EB3C Relay Barriers

Input contacts can be used in any explosive gas and Zone 0/Class I Div. 1 areas.

Explosion protection	Relay Barrier: Switch (EB9Z-A): Switch (EB9Z-A1):	[Exia] II C
Exia II CT6 BT6		

- IEC60079 compliant.
- Wide variety of models ranging from 1 -circuit to 16 circuit types.
-8- and 16-channel are available in common wiring, ideal for connection to PLCs. 16-circuit also available with a connector.
- No grounding required.
- IDEC's original spring-up terminal minimizes wiring time.
- 35 -mm-wide DIN rail mounting or direct screw mounting.
- Global usage IECEx
USA: FM, UL Europe: CE marking, ATEX
China: CQST Korea: KCS
Taiwan TS
Japan: TIIS
- Ship class: NK (Japan), KR (Korea)

Relay Barriers

Power Voltage	Connection to Non-intrinsically Safe Circuit	Input Wiring Method	Output		Number of Channels	Part No.	Weight (g)
100 to 240 V AC	Screw Terminal	Separate/Common Wiring Compatible	Relay		1	EB3C-R01AN	150
					2	EB3C-R02AN	180
					3	EB3C-R03AN	190
					5	EB3C-R05AN	260
					6	EB3C-R06AN	270
					8	EB3C-R08AN	300
					10	EB3C-R10AN	380
		Common Wiring Only			8	EB3C-R08CAN	280
		Separate/Common Wiring Compatible	Transistor (Sink/Source)		1	EB3C-T01AN	140
					2	EB3C-T02AN	170
					3	EB3C-T03AN	180
					5	EB3C-T05AN	250
					6	EB3C-T06AN	260
					8	EB3C-T08AN	320
					10	EB3C-T10AN	340
		Common Wiring Only	Transistor (Sink)		8	EB3C-T08CKAN	260
					16	EB3C-T16CKAN	260
			Transistor (Source)		8	EB3C-T08CSAN	260
					16	EB3C-T16CSAN	260
24V DC		Separate/Common Wiring Compatible	Relay		1	EB3C-R01DN	130
					2	EB3C-R02DN	170
					3	EB3C-R03DN	180
					5	EB3C-R05DN	250
					6	EB3C-R06DN	260
					8	EB3C-R08DN	260
					10	EB3C-R10DN	360
		Common Wiring Only			8	EB3C-R08CDN	270
					16	EB3C-R16CDN	390
		Separate/Common Wiring Compatible	Transistor (Sink/Source)		1	EB3C-T01DN	120
					2	EB3C-T02DN	160
					3	EB3C-T03DN	170
					5	EB3C-T05DN	240
					6	EB3C-T06DN	250
					8	EB3C-T08DN	250
					10	EB3C-T10DN	320
		Common Wiring Only	Transistor		8	EB3C-T08CKDN	250
				Sink	16	EB3C-T16CKDN	350
					8	EB3C-T08CSDN	250
				Source	16	EB3C-T16CSDN	350
	Connector			Sink	16	EB3C-T16CKD-CN	330
				Source		EB3C-T16CSD-CN	330

Accessories

Name	Part No.	Ordering No.	Package Quantity	Description
DIN Rail	BAA1000	BAA1000PN10	10	Aluminum (1m long)
	BAP1000	BAP1000PN10	10	Steel (1m long)
End Clip	BNL6	BNL6PN10	10	For fastening EB3C units on the DIN rail.
Static Electricity Caution Plate	EB9Z-N1	EB9Z-N1PN10	10	Polyester 20 (W) $\times 6$ (H) mm

