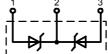
$I_{FAV} = 2x 60 A$

advanced

150 V

0.80 V

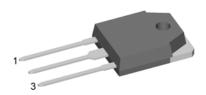

Schottky

High Performance Schottky Diode Low Loss and Soft Recovery Common Cathode

Part number (Mark

DSA 120 C 150QB

(Marking on product)



Features / Advantages:

- Very low Vf
- Extremely low switching losses
- Low Irm-values
- Improved thermal behaviour
- High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- Low noise switching
- Low losses

Applications:

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Package:

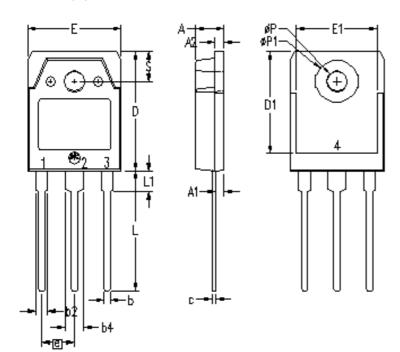
 $V_{RRM} =$

TO-3P

- Industry standard outline - compatible with TO-247
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25 ^{\circ}\text{C}$			150	V
I _R	reverse current	V _R = 150 V	T _{VJ} = 25 °C			2	mA
		V _R = 150 V	T_{VJ} = 125 °C			5	mA
V _F	forward voltage	I _F = 60 A	T _{VJ} = 25 °C			0.93	V
		$I_F = 120 A$				1.13	V
		I _F = 60 A	T _{VJ} = 125 °C			0.80	V
		$I_F = 120 A$				1.03	V
I _{FAV}	average forward current	rectangular, d = 0.5	T _C = 150 °C			60	Α
V _{F0}	threshold voltage slope resistance for power loss calculation only				0.51	V	
	slope resistance \(\) for power loss of	iculation only				3.9	$m\Omega$
R _{thJC}	thermal resistance junction to case					0.40	K/W
T _{VJ}	virtual junction temperature			-55		175	°C
P _{tot}	total power dissipation		T _C = 25 °C			375	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	T _{VJ} = 45 °C			600	Α
C _J	junction capacitance	$V_R = V; f = 1 MHz$	$T_{VJ} = 25 ^{\circ}C$				pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = A; L = 100 μH	T _{VJ} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$				tbd	Α



advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			70	Α	
R _{thCH}	thermal resistance case to he	eatsink		0.25		K/W	
M_{D}	mounting torque		0.8		1.2	Nm	
F _c	mounting force with clip		20		120	N	
T stg	storage temperature		-55		150	°C	
Weight				5		g	

^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-3P

SYM	INCHES		MILLIMETERS		
2110	MIN	MAX	MIN	MAX	
Α	.185	.193	4.70	4.90	
A1	.051	.059	1,30	1,50	
A2	.057	.065	1.45	1.65	
Ь	.035	.045	0.90	1.15	
Ь2	.075	.087	1.90	2.20	
b4	.114	.126	2.90	3.20	
O	.022	.031	0.55	0.80	
D	.780	.791	19.80	20.10	
D1	.665	.677	16,90	17,20	
Ε	.610	.622	15.50	15.80	
E1	.531	.539	13,50	13,70	
е	.215 BSC		5.45 BSC		
L	.779	.795	19,80	20,20	
L1	.134	.142	3.40	3.60	
ØΡ	.126	.134	3,20	3,40	
øP1	.272	.280	6.90	7.10	
S	.193	.201	4.90	5,10	

All metal areas are tin plated