Main		
Range of product	TeSys D	-
Range	TeSys	$\stackrel{\square}{0}$
Product name	TeSys D	-
Product or component type	Contactor	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$
Device short name	LC1D	2
Contactor application	Resistive load Motor control	-
Utilisation category	$\begin{aligned} & \mathrm{AC}-3 \\ & \mathrm{AC}-1 \\ & \mathrm{AC}-4 \end{aligned}$	(en
Poles description	3P	E
Pole contact composition	3 NO	-
[Ue] rated operational voltage	<= 300 V DC for power circuit <= 690 V AC 25 ... 400 Hz for power circuit	
[le] rated operational current	$25 \mathrm{~A}\left(<=60^{\circ} \mathrm{C}\right)$ at $<=440 \mathrm{~V}$ AC AC-3 for power circuit $40 \mathrm{~A}\left(<=60^{\circ} \mathrm{C}\right)$ at $<=440 \mathrm{~V}$ AC AC-1 for power circuit	8080
Motor power kW	11 kW at $380 \ldots . .400 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 15 kW at 500 V AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 15 kW at 660 ... 690 V AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 5.5 kW at $220 \ldots 230 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 11 kW at $415 \ldots . .440 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-3$ 5.5 kW at 400 V AC $50 / 60 \mathrm{~Hz} \mathrm{AC}-4$	
Motor power hp	2 hp at 115 V AC $50 / 60 \mathrm{~Hz}$ for 1 phase motors 3 hp at 230/240 V AC $50 / 60 \mathrm{~Hz}$ for 1 phase motors 5 hp at $200 / 208$ V AC $50 / 60 \mathrm{~Hz}$ for 3 phases motors 7.5 hp at $230 / 240 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ for 3 phases motors 15 hp at $460 / 480 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ for 3 phases motors 20 hp at 575/600 V AC 50/60 Hz for 3 phases motors	
Control circuit type	AC 50/60 Hz	
Control circuit voltage	$48 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$	
Auxiliary contact composition	$1 \mathrm{NO}+1 \mathrm{NC}$	$\stackrel{+}{\stackrel{1}{\circ}}$
[Uimp] rated impulse withstand voltage	6 kV conforming to IEC 60947	$\frac{.}{6}$