Explosion-Protection and Electrical Specifications

Explosion Protection				Intrinsic safety type	
Degree of Protection				IP20 (IEC60529)	
Installation Location			Relay Barrier	Safe indoor place (safe area: non-hazardous area)	
			Switch	For zone 0, 1, 2 hazardous areas	
Non-intrinsically Safe Circuit Maximum Voltage (Um)				250 V AC	
	Wiring Method			1-channel Separate Wiring	$\begin{array}{\|l\|} \hline \text { 16-channel } \\ \text { Common Wiring } \end{array}$
	Rated Operating Voltage			12 V DC $\pm 10 \%$	
	Rated Operating Current			$10 \mathrm{~mA} \mathrm{DC} \pm 20 \%$	
	Maximum Output Voltage (Uo)			13.2 V DC	
	Maximum Output Current (lo)			14.2 mA	227.2 mA
	Maximum Output Power (Po)			46.9 mW	750 mW
	Maximum External Capacitance (Co) (Note 1)			$470 \mathrm{nF}(470 \mathrm{nF})$	490 nF (365 nF)
	Maximum External Inductance (Lo) (Note 2)			$\begin{aligned} & 87.5 \mathrm{mH}(87.5 \\ & \mathrm{mH}) \end{aligned}$	$0.6 \mathrm{mH}(0.425 \mathrm{mH})$
	Allowable Wiring Resistance (Rw)			300Ω	$\begin{aligned} & 600 /(\mathrm{N}+1) \Omega \\ & (\mathrm{N}=\text { number of } \\ & \text { common } \\ & \text { channels }) \\ & \hline \end{aligned}$
	Maximum Channels per Common Line				16
		Contact Configuration		1NO	
		Rated Insulation Voltage (Ui)		250 V AC, 125 V DC	
		Thermal Current (lth)		3A (common terminal: 8A)	
		Contact	Resistive Load	AC: $750 \mathrm{VA}, \mathrm{DC}: 72 \mathrm{~W}$	
		Allowable Power	Inductive Load	AC: $750 \mathrm{VA}(\cos \varnothing=0.3$ to 0.4$)$ DC: 48 W ($\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	
			Resistive Load	250 V AC 3A, 24V DC 3A	
		Load	Inductive Load	$\begin{aligned} & \text { 250V AC 3A }(\cos \varnothing=0.3 \text { to } 0.4) \\ & 24 \mathrm{~V} \text { DC } 2 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}) \end{aligned}$	
		Minimum Applicable Load		0.1 V DC, 0.1 mA (reference value)	
		Contact Resistance		$50 \mathrm{~m} \Omega$ maximum (initial value)	
		Turn ON Time		12 ms maximum (rated voltage)	
		Turn OFF Time		10 ms maximum (rated voltage)	
		Mechanical Life		20,000,000 operations minimum (at 18,000 operations/hour, without load)	
		Electrical Life		100,000 operations minimum (at 1,800 operations/hour, rated load)	
		Short-circuit Protection		None	
		Rated Voltage		24V DC	
		Maximum Voltage		30 V DC	
		Maximum Current		100 mA (connector type: 15 mA)	
		Leakage Current		0.1 mA maximum	
		Voltage Drop		1.5 V maximum	
		Clamping Voltage		33 V (1W)	
		Inrush Current		0.5A maximum (1 sec)	
		Turn ON Time		0.1 ms maximum (resistive load)	
		Turn OFF Time		0.4 ms (typical) (resistive load)	
		Short-circuit Protection		None	

Note: Values in () are those approved by TIIS (Technology Institution of Industrial Safety, Japan).

Certification No.

Certification Organization	Explosion Protection	Certification No.
FM	$\begin{aligned} & \text { Class I, III, III Div. } 1 \\ & \text { Group A, B, C, D, E, F, G } \end{aligned}$	3047250
	Class I, Zone 0 AEx [ia] II C	
UL	Class I, II, III, Div. 1 Group A, B, C, D, E, F, G	E234997
	Class I, Zone 0 AEx [ia] II C	
PTB (ATEX)	[Exia] II C: Gas, Vapour [Exia] III C: Dust	PTB09 ATEX2046
PTB (IECEx)	[Exia] II C: Gas, Vapour [Exia] III C: Dust	IECEx PTB10.0015
CQST	[Exia Ga] II C	CNEx14.0047
KCS	[Exia] II C	14-AV4B0-0373
TIIS	Relay barrier: [Exia] II C	TC20539
	Switch (EB9Z-A): Exia II CT6	TC15758
	Switch (EB9Z-A1): Exia II BT6	TC15961
NK	[Exia] II C	Type Test No. 13 T606
KR	[Exia] II C	TYK17821-EL003

Note: For details about switches, see "Switch Explosion-Protection
Specifications" on page T-6 and " 3 . Switches in the Hazardous
Area" on page T-10.

