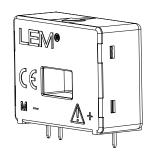


Current Transducer LA 100-P/SP13

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal	current rms	100	Α
I _{PM}	Primary current,	measuring range	0 ± 10	60 A
\mathbf{R}_{M}	Measuring resist	ance		
101			$\mathbf{R}_{M\;min}$	R _{M max}
	with ± 12 V	@ ± 100 A _{max}	10	65 Ω
		@ ± 160 A _{max}	10	30 Ω
	with ± 15 V	@ $\pm 100 A_{max}$	40	95 Ω
		@ ± 160 A max	40	50 Ω
$I_{\rm SN}$	Secondary nomin		100	mA
K _N	Conversion ratio		1:100	0
V _C	Supply voltage (± 5 %)	± 12 '	15 V
ار	Current consump	otion	10 (@ ±	: 15 V)+ I。mA


Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ @ $\pm 15 \text{ V } (\pm 5 \text{ \%})$	± 0.45		%
	@ ± 12 15 V (± 5 %)	± 0.70		
$\mathbf{E}_{\scriptscriptstyle L}$	Linearity error	< 0.15		%
-		Тур	Max	
I	Offset current @ $I_p = 0$, $T_A = 25^{\circ}$ C		± 0.2	mA
I _{OM}	Magnetic offset current 1) @ $I_P = 0$ and specified R_M ,			
	after an overload of 3 x I _{PN}		± 0.3	mA
I_{OT}	Temperature variation of I _o - 25°C + 70°C	± 0.1	± 0.5	mA
t _{ra}	Reaction time to 10 % of I _{PN} step	< 500		ns
t,	Response time ²⁾ to 90 % of I _{PN} step	< 1		μs
di/dt	di/dt accurately followed	> 200		A/µs
BW	Frequency bandwidth (- 1 dB)	DC 2	200	kHz

General data

$T_{_{A}}$	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 90	°C
\mathbf{R}_{S}	Secondary coil resistance @ T _A = 70°C	25	Ω
m	Mass	18	g
	Standards	EN 50178: 1997	

$I_{_{\rm DN}} = 100 \, A$

Features

- Closed loop (compensated) current transducer using the Hall
- · Printed circuit board mounting
- · Insulated plastic case recognized according to UL 94-V0.

Special features

= 0 .. ± 160 A = 1 : 1000 = - 25°C .. + 70°C

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- · AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Application domain

• Industrial.

Notes: 1) Result of the coercive field of the magnetic circuit

2) With a di/dt of 100 A/µs.

Current Transducer LA 100-P/SP13

Isolation characteristics			
\mathbf{V}_{d}	Rms voltage for AC isolation test, 50 Hz, 1 min	2.5	kV
v w	Impulse withstand voltage 1.2/50 µs	4.5	kV
		Min	
dCp	Creepage distance 1)	3.8	mm
dCI	Clearance distance 2)	3.8	mm
CTI	Comparative Tracking Index (group IIIa)	175	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, $\hat{\mathbf{V}}_{_{\mathbf{W}}}$	Rated isolation voltage	Nominal voltage
Single isolation	300 V	300 V
Reinforced isolation	150 V	150 V

Notes: 1) Distance between hole busbar and winding

Safety

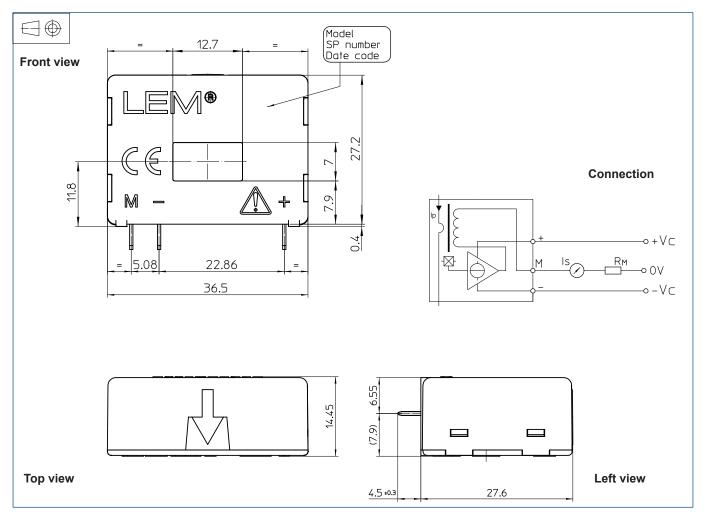
This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.


A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

²⁾ Direct distance between hole busbar and winding.

Dimensions LA 100-P/SP13 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance

Primary through-hole

Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm 12.7 x 7 mm 3 pins

0.63 x 0.56 mm

0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.