Overvoltage category	III
[lth] conventional free air thermal current	40 A at $<=60^{\circ} \mathrm{C}$ for power circuit 10 A at $<=60^{\circ} \mathrm{C}$ for signalling circuit
Irms rated making capacity	450 A at 440 V for power circuit conforming to IEC 60947 140 A AC for signalling circuit conforming to IEC 60947-5-1 250 A DC for signalling circuit conforming to IEC 60947-5-1
Rated breaking capacity	450 A at 440 V for power circuit conforming to IEC 60947
[lcw] rated short-time withstand current	$120 \mathrm{~A}<=40^{\circ} \mathrm{C} 1 \mathrm{~min}$ power circuit $240 \mathrm{~A}<=40^{\circ} \mathrm{C} 10$ s power circuit $380 \mathrm{~A}<=40^{\circ} \mathrm{C} 1 \mathrm{~s}$ power circuit $50 \mathrm{~A}<=40^{\circ} \mathrm{C} 10 \mathrm{~min}$ power circuit 100 A 1 s signalling circuit 120 A 500 ms signalling circuit 140 A 100 ms signalling circuit
Associated fuse rating	40 AgG at $<=690 \mathrm{~V}$ coordination type 2 for power circuit 63 A gG at < $=690 \mathrm{~V}$ coordination type 1 for power circuit 10 A gG for signalling circuit conforming to IEC 60947-5-1
Average impedance	2 mOhm at 50 Hz - Ith 40 A for power circuit
[Ui] rated insulation voltage	600 V for power circuit certifications CSA 600 V for power circuit certifications UL 690 V for power circuit conforming to IEC 60947-4-1 690 V for signalling circuit conforming to IEC 60947-1 600 V for signalling circuit certifications CSA 600 V for signalling circuit certifications UL
Electrical durability	1.65 Mcycles 25 A AC-3 at $\mathrm{Ue}<=440 \mathrm{~V}$ 1.4 Mcycles 40 A AC-1 at $\mathrm{Ue}<=440 \mathrm{~V}$
Power dissipation per pole	3.2 W AC-1 1.25 W AC-3
Protective cover	With
Mounting support	Rail Plate
Standards	CSA C22.2 No 14 EN 60947-4-1 EN 60947-5-1 IEC 60947-4-1 IEC 60947-5-1 UL 508
Product certifications	LROS GL CCC BV UL RINA CSA GOST DNV
Connections - terminals	Control circuit : screw clamp terminals 2 cable(s) $1 . . .2 .5 \mathrm{~mm}^{2}$ - cable stiffness: flexible - with cable end Power circuit : screw clamp terminals 1 cable(s) $1.5 \ldots 10 \mathrm{~mm}^{2}$ - cable stiffness: solid - without cable end Control circuit : screw clamp terminals 1 cable(s) $1 \ldots 4 \mathrm{~mm}^{2}$ - cable stiffness: flexible - without cable end Control circuit : screw clamp terminals 2 cable(s) $1 \ldots . .4 \mathrm{~mm}^{2}$ - cable stiffness: flexible - without cable end Control circuit : screw clamp terminals 1 cable(s) $1 \ldots .4 \mathrm{~mm}^{2}$ - cable stiffness: flexible - with cable end Control circuit : screw clamp terminals 1 cable(s) $1 \ldots 4 \mathrm{~mm}^{2}$ - cable stiffness: solid - without cable end Control circuit : screw clamp terminals 2 cable(s) $1 \ldots . .4 \mathrm{~mm}^{2}$ - cable stiffness: solid - without cable end Power circuit : screw clamp terminals 1 cable(s) $2.5 \ldots 10 \mathrm{~mm}^{2}$ - cable stiffness: flexible - without cable end Power circuit : screw clamp terminals 2 cable(s) $2.5 \ldots 10 \mathrm{~mm}^{2}$ - cable stiffness: flexible - without cable end Power circuit : screw clamp terminals 1 cable(s) $1 \ldots 10 \mathrm{~mm}^{2}$ - cable stiffness: flexible - with cable end Power circuit : screw clamp terminals 2 cable(s) $1.5 \ldots . .6 \mathrm{~mm}^{2}$ - cable stiffness: flexible - with cable end Power circuit : screw clamp terminals 2 cable(s) $2.5 \ldots 10 \mathrm{~mm}^{2}$ - cable stiffness: solid - without cable end
Tightening torque	Control circuit : 1.7 N.m - on screw clamp terminals - with screwdriver flat $\varnothing 6 \mathrm{~mm}$ Control circuit : $1.7 \mathrm{~N} . \mathrm{m}$ - on screw clamp terminals - with screwdriver Philips No 2 Power circuit : $2.5 \mathrm{~N} . \mathrm{m}$ - on screw clamp terminals - with screwdriver flat $\varnothing 6 \mathrm{~mm}$ Power circuit : $2.5 \mathrm{~N} . \mathrm{m}$ - on screw clamp terminals - with screwdriver Philips No 2

Operating time	$4 \ldots .19 \mathrm{~ms}$ opening
	$12 \ldots . .22 \mathrm{~ms}$ closing
Safety reliability level	B10d $=1369863$ cycles contactor with nominal load conforming to EN/ISO 13849-1 B10d $=20000000$ cycles contactor with mechanical load conforming to EN/ISO 13849-1
Mechanical durability	15 Mcycles
Operating rate	$3600 \mathrm{cyc} / \mathrm{h}$ at $<=60^{\circ} \mathrm{C}$