General Specifications

Power Voltage	AC Power	DC Power
Rated Power Voltage	100 to 240 V AC	24 V DC
Allowable Voltage Range	-15 to +10\%	$\pm 10 \%$
Rated Frequency	$50 / 60 \mathrm{~Hz}$ (allowable range: 47 to 63 Hz)	-
Inrush Current	$\begin{aligned} & \text { 10A (100V AC) } \\ & 20 \mathrm{~A}(200 \mathrm{~V} \text { AC) } \\ & \hline \end{aligned}$	10A
Dielectric Strength (1 minute, 1 mA)	Between intrinsically safe circuit and non-intrinsically safe circuit: 1526.4V AC	
	Between AC power and output terminal: 1500V AC	
	Between DC power and transistor output terminal: 1000V AC (screw terminal type only)	
Operating Temperature	-20 to $+60^{\circ} \mathrm{C}$ (no freezing)	
Storage Temperature	-20 to $+60^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity	45 to 85\% RH (no condensation)	
Atmosphere	800 to 1100 hPa	
Pollution Degree	2 (IEC60664)	
Insulation Resistance	$10 \mathrm{M} \Omega$ minimum (500 V DC megger, between the same poles as the dielectric strength)	
Vibration Resistance (damage limits)	Panel mounting: 10 to 55 Hz , amplitude 0.75 mm	
	DIN rail mounting: 10 to 55 Hz , amplitude 0.35 mm	
Shock Resistance (damage limits)	Panel mounting: $500 \mathrm{~m} / \mathrm{s}^{2}$ (3 times each on $\left.\mathrm{X}, \mathrm{Y}, \mathrm{Z}\right)$	
	DIN rail mounting: $300 \mathrm{~m} / \mathrm{s}^{2}$ (3 times each on $\left.\mathrm{X}, \mathrm{Y}, \mathrm{Z}\right)$	
Terminal Style	M3 screw terminal	
Mounting	$35-\mathrm{mm}$-wide DIN rail or panel mounting (M4 screw)	
$\begin{array}{l}\text { Power Consumption } \\ \text { (approx.) }\end{array}$	9.6 VA (EB3C-R10AN at 200V AC)4.8W (EB3C-R16CDN at 24V DC)	

Switches \& Pilot Lights

Flush

Silhouette Switches
Emergency Stop Switches

Control Stations

Display

 LightsOperator Interfaces

PLCs

Softwares

Relays

Sockets

Timers

Terminal
Blocks

Circuit
Protectors

Power
Supplies

Sensors

Ex-proo
Control
Boxes

Barriers

LEDs

Safety
Products

Information

EB3C Relay Barriers

Switch Explosion-Protection Specifications (Japan only)

Simple apparatuses in accordance with relevant standards of each country can be installed in the hazardous area and connected to the EB3C located in the safe area. In Japan, any switches, though regarded as simple apparatuses, must be certified for explosion-proof devices. EB9Z-A and EB9Z-A1 are IDEC's generic Part No. of any single apparatuses certified by TIIS for use with the EB3C, therefore simple apparatuses with specifications shown below can be used as those approved by the Japanese explosion-proof certification.

Switch Part No.	EB9Z-A	EB9Z-A1
Explosion Proof (Note 1)	Exia II CT6	Exia II BT6
Operating Temperature	-20 to $+60^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity	45 to 85\% RH (no condensation)	
Degree of Protection	IP20	
Dielectric Strength	500 V AC, 1 mA	
Intrinsic Safety Ratings and Parameters	1-channel Separate Wiring Maximum input voltage (Ui): 13.2 V Maximum input current (ii): 14.2 mA Maximum input power (Pi): 46.9 mW Internal capacitance (Ci): $\leq 2 \mathrm{nF}$ Internal inductance (Li): $\leq 5 \mu \mathrm{H}$	16-channel Common Wiring Maximum input voltage (Ui): 13.2 V Maximum input current (ii): 227.2 mA Maximum input power (Pi): 750 mW Internal capacitance (Ci): $\leq 32 \mathrm{nF}$ Internal inductance (Li): $\leq 80 \mu \mathrm{H}$
	Metallic: Magnesium content must be 7.5\% or less (steel and aluminum are acceptable)	
Enclosure Material	Plastic: Switch operator exposed area IIC: $20 \mathrm{~cm}^{2}$ maximum IIB: $100 \mathrm{~cm}^{2}$ maximum When the switch has a wider exposed area, attach a caution label as shown at right.	Caution To prevent electrostatic charges, do not rub the switch surface during operation. Use a soft cloth dipped with water for cleaning. Caution Label Example
Switch Ratings (Note 2)	Contact rating: Ui, li minimum Contact resistance: 0.5Ω maximum Cross sectional area of wire: $0.000962 \mathrm{~mm}^{2}$ minimum Printed circuit board: Thickness 0.5 mm minimum Copper foil width 0.15 mm minimum A resistor to prevent contact welding and an LED can be connected to 1 -channel separate wiring circuits. Consult IDEC for details.	

