Single Shot (Pulse Former)
 KSDS Digi-Timer
 Timing Module

- Low Cost
- Fixed or Adjustable Delays from $0.1 \mathrm{~s} \ldots 500 \mathrm{~m}$
- +/-0.5\% Repeat Accuracy
- Totally Solid State and Encapsulated

■ DC Units are Polarity Protected

Ordering Table

KSDS	X	X
Series	Input	Adjustment
	-1-12V DC	-1-Fixed
	-2-24V AC	-2-External
	-3-24V DC	Adjust
	-4-120 V AC	
	-6-230 V AC	

Example P/N: KSDS421 Fixed - KSDS410.1S

Description

The KSDS Series is ideal for applications that require momentary start interval timing including dispensing, exposure timing, or pulse shaping. This series is available in both AC and DC versions and may be ordered with a factory fixed or adjustable time delay function. Encapsulated circuitry allows operation in harsh environments. Ideal for applications where cost is a factor.

Operation

Input voltage must be applied to the input before and during timing. Upon momentary or maintained closure of the initiate switch (leading edge triggered), the output is energized for a measured interval of time. At the end of the delay, the output de-energizes. Opening or reclosing the initiate switch during timing has no affect on the time delay. The output will not energize if the initiate switch is closed when input voltage is applied.
Reset: Reset occurs when the time delay is complete and the initiate switch is opened. Loss of input voltage resets the time delay and output.

Approvals: 데 (ϵ

X
$\begin{aligned} & \text { Switching Mode } \\ & -\mathbf{P}-\text { Positive } \\ & \mathbf{N}-\text { Negative } \\ & \text { (DC Operation Only) } \\ & \text { *If Fixed Delay is selected, } \\ & \text { insert delay [0.1 } \ldots .1000] \\ & \text { followed by (S) secs. or }\end{aligned}$ [0.1 ... 500] (M) mins.

Positive Switching

Negative Switching
R_{T} is used when external adjustment is ordered.

$\mathrm{V}=$ Voltage $\quad \mathrm{L}=$ Load $\quad \mathrm{S} 1=$ Initiate S witch TD = Time Delay $R=$ Reset

$\mathrm{R}_{\mathbf{T}}$ Selection Chart							
Desired Time Delay*							
	econd		Min		R_{T}	Minutes	R_{T}
0	1	2	3	4	Megohm	5	Megohm
0.1	1	10	0.1	1	0.0	5	0.0
1	10	100	1	10	0.1	50	0.3
2	20	200	2	20	0.2	100	0.6
3	30	300	3	30	0.3	150	0.9
4	40	400	4	40	0.4	200	1.2
5	50	500	5	50	0.5	250	1.5
6	60	600	6	60	0.6	300	1.8
7	70	700	7	70	0.7	350	2.1
8	80	800	8	80	0.8	400	2.4
9	90	900	9	90	0.9	450	2.7
10	100	1000	10	100	1.0	500	3.0

* When selecting an external R_{T} add at least 20\% for tolerance of unit and the RT_{T}.

Accessories

