABLES			
Core Type						
Core	EE13		EE13		Enter Transformer Core. Based on the output power the recommended core sizes are EE16 or EE19	
Bobbin			EE13_BOBBIN		Generic EE13_BOBBIN	
AE			17.10	mm^2	Core Effective Cross Sectional Area	
LE			30.20	mm^2	Core Effective Path Length	
AL			1130.00	nH/turn^2	Ungapped Core Effective Inductance	
BW			7.90	mm	Bobbin Physical Winding Width	
Μ			0.00	mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)	
L	2		2.00		Number of Primary Layers	
NS			16.00		Number of Secondary Turns. To adjust Secondary number of turns change DCON	
DC INPUT VOLTAGE PA	ARAMETERS				·	
VMIN			78.44	V	Minimum DC bus voltage	
VMAX			374.77	V	Maximum DC bus voltage	
CURRENT WAVEFORM	SHAPE PARAMETE	RS			·	
DMAX			0.30		Maximum duty cycle measured at VMIN	
IAVG			0.07	A	Input Average current	
IP			0.30	А	Peak primary current	
IR			0.30	А	Primary ripple current	
IRMS			0.11	А	Primary RMS current	
TRANSFORMER PRIMA	RY DESIGN PARAM	IETERS				
LPMIN			975.96	uH	Minimum Primary Inductance	
LPTYP			1084.40	uH	Typical Primary inductance	
LP_TOLERANCE			10.00	%	Tolerance in primary inductance	
NP			80.00		Primary number of turns. To adjust Primary number of turns change BM_TARGET	
ALG			169.44	nH/turn^2	Gapped Core Effective Inductance	
BM_TARGET	2470		2470.00	Gauss	Target Flux Density	
ВМ			2457.33	Gauss	Maximum Operating Flux Density (calculated at nominal inductance), BM < 2500 is recommended	
BP		Warning	3021.33	Gauss	III Warning. Peak Flux density exceeds 3000 Gauss and is not recommended. Reduce BP by increasing NS	
BAC			1228.67	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)	

L			
	158.81		Relative Permeability of Ungapped Core
	0.12	mm	Gap Length (LG > 0.1 mm)
	15.80	mm	Effective Bobbin Width
	0.20	mm	Maximum Primary Wire Diameter including insulation
	0.04		Estimated Total Insulation Thickness (= 2 * film thickness)
	0.16	mm	Bare conductor diameter
	35.00		Primary Wire Gauge (Rounded to next smaller standard AWG value)
	32.00	Cmils	Bare conductor effective area in circular mils
	293.06	Cmils/A	Primary Winding Current Capacity (200 < CMA < 500)
DESIGN PARAMET	ERS		
	1.50	А	Peak Secondary Current
	0.61	А	Secondary RMS Current
	0.53	А	Output Capacitor RMS Ripple Current
	122.33	Cmils	Secondary Bare Conductor minimum circular mils
	29.00		Secondary Wire Gauge (Rounded up to next larger standard AWG value)
ERS			
	526.02	v	Maximum Drain Voltage Estimate (Assumes 20% clamping voltage tolerance and an additional 10% temperature tolerance)
	86.95	V	Output Rectifier Maximum Peak Inverse Voltage
	47.11	k-ohm	Actual Value of upper resistor (RUPPER) used on PCB
	8.89	k-ohm	Actual Value of lower resistor (RLOWER) used on PCB
ge (VDC)	12.00	V	Measured Output voltage from first prototype
nt (ADC)	0.30	Amps	Measured Output current from first prototype
	47.11	k-ohm	New value of Upper resistor (RUPPER) in Feedback resistor divider. Nearest standard value is 47.5 k-ohms
	8.89	k-ohm	New value of Lower resistor (RLOWER) in Feedback resistor divider. Nearest standard value is 8.87 k-ohms
	Image: state stat	0.12 0.12 15.80 0.20 0.04 0.04 0.04 0.16 35.00 32.00 293.06 7 DESIGN PARAMETERS 1	Image: Note of the sector of the s

Note: The BP (peak flux density) warning in the spreadsheet was mitigated by verifying the drain current waveforms and confirming that there was no core saturation.


9 Performance Data

All measurements performed at room temperature.

9.1 Efficiency vs. Line and Output Voltage

Hz	V _{IN} (VAC)	P _{IN} (W)	V _{out} (V)	I _{оυт} (mA)	Р _{оυт} (W)	Efficiency (%)
50	90	4.832	12.16	300	3.648	75.5
50	100	4.78	12.16	300	3.648	76.32
50	115	4.736	12.16	300	3.648	77.03
50	130	4.704	12.13	300	3.639	77.36
Hz	V _{IN} (VAC)	P _{IN} (W)	V _{оит} (V)	Ι _{ουτ} (mA)	Р _{оит} (W)	Efficiency (%)
50	185	4.752	12.13	300	3.639	76.58
50	200	4.768	12.12	300	3.636	76.26
50	215	4.79	12.1	300	3.63	75.78
50	230	4.826	12.1	300	3.63	75.22
50	245	4.849	12.1	300	3.63	74.86
50	265	4.902	12.1	300	3.63	74.08

9.2 No-Load Power Consumption

Figure 7 – No-load Power Consumption, Room Temperature.