Complementary

Coil technology	Without built-in suppressor module
Control circuit voltage limits	0.3...0.6 Uc drop-out at $60^{\circ} \mathrm{C}, \mathrm{AC} 50 / 60 \mathrm{~Hz}$ 0.8...1.1 Uc operational at $60^{\circ} \mathrm{C}, \mathrm{AC} 50 \mathrm{~Hz}$ 0.85...1.1 Uc operational at $60^{\circ} \mathrm{C}, \mathrm{AC} 60 \mathrm{~Hz}$
Inrush power in VA	70 VA at $20^{\circ} \mathrm{C}(\cos \phi 0.75) 60 \mathrm{~Hz}$ 70 VA at $20^{\circ} \mathrm{C}(\cos \phi 0.75) 50 \mathrm{~Hz}$
Hold-in power consumption in VA	7.5 VA at $20^{\circ} \mathrm{C}(\cos \phi 0.3) 60 \mathrm{~Hz}$ 7 VA at $20^{\circ} \mathrm{C}(\cos \phi 0.3) 50 \mathrm{~Hz}$
Heat dissipation	2... 3 W at $50 / 60 \mathrm{~Hz}$
Auxiliary contacts type	Type mechanically linked (1 NO + 1 NC) conforming to IEC 60947-5-1 Type mirror contact (1 NC) conforming to IEC 60947-4-1
Signalling circuit frequency	$25 . . .400 \mathrm{~Hz}$
Minimum switching current	5 mA for signalling circuit
Minimum switching voltage	17 V for signalling circuit
Non-overlap time	1.5 ms on energisation between NC and NO contact 1.5 ms on de-energisation between NC and NO contact
Insulation resistance	> 10 MOhm for signalling circuit
Motor power range AC-3	7... 11 kW 380... 440 V 3 phases 7... 11 kW 480... 500 V 3 phases 4... 6 kW 200... 240 V 3 phases
Motor starter type	Direct on-line contactor
Contactor coil voltage	48 V AC

Environment

IP degree of protection	IP2x front face conforming to IEC 60529
Protective treatment	TH conforming to IEC $60068-2-30$
Pollution degree	3
Ambient air temperature for operation	$-20 \ldots 60^{\circ} \mathrm{C}$
Ambient air temperature for storage	$-60 \ldots 80^{\circ} \mathrm{C}$
Permissible ambient air temperature around the device	$-40 \ldots . .70^{\circ} \mathrm{C}$ at Uc
Operating altitude	3000 m without derating in temperature
Fire resistance	$850^{\circ} \mathrm{C}$ conforming to IEC $60695-2-1$
Flame retardance	V1 conforming to UL 94
Mechanical robustness	Vibrations contactor open $2 \mathrm{Gn}, 5 \ldots . . .300 \mathrm{~Hz}$
	Vibrations contactor closed $4 \mathrm{Gn}, . . .300 \mathrm{~Hz}$
	Shocks contactor closed 15 Gn for 11 ms
Shocks contactor open 8 Gn for 11 ms	
Height	85 mm
Width	45 mm
Depth	92 mm
Product weight	0.37 kg

Offer Sustainability

Sustainable offer status	Green Premium product
RoHS (date code: YYWW)	Compliant - since 0627 - Schneider Electric declaration of conformity
	Schneider Electric declaration of conformity

Product environmental profile	Available Rral Product environmental
Product end of life instructions	Available
	End of life manual

Contractual warranty

Dimensions Drawings

Dimensions

(1) Including LAD 4BB
(2) Minimum electrical clearance

LC1	D099...D129	
b	without add-on blocks	80
b1	with LAD 4BB	95.5
with LA4 D•2	$111.5^{(1)}$	
with LA4 DF, DT	$120.5^{(1)}$	
with LA4 DW, D	$127.5^{(1)}$	84
c	without cover or add-on blocks	
with cover, witho	Badd-on blocks	117
c1	with LAD N or C (2 or 4 contacts)	129
c2	with LA6 DK10, LAD 6K10	137
c3	with LAD T, R, S	
with LAD T, R, S	aAd sealing cover	
(1)	Including LAD 4BB.	

<!-- File : MPC-LC1D25E7-BOM.xml, Range ID : 664, Reference ID : LC1D25E7 -->
Our Proposal - Type 1: Circuit Breaker + Contactor for Motor Power from 9 to 11 kW and 415 VAC
<!-- DataBOM 2 Template BEGIN -->

Motor Power (kW)	Icu (kA)	Breaker	Contactor
9	15	GVI GV2ME21	LC1D25E7
11	15	GV2ME22	LC1D25E7

Non contractual pictures. Type 1 coordination requires that in a short-circuit condition, the contactor or starter must not present any danger to personnel or installations and must not be able to resume operation without repair or the replacement of parts.
<!-- DataBOM 2 Template END --> <!-- No Variants -->