Note 1: See "Precautions for Operation" on page T-10.
Note 2: For details, see "3. Switches in the Hazardous Area" on page T-10.

Internal Circuit Block Diagram

Dimensions

Connector Type

EB3C-T16CD-CN

Mounting Hole Layout (Screw Mounting)

External Wiring Examples

Transistor Output (Ex.: EB3C-T06AN)

Note: On the sink/source transistor output type, terminals A can be used as a positive common line.

Relay Output

(Ex.: EB3C-R06AN)

Transistor Sink Output
(Ex.: EB3C-T08CKDN)

Transistor Source Output (Ex.: EB3C-T08CSDN)

Relay Output Common Wiring
(Ex.: EB3C-R16CDN)

Timers

EB3C Relay Barriers

Connector Type Output Wiring Diagram

EB3C-T16CKD-CN (Sink)

EB3C-T16CSD-CN (Source)
CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16

Wiring Example with IDEC's MicroSmart PLC Input Modules

EB3C-T16CKD-CN		FC4A-N16B3		EB3C-T16CSD-CN		FC4A-N16B3	
Terminal	Output	Input	Terminal	Terminal	Output	Input	Terminal
20	A1	10	20	20	A1	10	20
19	A9	110	19	19	A9	110	19
18	A2	11	18	18	A2	11	18
17	A10	111	17	17	A10	111	17
16	A3	12	16	16	A3	12	16
15	A11	112	15	15	A11	112	15
14	A4	13	14	14	A4	13	14
13	A12	113	13	13	A12	113	13
12	A5	14	12	12	A5	14	12
11	A13	114	11	11	A13	114	11
10	A6	15	10	10	A6	15	10
9	A14	115	9	9	A14	115	9
8	A7	16	8	8	A7	16	8
7	A15	116	7	7	A15	116	7
6	A8	17	6	6	A8	17	6
5	A16	117	5	5	A16	117	5
4	+V	COM	4	4	-V	COM	4
3	NC	COM	3	3	NC	COM	3
2	COM	NC	2	2	COM	NC	2
1	NC	NC	1	1	NC	NC	1

Note: The wiring in dashed line does not affect the operation of the EB3C. Applicable connector is IDEC's JE1S-201.
Input power for PLC inputs is supplied by the EB3C, therefore the PLC input does not need an external power supply.

Wiring Example of Intrinsically Safe External Inputs

Common Wiring (Maximum 16 circuits)

All input lines are wired to a common line inside the intrinsically safe switch (one common line per intrinsically safe circuit).

Some input lines are wired to a common line inside the intrinsically safe switches, while others are outside switches (one common line per intrinsically safe circuit).

All input lines are wired to a common line outside the intrinsically safe switch (one common line per intrinsically safe circuit).

2. Separate Wiring

Each input line of the EB3C makes up one independent intrinsically safe circuit.

Diagram Symbols

Serial-Parallel Connection of Switches

Notes

- As shown in the diagram on the left, a required number of "contacts in one switch" (3 contacts in the example at left) can be added to the "contacts in one switch" connected to one input channel.
- Similarly, a required number of "contacts in one switch" can be added to a common line connected to multiple input channels.
- The capacitance and inductance of the added "contacts in one switch" must be included in the calculation of the wiring capacitance and inductance in "Precautions for Operation, 5 . Wiring for Intrinsic Safety, (7)" on page T-11.
- In addition, a required number of contacts can be added in the enclosure of "contacts in one switch." In this case, however, do not include the capacitance and inductance in the calculation of the wiring capacitance and inductance on page $\mathbf{T}-11$. Instead, make sure that the internal capacitance (Ci) and internal inductance (Li) are within the values shown in the table "Switch Explosion-Protection Specifications (Japan only)" on page T-6.