9.3 Output Characteristic

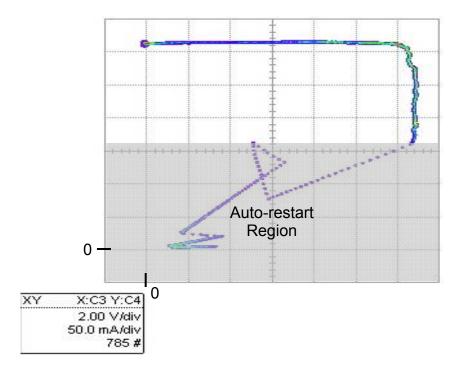
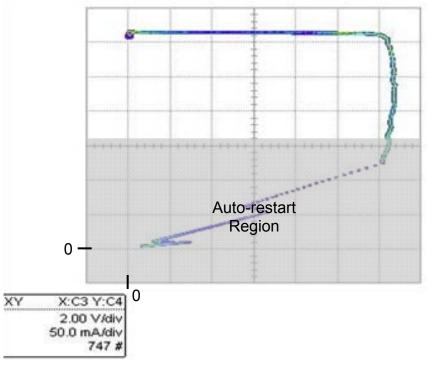
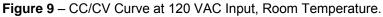




Figure 8 – CC/CV Curve at 90 VAC Input, Room Temperature.

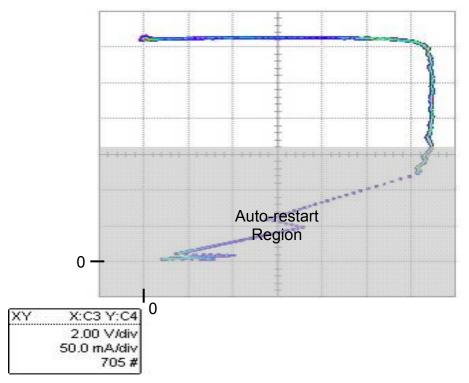
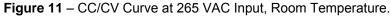
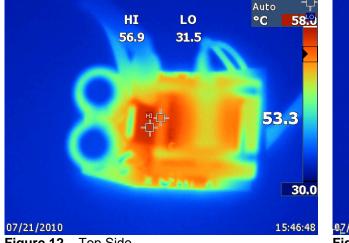




Figure 10 – CC/CV Curve at 230 VAC Input, Room Temperature.



10 Thermal Performance

10.1 Measurement with Infrared Camera (Open Frame)

Images captured after running 30 minutes at room temp (25°C), full load indicates a LinkSwitch-II device plastic temperature rise of 30°C over ambient. The addition of a small copper heatsink (6 x 12) mm next to the device reduces device operating temperature.

10.1.1 V_{IN} = 115 VAC

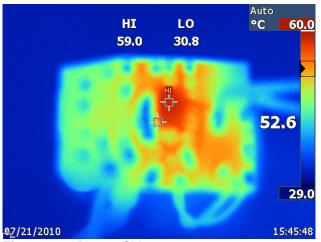
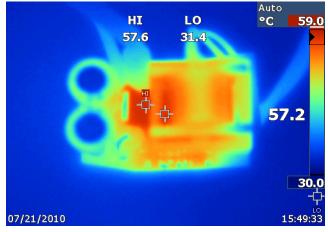



Figure 12 – Top Side.

Figure 13 – Bottom Side.

10.1.2 V_{IN} = 230 VAC

Figure 14 - Top Side.

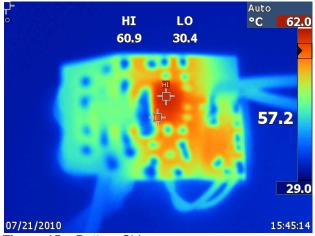
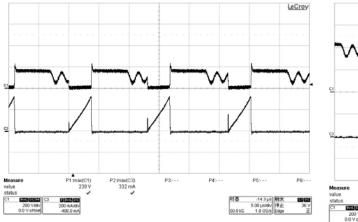


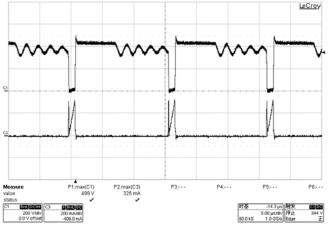
Figure 15 - Bottom Side.

