Main		
Range of product	TeSys D	\%
Range	TeSys	
Product name	TeSys D	$\stackrel{\otimes}{8}$
Product or component type	Contactor	$\stackrel{\text { ¢ }}{5}$
Device short name	LC1D	?
Contactor application	Motor control Resistive load	-
Utilisation category	$\begin{aligned} & \mathrm{AC}-4 \\ & \mathrm{AC}-3 \\ & \mathrm{AC}-1 \end{aligned}$	
Poles description	3P	
Pole contact composition	3 NO	\%
[Ue] rated operational voltage	<= 300 V DC $25 \ldots 400 \mathrm{~Hz}$ for power circuit $<=1000 \mathrm{~V} \mathrm{AC}$ for power circuit	-
[le] rated operational current	$125 \mathrm{~A}\left(<=60^{\circ} \mathrm{C}\right)$ at $<=440 \mathrm{~V}$ AC AC-1 for power circuit $95 \mathrm{~A}\left(<=60^{\circ} \mathrm{C}\right.$) at $<=440 \mathrm{~V}$ AC AC-3 for power circuit	-
Motor power kW	45 kW at $660 \ldots 690 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 45 kW at $415 \ldots 440 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 55 kW at 500 V AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 45 kW at 1000 V AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 15 kW at 400 V AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-4$ 25 kW at 220 ... 230 V AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 45 kW at $380 \ldots . .400 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$	a 0 0 0 0 0 0 0 0 $\#$ 0 0 0 0 0
Motor power hp	20 hp at 200/208 V AC $50 / 60 \mathrm{~Hz}$ for 3 phases motors 7.5 hp at 115 V AC $50 / 60 \mathrm{~Hz}$ for 1 phase motors 15 hp at $230 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ for 1 phase motors 25 hp at 230/240 V AC $50 / 60 \mathrm{~Hz}$ for 3 phases motors 60 hp at $460 / 480$ V AC $50 / 60 \mathrm{~Hz}$ for 3 phases motors 60 hp at $575 / 600 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ for 3 phases motors	
Control circuit type	AC $50 / 60 \mathrm{~Hz}$	\bigcirc
Control circuit voltage	230 V AC $50 / 60 \mathrm{~Hz}$	¢
Auxiliary contact composition	$1 \mathrm{NO}+1 \mathrm{NC}$	d

[Uimp] rated impulse withstand voltage	Conforming to IEC 60947
Overvoltage category	III
[lth] conventional free air thermal current	125 A at $<=60^{\circ} \mathrm{C}$ for power circuit 10 A at $<=60^{\circ} \mathrm{C}$ for signalling circuit
Irms rated making capacity	1100 A at 440 V for power circuit conforming to IEC 60947 140 A AC for signalling circuit conforming to IEC 60947-5-1 250 A DC for signalling circuit conforming to IEC 60947-5-1
Rated breaking capacity	1100 A at 440 V for power circuit conforming to IEC 60947
[lcw] rated short-time withstand current	$1100 \mathrm{~A}<=40^{\circ} \mathrm{C} 1$ s power circuit $135 \mathrm{~A}<=40^{\circ} \mathrm{C} 10 \mathrm{~min}$ power circuit $400 \mathrm{~A}<=40^{\circ} \mathrm{C} 1 \mathrm{~min}$ power circuit $800 \mathrm{~A}<=40^{\circ} \mathrm{C} 10$ s power circuit 100 A 1 s signalling circuit 120 A 500 ms signalling circuit 140 A 100 ms signalling circuit
Associated fuse rating	160 A gG at <= 690 V coordination type 2 for power circuit 200 AgG at $<=690 \mathrm{~V}$ coordination type 1 for power circuit 10 A gG for signalling circuit conforming to IEC 60947-5-1
Average impedance	0.8 mOhm at 50 Hz - Ith 125 A for power circuit
[Ui] rated insulation voltage	1000 V for power circuit conforming to IEC 60947-4-1 600 V for power circuit certifications CSA 600 V for power circuit certifications UL 690 V for signalling circuit conforming to IEC 60947-1 600 V for signalling circuit certifications CSA 600 V for signalling circuit certifications UL
Electrical durability	1.2 Mcycles 95 A AC-3 at Ue <= 440 V 1.3 Mcycles $125 \mathrm{~A} \mathrm{AC}-1$ at $\mathrm{Ue}<=440 \mathrm{~V}$
Power dissipation per pole	7.2 W AC-3 12.5 W AC-1
Protective cover	With
Mounting support	Rail Plate
Standards	CSA C22.2 No 14 EN 60947-4-1 EN 60947-5-1 IEC 60947-4-1 IEC 60947-5-1 UL 508
Product certifications	GOST RINA CCC BV LROS GL DNV
Connections - terminals	Control circuit : screw clamp terminals 2 cable(s) $1 . . .2 .5 \mathrm{~mm}^{2}$ - cable stiffness: flexible - with cable end Control circuit : screw clamp terminals 1 cable(s) $1 \ldots . .4 \mathrm{~mm}^{2}$ - cable stiffness: flexible - without cable end Control circuit : screw clamp terminals 2 cable(s) $1 \ldots . .4 \mathrm{~mm}^{2}$ - cable stiffness: flexible - without cable end Control circuit : screw clamp terminals 1 cable(s) $1 \ldots 4 \mathrm{~mm}^{2}$ - cable stiffness: solid - without cable end Control circuit : screw clamp terminals 2 cable(s) $1 \ldots 4 \mathrm{~mm}^{2}$ - cable stiffness: solid - without cable end Control circuit : screw clamp terminals 1 cable(s) $1 \ldots .2 .5 \mathrm{~mm}^{2}$ - cable stiffness: flexible - with cable end Power circuit : connector 1 cable(s) $4 \ldots 50 \mathrm{~mm}^{2}$ - cable stiffness: flexible - without cable end Power circuit : connector 2 cable(s) $4 \ldots 25 \mathrm{~mm}^{2}$ - cable stiffness: flexible - without cable end Power circuit : connector 1 cable(s) $4 \ldots 50 \mathrm{~mm}^{2}$ - cable stiffness: flexible - with cable end Power circuit : connector 2 cable(s) $4 \ldots 16 \mathrm{~mm}^{2}$ - cable stiffness: flexible - with cable end Power circuit : connector 1 cable(s) $4 \ldots 50 \mathrm{~mm}^{2}$ - cable stiffness: solid - without cable end Power circuit : connector 2 cable(s) $4 \ldots 25 \mathrm{~mm}^{2}$ - cable stiffness: solid - without cable end
Tightening torque	Power circuit : $9 \mathrm{~N} . \mathrm{m}$ - on connector - with screwdriver flat $\varnothing 6$ to $\varnothing 8 \mathrm{~mm}$ Power circuit: $9 \mathrm{~N} . \mathrm{m}$ - on connector hexagonal 4 mm Control circuit : 1.2 N.m - on screw clamp terminals - with screwdriver flat Ø 6 mm Control circuit : 1.2 N.m - on screw clamp terminals - with screwdriver Philips No 2
Operating time	$20 . . .35 \mathrm{~ms}$ closing 6... 20 ms opening
Safety reliability level	B10d = 1369863 cycles contactor with nominal load conforming to EN/ISO 13849-1