Recommended Connector Cable for Connector Types

Description	No. of Poles	Length (m)	Part No.	shape	Applicable Type
With Shield	20	0.5	FC9Z-H050A20		IDEC MicroSmart I/O Module
		1	FC9Z-H100A20		
		2	FC9Z-H200A20		
		3	FC9Z-H300A20		
Without Shield		0.5	FC9Z-H050B20		IDEC MicroSmart I/O Module
		1	FC9Z-H100B20		
		2	FC9Z-H200B20		
		3	FC9Z-H300B20		
Cable with Crimping Terminal		1	BX9Z-H100E4		Screw Terminal
		2	BX9Z-H200E4		
		3	BX9Z-H300E4		
40-pin Cable for PLC		1	BX9Z-H100L		Mitsubishi A Series
		2	BX9Z-H200L		(positive common)
		3	BX9Z-H300L		EB3C-T16CKD-CN

FC9Z-H $\square \square \square A$, FC9Z-H $\square \square \square B$ Internal Connection

```
\begin{array} { c } { \text { Fujitsu Connector} } \\ { \text { FCN-367J024-AU/F} } \end{array}
FCN-367J024-AU/F
```

BX9Z $\square \square \square$ E4 Internal Connection

IDEC Connector JE1S-201 Terminal

Y-shaped Compresion (Marking Tube No.)

(Connecting Side)

Switches \& Pilot Lights

Flush

Silhouette
Switches
Emergency
Stop
Switches
Control Stations

Display

Lights

Operator Interfaces

PLCs

Softwares

Relays

Sockets

Timers

Terminal Blocks

Circuit
Protectors

Power
Supplies

Sensors

Ex-proof
Control
Boxes
Barriers

LEDs

Safety
Products

Information

Precautions for Operation

1. Installation of EB3C Relay Barriers

(1) The EB3C can be installed in any direction.
(2) Install the EB3C relay barrier in a safe area (non-hazardous area) in accordance with intrinsic safety ratings and parameters. To avoid mechanical shocks, install the EB3C in an enclosure which suppresses shocks.
(3) When installing or wiring the EB3C, prevent electromagnetic and electrostatic inductions in the intrinsically safe circuit. Also prevent the intrinsically safe circuits from contacting with another intrinsically safe circuit and any other circuits.
Maintain at least 50 mm clearance, or provide a metallic separating board between the intrinsically safe circuit and non-intrinsically safety circuit. When providing a metallic separating board, make sure that the board fits closely to the enclosure (top, bottom, and both sides). Allowable clearance between the enclosure and board is 1.5 mm at the maximum
The clearance of 50 mm between the intrinsically safe circuit and non-intrinsically safe circuit may not be sufficient when a motor circuit or high-voltage circuit is installed nearby. In this case, provide a wider clearance between the circuits referring to 5 (3) "Minimum Parallel Distance between the Intrinsically Safe Circuit and Other Circuits."
(4) In order to prevent contact between intrinsically safe circuits and non-intrinsically safe circuits, mount EB3C units with terminals arranged in the same direction.

(5) Maintain at least 6 mm (or 3 mm according to IEC60079-11: 1999) clearance between the terminal of intrinsically safe circuit and the grounded metal part of a metal enclosure, and between the relay terminal block of an intrinsically safe circuit and the grounded metal part of a metal enclosure.
(6) For installing the EB3C, mount on a $35-\mathrm{mm}$-wide DIN rail or directly on a panel using screws. Make sure to install securely to withstand vibration. When mounting on a DIN rail, push in the clamp completely. Use the BNL6 end clips on both sides of the EB3C to prevent from moving sideways.
(7) Excessive extraneous noise may cause malfunction and damage to the EB3C. When extraneous noise activates the voltage limiting circuit (thyristor), remove the noise source and restore the power.

2. Terminal Wiring

(1) Using a $\varnothing 5.5 \mathrm{~mm}$ or smaller screw driver, tighten the terminal screws (including unused terminal screws) to a torque of 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (recommended value).
(2) Make sure that IP20 is achieved when wiring. Use insulation tubes on bare crimping terminals.
(3) To prevent disengaged wires from contacting with other intrinsically safe circuits, bind together the wires of one intrinsically safe circuit.
(4) When the adjacent terminal is connected to another intrinsically safe circuit, provide an insulation distance of at least 6 mm .