10.2 Measurement with Thermocouples (Inside Enclosure)

The completed driver had thermocouples attached to key components when inserted into a GU10 housing. The unit was operated with a case external ambient of 70°C and allowed to reach thermal equivalent before readings were recorded. The measured component temperatures are in the table below.

Component Temperature Measurement					
(Under a T _A of 70 °C outside the case external)					
	Input:90 VAC, T _A =70ºC	Input:264 VAC, T _A =70ºC			
U1 (LNK605DG)	112.0	115.0			
T1 (winding)	96.1	97.0			
T1 (core)	101.1	102.5			
D3 (SS110)	94.7	94.9			
C1 (3.3 µF / 400 V)	92.9	91.0			
C2 (3.3 µF / 400 V)	93.3	91.6			




Assembly used for thermal measurement

11 Waveforms

11.1 Drain Voltage and Current

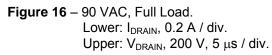
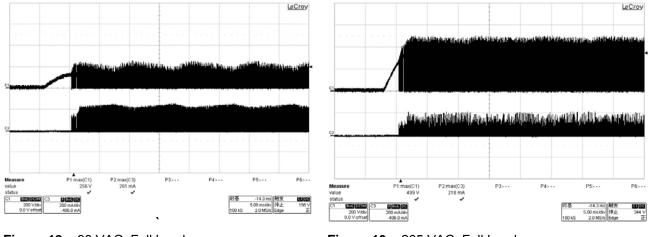
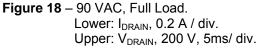




Figure 17 – 265 VAC, Full Load. Lower: I_{DRAIN}, 0.2 A / div. Upper: V_{DRAIN}, 200 V / div., 5 μs / div.

11.2 Drain Voltage and Current Start-up Profile

12 Line Surge

Differential ring wave testing was completed on a single test unit, according to EN61000-4-5. Input voltage was set at 230 VAC / 50 Hz. Output was loaded at full load and operation was verified following each surge event.

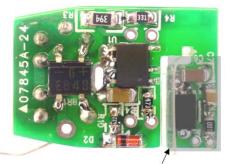
Surge Level (V)	Input Voltage (VAC)	Injection Location	Injection Phase (°)	Test Result (Pass/Fail)
1000	230	L to N	0	Pass
1000	230	L to N	90	Pass
1000	230	L to N	180	Pass
1000	230	L to N	270	Pass
2000	230	L to N	0	Pass
2000	230	L to N	90	Pass
2000	230	L to N	180	Pass
2000	230	L to N	270	Pass

③ 深圳 BCT

深圳市华标电子科技有限公司

Bontek Compliance Testing Laboratory Ltd

Surge Immunity Test Data


									编号	: TR-4-E-0	05 Rev
Star	ndard	1	EN 6100 EC 6100				. Re	sult:	PASS /	🗆 FAIL	
pplicant:	PI										
UT:					M/N		GU10				
										-	
epetition: 5	times per tes	t	Ir	sterval:	60 second	ds	Criteria	: ØB			
mbient Condi	ition:	25	τ	55	%RH	101	kPa				
nput Voltage:	230	0V	50	Hz							
Operation Mod	le:	FULL I	OAD_								
ine: 🗹 AC						Teleph				-	
Conductor	Volt	+ 500	ov ·	1.0	kV	2.0	kV -	+ +	3.0kV		0kV
	Phase 0°	+	-	PASS	- PASS	PASS	PASS		- ·	+	-
L-N	90*			PASS		PASS	PASS	_			
				-					_		
	180°			PASS	PASS PASS	PASS	PASS	_	_		<u> </u>
	270°			PASS	PASS	PASS	PASS				-
	0*			——			l				<u> </u>
L-PE	90°							+			+
	180°				++			+			+
	270°			<u> </u>	+		—		_		<u> </u>
	0*			<u> </u>	+						<u> </u>
N-PE	90*										<u> </u>
	180*							+			
	270°										<u> </u>
	0°									1	<u> </u>
L-N-PE	90*										<u> </u>
	180°						L				L
	270°				+						<u> </u>
Tolombour	L ₁ -L ₂										<u> </u>
Telephone	L ₁ -PE L ₂ -PE				+ +			+			-
Line	L2-PE				+						+
lote:											
Test Equi	ipment	SCHAF	FNER	Mod	el: MO	DULA615	60				
Date:	0/0	4	30		Tes	at = _	-4				
Date:	10.	4.30			Ap	prove :	6	lon	题		

13 Hipot Test

The power supply passed a 3 kV AC Hipot test. The potential was applied from the positive terminal of the bridge rectifier to both output terminals (output terminals were shorted together). The potential was applied for 10 seconds.

