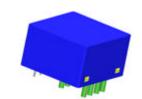


Current Transducer HXS 50-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



All Data are given with a $R_1 = 10 \text{ k}\Omega$

$I_{PN} = 12.5 - 25 - 50 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current		±50	Α
I _P	Primary current measuring range		±150	Α
V _{OUT}	Analog output voltage @ I _P		$V_{RFF} \pm (0.625 \cdot I_{P})$	/I _{PN}) V
00.	$\mathbf{I}_{p} = 0$		$V_{RFF} \pm 0.0125$	V
\mathbf{V}_{REF}	Internal Reference 1) - Output voltage		2.5 ± 0.025	V
IVE:	V _{REE} Output impedance	typ.	200	Ω
	V _{RFF} Load impedance		≥ 200	kΩ
R,	Output load resistance		≥ 2	$k\Omega$
\mathbf{R}_{OUT}^{T}	Output impedance		< 10	Ω
C	Max. output capacitive load		< 1	μF
V _c	Supply voltage (± 5 %)		5	V
I _c	Current consumption @ $V_c = 5 \text{ V}$		22	mΑ

Accuracy - Dynamic performance data

X	Accuracy $^{2)}$ @ I_{PN} , $T_{A} = 25^{\circ}C$	≤ ±1	% of I _{PN}
$\mathbf{e}_{\!\scriptscriptstyle L}$	Linearity 0 I _{PN}	≤±0.5%	% of reading
	3 x I _{PN}	≤±1 %	% of reading
TCV	Thermal drift of \mathbf{V}_{OUT} @ $\mathbf{I}_{P} = 0$	≤±0.4	mV/K
TCV	Thermal drift of V _{REF}	≤±0.01	%/K
TCV _{OUT}	V_{REF} Thermal drift of $V_{OUT}/V_{REF} @ I_{P} = 0$	≤±0.2	mV/K
TC e _G	Thermal drift of the gain	≤±0.05%	% of reading/K
\mathbf{V}_{OM}	Residual voltage @ $I_p = 0$, after an overload of 3 x I_{PNDC}	<±1	% of I _{PN}
t _{ra}	Reaction time @ 10 % of I _{PN}	< 3	μs
t _r	Response time @ 90 % of I _{PN}	< 5	μs
di/dt	di/dt accurately followed	> 50	A/µs
	Output noise without external filter (300kHz)	< 20	mVpp
f	Frequency bandwidth (-3 dB) 3)	DC 5	0 kHz

General data

$T_{_{\rm A}}$	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 40 + 85	°C
dCp	Creepage distance	> 5.5	mm
dCl	Clearance distance	> 5.5	m m
CTI	Comparative tracking index (Group I)	> 600	V
	UL94 classification	V0	
m	Mass	10	g
	Standards	EN 50178 (97-10-01)	

Features

- Hall effect measuring principle
- Multirange current transducer through PCB pattern lay-out
- · Galvanic isolation between primary and secondary circuit
- Isolation test voltage 2500V
- Low power consumption
- Extremely low profile, 10mm
- Single power supply +5V
- Fixed offset & gain

Advantages

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- Internal & external reference

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Current Transducer HXS 50-NP

In	sulation category		
V _b	Nominal Voltage with IEC 61010-1 standards and following conditions - Single insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	150	V r.m.s.
V _b	Nominal Voltage with EN 50178 standards and following conditions - Reinforced insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field	300	V r.m.s.
\mathbf{V}_{d} \mathbf{V}_{e} \mathbf{V}_{w}	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn R.m.s. voltage for partial discharge extinction @ 10pC Impulse withstand voltage 1.2/50µs	2.5 >1 6	kV kV kV

Notes : $^{1)}$ It is possible to overdrive \mathbf{V}_{REF} with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approximately 2.5 mA.

Safety:

Caution, risk of danger

Caution, risk of electrical shock

This transducer shall be used in accordance with manufacturer instruction.

The temperature of the primary conductor shall not exceed 100°C

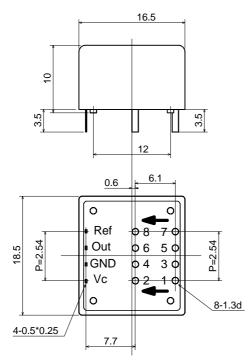
Power supply shall be a low voltage source and shall have an efficient protective system against over current.

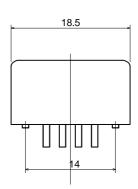
Power supply must incorporate a circuit breaker.

This transducer shall be used in an electric/electronic equipment in respect of standards rules and applicable safety requirements.

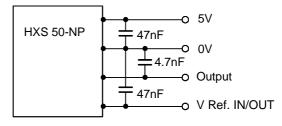
Primary bar and output terminals can provide hazardous voltage.

This transducer is a built in device, of which conducting parts must be inaccessible by installation.

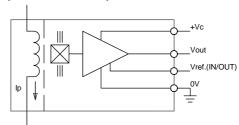

Protective envelope or additional shield must be used.


²⁾Excluding offset and hysteresis.

³⁾Small signal only to avoid excessive heatings of the magnetic core.



HXS 50-NP **Dimensions** (in mm)



Required Connection Circuit

Operation Principle

Number of	Primary	current	Primary	Primary insertion	Recommended
primary turns		maximum	resistance	inductance	PCB connections
	I _{PN} [A]	I _P [A]	R _P [m ohm]	L _P [uF]	
1	50	150	0.05	0.025	IN 1 3 5 7 O-O-O-O O-O-O-O 2 4 6 8 OUT
2	25	75	0.2	0.1	IN 1 3 5 7 0-0 0-0 0-0 0-0 2 4 6 8 OUT
4	12.5	37.5	1	0.4	IN 1 3 5 7 0 0 0 0 0 0 0 2 4 6 8 OUT

Mechanical characteristics

- General tolerance
- Fastening & connection of primary jumper 8 pins Ø 1.3 mm Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm

Ø 1.5 mm

- 4 pins 0.5 x 0.25 Ø 0.7 mm

Remarks

- \mathbf{V}_{OUT} is positive when \mathbf{I}_{P} flows from terminals 1, 3, 5, 7 (IN) to terminals 2, 4, 6, 8 (OUT).
- Temperature of the primary conductors should not exceed 100°C.