MOS FET Relays

G3VM-81GR

New MOS FET Relays Designed for Switching Minute Signals and Analog Signals.

- New models for 80-V loads.
- Turn-ON/turn-OFF times of 0.07 ms (typical).
- Capacity between output terminals of 2.5 pF (typical).

RoHS compliant

A Refer to "Common Precautions".

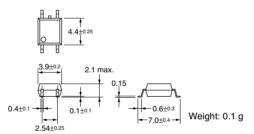
■ Application Examples

- Broadband systems
- · Data loggers
- Measurement devices
- Amusement machines

Note: The actual product is marked differently from the image shown here.

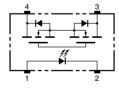
■List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Minimum packaging unit	
				Number per stick	Number per tape
SPST-NO	Surface-mounting	80 VAC	G3VM-81GR	100	
	terminals		G3VM-81GR (TR)		2,500

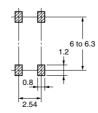

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-81GR



Note: The actual product is marked differently from the image shown here.

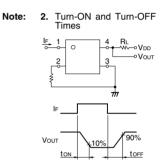

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-81GR

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-81GR

Note:

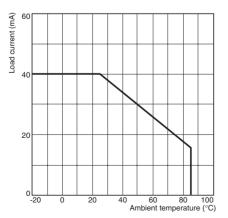

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol Rating Unit		Unit	Measurement Conditions		
Input	LED forward current	I _F	50	mA			
	Repetitive peak LED forward current	I _{FP}	1	Α			
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	Ta ≥ 25°C		
	LED reverse voltage	V_R	5	V			
	Connection temperature	Tj	125	°C			
Output	Output dielectric strength	V _{OFF}	80	V			
	Continuous load current	I _O	40	mA			
	ON current reduction rate	Δ I _O /°C	-0.4	mA/°C	Ta ≥ 25°C		
	Connection temperature	Tj	125	°C			
	ic strength between input and See note 1.)	V _{I-O}	1,500	Vrms	AC for 1 min		
Ambient operating temperature		Ta	-20 to +85	°C	With no icing or condensat		
Storage temperature		T _{stg}	-40 to +125	°C	With no icing or condensation		
Soldering temperature			260	°C	10 s		

The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V_{F}	1.0	1.15	1.3	٧	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _R = 5 V	
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}			3	mA	I _O = 40 mA	
Output	Maximum resistance with output ON	R _{ON}		16	25	Ω	I _F = 5 mA, I _O = 40 mA	
	Current leakage when the relay is open	I _{LEAK}			1	nA	V _{OFF} = 80 V Ta = 60°C	
	Capacity between terminals	C _{OFF}		2.5	3.5	pF	V = 0, f = 100 MHz, t < 10 s	
Capacity	Capacity between I/O terminals			0.7		pF	f = 1 MHz, Vs = 0 V	
Insulation resistance between I/O terminals		R _{I-O}	1,000			МΩ	V _{I-O} = 500 VDC, RoH ≤ 60%	
Turn-ON	Turn-ON time			0.07	0.5	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$	
Turn-OFF time		tOFF		0.07	0.5	ms	V _{DD} = 10 V (See note 2.	


■Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V_{DD}			64	V
Operating LED forward current	IF	5		30	mA
Continuous load current	Io			40	mA
Operating temperature	Ta	25		60	°C

■ Engineering Data

Load Current vs. Ambient Temperature G3VM-81GR

■Safety Precautions

Refer to "Common Precautions" for all G3VM models.