14 ESD Test

ESD(KV)	Test Result
10KV	PASS
11KV	PASS
12KV	PASS
13KV	PASS
14KV	PASS

Note : the assembly has a heat shrinkable tube to cover & protect the entire secondary circuits to meet ESD and Hipot test requirement

15 Conducted EMI

Note: Blue line is a peak measurement compared against quasi peak limit line. This represents a very conservative measurement method as actual quasi peak measurements are typically 2-3 dB lower than peak.

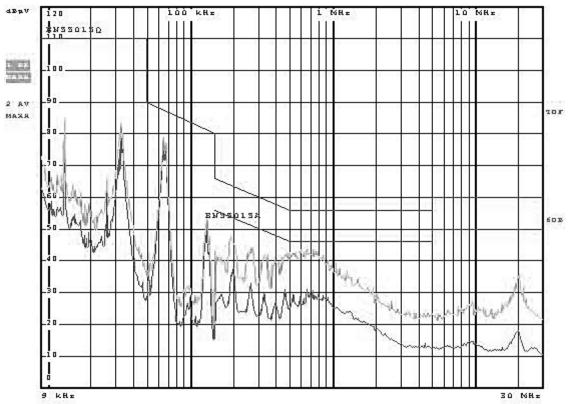
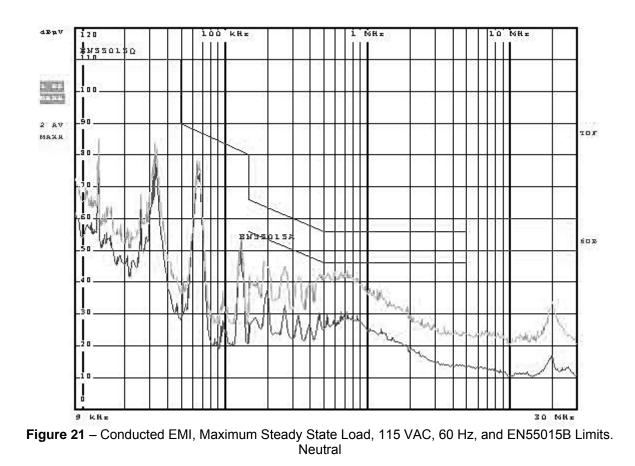



Figure 20 - Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55015B Limits. Line

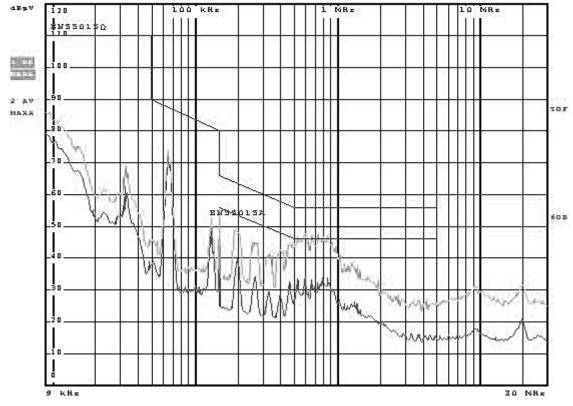


Figure 22 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55015B Limits. Line

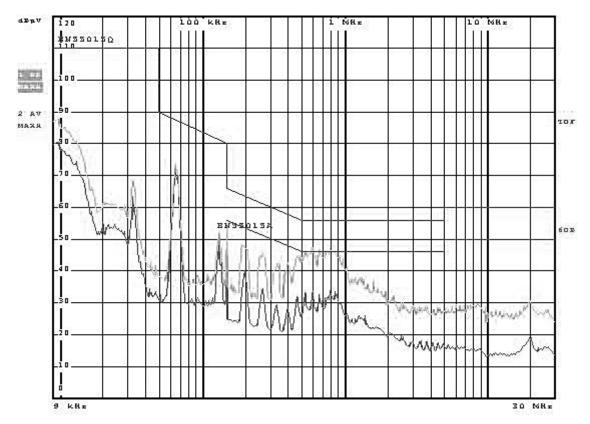


Figure 23 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55015B Limits. Neutral

16 Revision History

Date	Author	Revision	Description & changes	Reviewed
24-Sep-10	TH/JY	1.5	Initial Release	Apps and Mktg

For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2010 Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com*

CHINA (SHANGHAI)

Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 *e-mail: chinasales* @powerint.com

CHINA (SHENZHEN)

Rm A, B & C 4th Floor, Block C, Electronics Science and Technology Building 2070 Shennan Zhong Road Shenzhen, Guangdong, P.R.C. 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales @powerint.com*

GERMANY

Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3911 Fax: +49-89-5527-3920 *e-mail: eurosales* @*powerint.com*

INDIA

#1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 *e-mail: indiasales@powerint.com*

ITALY

Via De Amicis 2 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com*

JAPAN

Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales*@powerint.com

KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales @powerint.com*

SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail: singaporesales@powerint.com*

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail: taiwansales@powerint.com*

UNITED KINGDOM

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 *e-mail: eurosales* @powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