3. Switches in the Hazardous Area

 (For Japan application only)(1) A switch contains the switch contact, enclosure, and internal wiring. A switch contact refers to an ordinary switching device which consists of contacts only, such as a pushbutton switch. See below.
Applicable Switches

Control Switches	Push-pull Switches	Pushbutton, Foot, Trigger, Rocker, Grip
	Twisting Switches	Rotary, Selector, Cam, Drum, Thumb wheel
	Lever and Slide Switches	Toggle, Multidirectional, Wobble stick, Lever, Slide switch
Sensing Switches	Displacement Switches	Microswitch, Limit, Magnetic proximity, Door, Reed, Mercury
	Level Switches	Liquid level
	Others	Pressure, Temperature

Note: For installation in hazardous areas and connection to the EB3C, use switches which are certified, approved, or considered to be simple apparatus in relevant standards in each country.
(2) When the switch has internal wiring or lead wire, make sure that the values of internal inductance (Li) and capacitance (Ci) are within the certified values.
(3) Enclose the switch contact's bare live part in an enclosure of IP20 or higher protection.
(4) Depending on the explosion-protection specifications according to TIIS, the exposed area of plastic switch operator is limited as follows:

- Exia II CT6 (EB9Z-A): $20 \mathrm{~cm}^{2}$ maximum
- Exia II BT6 (EB9Z-A1): $100 \mathrm{~cm}^{2}$ maximum
(5) Attach the certification mark supplied with the EB3C on the EB9Z-A or EB9Z-A1 switch (for Japan application).
(6) When the switch operator of plastic enclosure has a wider exposed area than the following limits, attach a caution label as shown below.

II C: $20 \mathrm{~cm}^{2}$ maximum
II B: $100 \mathrm{~cm}^{2}$ maximum

Caution To prevent electrostatic charges, do not rub the switch surfaec during operation. Use a soft cloth dipped with water for cleaning.

(7) For the 1-circuit separate wiring, a resistor to prevent reed switch contact welding and an LED miniature pilot lights can be connected in series with the contact. See below. Use the terminal screw of M3 or larger.
Applicable Resistor Ratings

Resistance	100Ω maximum
Rated Wattage	0.5 to 3W
Type	Metal (oxide) film resistors

Applicable LED

IDEC's IPL1 series LED miniature pilot lights. See pages T-14 and T-17.

Precautions for Operation

4. Output Specifications

(1) When wiring the output from the EB3C, connect the nonintrinsically safe circuit to terminals A and C. The EB3C output circuit is not equipped with short-circuit protection. If required, provide a protection in the external circuit.
(2) Relay Output

Some types of loads generate reverse emf (such as solenoids) or cause a large inrush current (incandescent lamps), resulting in a shorter operation life of output relay contacts. The operation life of contacts can be extended by preventing the reverse emf using a diode, RC, or varistor, or by suppressing the inrush current using a resistor or RL.

Contacts are made of gold-clad silver. When using at a small current and a low voltage (reference value: 0.1 mA , 0.1 V), test the contact on the actual circuit in advance.
(3) Transistor Output

When connecting a small load, the load may not turn off because of a leakage current, even though the transistor output is turned off. If this is the case, connect a resistor in parallel with the load to bypass the leakage current.
When an excessively high voltage (clamps at 33V, 1W) or a reverse voltage is applied to the output terminals, the clamping circuit or output transistor may be damaged.
When driving an inductive load, be sure to connect a diode across the load to absorb reverse emf.

Example of Overvoltage Absorption Circuit

(4) In the common wiring only types, the output terminals are not isolated from each other.
(5) When connecting the connector type EB3C's in parallel, use one power supply to power the EB3C's. Do not connect any wiring to the C1 and C2 terminals.

