

The Multilayer Organic High Current Inductor is a low profile organic based inductor that can support mobile communications, satellite applications, GPS, matching networks, and collision avoidance. Based on AVX's patented multilayer organic technology (US patent $6,987,307$), the 0402 size Multilayer Organic High Current Inductor allows for much higher current handling over similar multilayer ceramic chip inductors, a 50\% average increase in current handling over comparable thin film products with similar Q, and current handling approaching that of wire wound ceramic chip inductors. MLO ${ }^{\text {M }}$ High Current Inductors incorporate very low loss organic materials which allow for high Q and high stability over frequency. They are surface mountable and are expansion matched to FR4 printed wiring boards. MLO ${ }^{\text {TM }}$ High Current Inductors utilize fine line high density interconnect technology thereby allowing for tight tolerance control and high repeatability. Reliability testing is performed to JEDEC and mil standards. Finishes are available in RoHS compliant Sn.

APPLICATIONS

- Mobile communications
- Satellite Applications
- GPS
- Collision Avoidance
- Wireless LAN's

FEATURES

- High Q
- High SRF
- High Frequency
- High Current Handling
- Low DC Resistance
- Surface Mountable
- 0402 Case Size
- RoHS Compliant Finishes
- Available in Tape and Reel

SURFACE MOUNT ADVANTAGES

- Inherent Low Profile
- Excellent Solderability
- Low Parasitics
- Better Heat Dissipation
- Expansion Matched to PCB

DIMENSIONS

mm (inches)

\mathbf{L}	\mathbf{W}	\mathbf{T}	\mathbf{R}
1.00 ± 0.10	0.58 ± 0.075	0.35 ± 0.10	0.125 ± 0.050
(0.040 ± 0.004)	(0.023 ± 0.003)	(0.014 ± 0.004)	(0.005 ± 0.002)

QUALITY INSPECTION

Finished parts are 100\% tested for electrical parameters and visual characteristics.

TERMINATION

RoHS compliant Sn finish.

OPERATING TEMPERATURE

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

0402 ELECTRICAL SPECIFICATIONS

450 MHz Test Frequency			$\begin{gathered} 900 \mathrm{MHz} \\ \text { Test Frequency } \\ \hline \end{gathered}$		$\begin{gathered} 1900 \mathrm{MHz} \\ \text { Test Frequency } \\ \hline \end{gathered}$		2400 MHz Test Frequency		SRF Min (GHz)	Rdc Max (m Ω)	Idc Max (mA)
$\begin{gathered} \mathrm{L}(\mathrm{nH}) \\ 450 \mathrm{MHz} \end{gathered}$	Available Inductance Tolerance	$\begin{gathered} Q \\ 450 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{L}(\mathrm{nH}) \\ 900 \mathrm{MHz} \end{gathered}$	$\begin{gathered} Q \\ 900 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{L}(\mathrm{nH}) \\ 1900 \mathrm{MHz} \end{gathered}$	$\begin{gathered} Q \\ 1900 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{L}(\mathrm{nH}) \\ 2400 \mathrm{MHz} \end{gathered}$	$\begin{array}{\|c\|} \hline Q \\ 2400 \mathrm{MHz} \end{array}$			
0.8	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	30	0.8	42	0.8	55	0.8	61	>20	100	875
0.9	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	26	0.9	36	0.9	47	0.9	52	>20	100	835
1	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	25	1.0	34	1.0	45	1.0	50	>20	100	800
1.1	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	24	1.1	33	1.1	43	1.1	48	20	100	782
1.2	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	24	1.2	33	1.2	44	1.2	48	20	110	751
1.3	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	25	1.3	34	1.3	44	1.3	49	19	130	725
1.5	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	25	1.5	35	1.5	45	1.5	50	19	150	679
1.6	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	25	1.6	35	1.6	45	1.6	49	18	150	660
1.8	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	25	1.8	35	1.8	45	1.8	49	18	160	626
2	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	26	2.0	35	2.0	45	2.1	49	17	180	596
2.2	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	27	2.2	36	2.2	46	2.2	50	16	200	571
2.4	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	27	2.4	37	2.4	47	2.4	50	15	200	549
2.7	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	27	2.7	36	2.7	46	2.7	48	14	250	521
3	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	27	3.0	36	3.0	44	3.1	46	12	300	497
3.3	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	27	3.3	36	3.3	44	3.4	46	11	340	476
3.6	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	27	3.6	37	3.7	45	3.8	46	10	350	457
3.9	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	28	3.9	38	4.0	46	4.1	47	10	400	441
4.7	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	29	4.7	39	4.9	45	5.1	44	9	480	405
5.6	$\pm 0.1 \mathrm{nH}, \pm 0.2 \mathrm{nH}, \pm 0.5 \mathrm{nH}$	30	5.7	40	6.0	44	6.3	42	8	500	375
6.8	$\pm 2 \%, \pm 3 \%, \pm 5 \%$	30	6.9	39	7.5	41	8.0	37	7	600	343
8.2	$\pm 2 \%$, $\pm 3 \%, \pm 5 \%$	29	8.4	37	9.4	37	10.4	31	6	800	315
10	$\pm 2 \%, \pm 3 \%, \pm 5 \%$	30	10.3	38	12.0	35	13.9	27	5	1000	290
12	$\pm 2 \%, \pm 3 \%, \pm 5 \%$	32	12.5	40	15.7	31	19.8	19	4	1100	265
15	$\pm 2 \%, \pm 3 \%, \pm 5 \%$	32	15.9	38	22.3	24	33.0	9	4	1200	240
18	$\pm 2 \%$, $\pm 3 \%, \pm 5 \%$	28	19.4	32	31.1	15	60.0	0.3	3	1500	210
22	$\pm 2 \%, \pm 3 \%, \pm 5 \%$	30	24.0	34	44.7	11	n/a	n/a	3	1900	202
27	$\pm 2 \%, \pm 3 \%, \pm 5 \%$	29	30.5	30	n/a	n/a	n/a	n/a	3	2100	184
30	$\pm 2 \%, \pm 3 \%, \pm 5 \%$	28	34.0	27	n/a	n/a	n/a	n/a	2	2200	180
32	$\pm 2 \%, \pm 3 \%, \pm 5 \%$	28	37.7	27	n/a	n/a	n/a	n/a	2	2200	175

Specifications based on performance of component assembled properly on printed circuit board with 50Ω nominal impedance.
Idc max: Maximum $15^{\circ} \mathrm{C}$ rise in component temperature over ambient.