Mechanical durability	4 Mcycles
Operating rate	$3600 \mathrm{cyc} / \mathrm{h}$ at $<=60^{\circ} \mathrm{C}$

Complementary

Coil technology	Without built-in suppressor module
Control circuit voltage limits	0.85...1.1 Uc operational at $55^{\circ} \mathrm{C}, \mathrm{AC} 60 \mathrm{~Hz}$ 0.3...0.6 Uc drop-out at $55^{\circ} \mathrm{C}, \mathrm{AC} 50 / 60 \mathrm{~Hz}$ 0.8...1.1 Uc operational at $55^{\circ} \mathrm{C}, \mathrm{AC} 50 \mathrm{~Hz}$
Inrush power in VA	245 VA at $20^{\circ} \mathrm{C}(\cos \phi 0.75) 60 \mathrm{~Hz}$ 245 VA at $20^{\circ} \mathrm{C}(\cos \phi 0.75) 50 \mathrm{~Hz}$
Hold-in power consumption in VA	$\begin{aligned} & 26 \mathrm{VA} \text { at } 20^{\circ} \mathrm{C}(\cos \phi 0.3) 60 \mathrm{~Hz} \\ & 26 \mathrm{VA} \text { at } 20^{\circ} \mathrm{C}(\cos \phi 0.3) 50 \mathrm{~Hz} \end{aligned}$
Heat dissipation	$6 . . .10 \mathrm{~W}$ at $50 / 60 \mathrm{~Hz}$
Auxiliary contacts type	Type mechanically linked (1 NO + 1 NC) conforming to IEC 60947-5-1 Type mirror contact (1 NC) conforming to IEC 60947-4-1
Signalling circuit frequency	25... 400 Hz
Minimum switching current	5 mA for signalling circuit
Minimum switching voltage	17 V for signalling circuit
Non-overlap time	1.5 ms on de-energisation (between NC and NO contact) 1.5 ms on energisation (between NC and NO contact)
Insulation resistance	> 10 MOhm for signalling circuit
Motor power range AC-3	15... 25 kW 200... 240 V 3 phases 30... 50 kW 380 ... 440 V 3 phases 30... 50 kW 480 ... 500 V 3 phases 55... 100 kW 480 ... 500 V 3 phases 30... 50 kW 525 ... 690 V 3 phases
Motor starter type	Direct on-line contactor
Contactor coil voltage	230 V AC

Environment

IP degree of protection	IP2x front face conforming to IEC 60529
Protective treatment	TH conforming to IEC 60068-2-30
Pollution degree	3
Ambient air temperature for operation	$-5 \ldots . .60^{\circ} \mathrm{C}$
Ambient air temperature for storage	$-60 \ldots 80^{\circ} \mathrm{C}$
Permissible ambient air temperature	$-40 \ldots 70^{\circ} \mathrm{C}$ at Uc
around the device	
Operating altitude	3000 m without derating in temperature
Fire resistance	$850^{\circ} \mathrm{C}$ conforming to IEC 60695-2-1
Flame retardance	V1 conforming to UL 94
Mechanical robustness	Vibrations contactor open 2 Gn, 5...300 Hz
	Shocks contactor open 8 Gn for 11 ms
	Vibrations contactor closed 3 Gn, 5...300 Hz
Shocks contactor closed 10 Gn for 11 ms	
Weight	127 mm
Depth	85 mm
Product weight	130 mm

Contractual warranty
Warranty period 18 months
<!-- File : MPC-LC1D95P7-BOM.xml , Range ID : 664, Reference ID : LC1D95P7 -->

Our Proposal - Type 1: Circuit Breaker + Contactor for Motor Power 45 kW and 415 VAC
<!-- DataBOM 2 Template BEGIN -->

Motor Power (kW)	Icu (kA)	Breaker	Contactor
45	36		Lerm
		GV7RE100	LC1D95P7

Non contractual pictures. Type 1 coordination requires that in a short-circuit condition, the contactor or starter must not present any danger to personnel or installations and must not be able to resume operation without repair or the replacement of parts.
<!-- DataBOM 2 Template END --> <!-- No Variants -->