5. Wiring for Intrinsic Safety

(1) The voltage applied on the general circuit connected to the non-intrinsically safe circuit terminals of the EB3C relay barrier must be 250 V AC, $50 / 60 \mathrm{~Hz}$, or 250 V DC at the maximum under any conditions, including the voltage of the input power and the internal circuit.
(2) When wiring, take into consideration the prevention of electromagnetic and electrostatic charges on intrinsically safe circuits. Also, prevent intrinsically safe circuits from contacting with other circuits.
(3) The intrinsically safe circuits must be separated from nonintrinsically safe circuits. Contain intrinsically safe circuits in a metallic tube or duct, or separate the intrinsically safe circuits referring to the table below.
Note: Cables with a magnetic shield, such as a metallic sheath, prevent electromagnetic induction and electrostatic induction, however, a non-magnetic shield prevents electrostatic induction only. For non-magnetic shields, take a preventive measure against electromagnetic induction.
Finely twisted pair cables prevent electromagnetic induction. Adding shields to the twisted pair cables provides protection against electrostatic induction.

Minimum Parallel Distance between the Intrinsically Safe Circuit and Other Circuits (mm)

Voltage and Current of Other Circuits	Over 100 A	100 A or less	50 A or less	10 A or less
Over 440V	2000	2000	2000	2000
440 V or less	2000	600	600	600
220 V or less	2000	600	600	500
110 V or less	2000	600	500	300
60 V or less	2000	500	300	150

(4) When identifying intrinsically safe circuits by color, use light blue terminal blocks and cables.
(5) When using two or more EB3C's to set up one intrinsically safe circuit in the common wiring configuration, interconnect two neutral terminals (N1 through N10) on each EB3C between adjacent EB3C's in parallel.
(6) Make sure that the power of the EB3C and contact are turned off before starting inspection or replacement.
(7) When wiring the intrinsically safe circuit, determine the distance to satisfy the wiring parameters shown below. Note that parameters are different between separate wiring and common wiring.
a) Wiring capacitance $\mathrm{Cw} \leq \mathrm{Co}-(\mathrm{Ci}+\mathrm{N} \times 2 \mathrm{nF})$

Co: Maximum external capacitance of the EB3C
Ci : Internal capacitance of the switch
N : The number of switches connected in series or parallel (the number is infinite)
b) Wiring inductance $\mathrm{Lw} \leq \mathrm{Lo}-(\mathrm{Li}+\mathrm{N} \times 5 \mu \mathrm{H})$

Lo: Maximum external inductance of the EB3C
Li: Internal inductance of the switch
N : The number of switches connected in series or parallel (the number is infinite)
c) Wiring resistance $\leq R w$

Rw: Allowable wiring resistance
d) Allowable wiring distance $\mathrm{D}(\mathrm{km})$ is the smallest value of those calculated from the capacitance, inductance, and resistance.
$\mathrm{D} \leq \mathrm{Cw} / \mathrm{C} \quad \mathrm{C}(\mathrm{nF} / \mathrm{km})$: Capacitance of cable per km
$D \leq L w / L \quad L(m H / k m)$: Inductance of cable per km
$D \leq R w / 2 R R(\Omega / k m)$: Resistance of cable per km
Note: For the details of wiring the intrinsically safe circuits, refer to a relevant test guideline for explosion-proof electric equipment in each country.
(8) Applicable Wire Size
0.5 to $2.0 \mathrm{~mm}^{2}$ (AWG20 to AWG14): two wires

However, one wire for $2.0 \mathrm{~mm}^{2}$ (AWG14)

Mounting Bracket

The following mounting brackets can be used to install the EB3C relay barriers and EB3L lamp barriers on the mounting holes of IBRC contact signal transducer, IBPL pilot relay barrier, and IBZ buzzer.

No. of Channels	Part No.	Dimension (mm)			
		28.0	44.0	61.0	
1	EB9Z-K02	51.0	59.5	76.0	
2	EB9Z-K03	51.0	75.0	91.5	
3	EB9Z-K05	97.0	105.0	122.0	
5	EB9Z-K06	97.0	120.0	137.0	
6	EB9Z-K10	97.0	181.0	198.0	
10					

All dimensions in mm.

Switches \& Pilot Lights

Flush

Silhouette Switches

Emergency
Stop
Switches
Control
Stations
Display
Lights

Operator
Interfaces

PLCs

Softwares

Relays

Sockets

Timers

Terminal
Blocks

Circuit
Protectors
Power
Supplies

Sensors

Ex-proof
Control
Boxes

Barriers

