

Quality and Reliability Since 1976

 Corporation was established in 1976 COMPONENTS INTERNATIONAL, CORP. as a reed switch and reed relay company. In 1979 Hasco added electromechanical relays to its line. It's mission has been simple. Produce high quality parts, keep a large inventory, keeps costs down and most important, give everyone you are dealing with 100% personal attention. Our founder once said, "anyone can sell a relay, Hasco sells service."

Our Factory:
 Deal with the manufacturer and not an importer

Since the mid 1990's Hasco has made its own relays in our own factory. Buying relays from a company with over three decades of experience that produces its own parts is better than buying them from someone who imports them from different factories. Factory Tours are Available

Sales \& Service: 516-328-9292 email: info@hascorelays.com

Sales are done through our headquarters in New York or our branch office in Shanghai for overseas inquiries. Hasco also has 15 affiliated sales rep offices as well as a stocking branch in Brazil. Drop shipments world wide are available to save time and money.

Hasco Stocks!

For over 30 years Hasco has kept a large inventory of relays, reed switches and reed relays as well as magnets and proximity sensors in New York. We also keep inventory at our factory outside of Shanghai. Hasco specializes in JIT and Kanban programs.

Hasco Clients:

Presently we help sample, engineer and supply to the following industries. These include automotive, security and fire, UPS, Telecom, industrial controls, HVAC, lighting controls and liquid level sensors to name a few.

No Time to Read a Catalog?

Free specifying is available by our engineering experts. We recommend you stop taking the time to go through web and catalog pages. Rather than going through web or catalog pages why not simply tell us what you need. Simply advise us the number of the poles needed, switching voltage and current as well as the coil voltage? We can save you time by recommending the best relay at the lowest cost in a matter of minutes.

For instant help call: 5163289292 8:15AM to 5:30 PM or email: info@hascorelays.com

Table of Contents

Reed Relays

DIP/SIP Low Cost D and S Series 4
SIP Reed Relays 700 Series 5
Reed Relays RRH Series 6
Mini Reed 611 Series 7
Electromechanical Relays
SPDT PC-DIP 1, 2 or 5 AmpSC-111/SC-211/BAS-111/BS-211/BAS-511 8
DPDT PC-DIP 2.0 Amp CAS112/CS212 9
Power Consumption 150 mW HAS112/HS212 10-12
HBS Surface Mount HBS 13
Subminiature DPDT T Series 14-15
SPDT 3, 6, 12, 15 or 20 Amp KLT Series 16
SPDT Miniature 20 Amp SLT Series 17
SPDT 10 Amp 2KLT Series 18
SPDT/DPDT MKB Series 19
SPDT 3, 6 or 10 Amp SSD Series 20
SPDT Low Profile 10 Amp MHR Series 21
DPDT Miniature 6 Amp KSD Series 22
SPDT 30 Amp HAT-900 Series 23-24
DPDT 30 Amp HATF904 Series 25-26
Single Pole Automotive CARB Series 27
Automotive Relay CAR Series. 28-29
SPDT 12 or 16 Amp / DPDT 8 Amp SPR Series 30-31
SPDT 10 or 16 Amp / DPDT 5 Amp PR Series 32-33
SPDT up to 10 Amp Thin Package HPR Series 34
SPDT/DPDT RPR Series 35
SPDT/DPDT Mini Power UJ Series 36
SPDT/DPDT UJJ Series 37
Relays Terminology 38

* General Application Guidelines 39-44
Reed Switches
Quality Control Report on Reed Switches 45
Reed Switches 46-51

(1).

* SINCE 1976 *

SIP/DIP REED RELAYS LOW COST D \& S SERIES
S1A Series Standard SIP

Shielding optional

- ${ }^{-1}$ File E75887
(5) File LR49291

DIP TYPE
DIP SPECIFICATIONS COIL RATINGS $\left(20^{\circ} \mathrm{C}\right)$

Contact Form	Part Number	Nominal Voltage (VDC)	$\begin{gathered} \hline \text { Coil } \\ \text { Resistance } \\ \pm 10 \% \end{gathered}$	Must Operate (VDC)	Must Release (VDC)	Rated Current (mA)	Continuous Voltage (max)	Circuit Schematic
1A	D1A05(D)	5	500	3.75	1.0	10	10	
	D1A12(D)	12	1000	9.00	1.2	12	20	
SPST-NO	D1A24(D)	24	2150	18.00	2.4	11.1	28	
1B	D1B05(D)	5	500	3.75	1.0	10	7	
	D1B12(D)	12	1000	9.00	1.2	12	15	
SPST-NC	D1B24(D)	24	2150	18.00	2.4	11.1	28	
2A	D2A05(D)	5	140	3.75	1.0	35.7	10	4
	D2A12(D)	12	500	9.00	1.2	24	20	
DPST-NO	D2A24(D)	24	2150	18.00	2.4	11.1	28	
1 C	D1C05(D)	5	200	3.75	1.0	25	10	
	D1C12(D)	12	500	9.00	1.2	24	20	
SPDT-CO	D1C24(D)	24	2150	18.00	2.4	11.1	28	

(D): Clamp diode optional

SIP SPECIFICATIONS COIL RATINGS $\left(20^{\circ} \mathrm{C}\right)$

Contact Form	Part Number	Nominal Voltage (VDC)	$\begin{gathered} \text { Coil } \\ \text { Resistance } \\ \pm 10 \% \end{gathered}$	Must Operate (VDC)	Must Release (VDC)	Rated Current (mA)	Continuous Voltage (max)	Circuit Schematic
1A	S1A05(D)	5	500	3.75	1.0	10	10	
	S1A12(D)	12	1000	9.00	1.2	12	20	
SPST-NO	S1A24(D)	24	2000	18.00	2.4	12	28	

(S): Shielded (D): Clamp diode optional

Form B SIP Available

CHARACTERISTICS

Item Contact Form	2A, 1A, 1B	1 C
Contact Resistance	$100 \mathrm{~m} \Omega$ max. (initial)	$150 \mathrm{~m} \Omega$ max. (initial)
Operate Time	0.5 msec max.	1.0msec max.
Bounce Time	0.5 msec max.	2.0msec max.
Release Time	0.2 msec max.	0.2 msec max.
Insulation Resistance	10^{11} (min)	10^{11} (min)
Contact Material	Rhodium	Rhodium
Power	10VA max.	3VA max.
Switching Voltage	200VDCmax.	100VDCmax.
Switching Current	0.5Amps max.	0.25Amps max.
Carry Current	1.0Amps max.	0.5Amps max.
Life Expectancy	10^{8} (signal level)	5×10^{7} (signal level)
	DC250V across open contact	DC200V across open contact
Breakdown Voltage	DC500V between coil and contact	DC500V between coil and contact
Operating Temp	$-40 \sim 85^{\circ} \mathrm{C}$	$-40 \sim 85^{\circ} \mathrm{C}$
Storage Temp	$-50 \sim 125^{\circ} \mathrm{C}$	$-50 \sim 125^{\circ} \mathrm{C}$
Minimum Permissible Load	$100 \mathrm{mVDC} 10 \mu \mathrm{~A}$	$100 \mathrm{mVDC} 10 \mu \mathrm{~A}$
Vibration	$20 \mathrm{~g}(10 \sim 2000 \mathrm{~Hz})$	$20 \mathrm{~g}(10 \sim 2000 \mathrm{~Hz})$
Resonant Frequency	3.5 KHz	3.5 KHz

906 JERICHO TPKE., NEW HYDE PARK, NY 11040 / (516) 328-9292 FAX: (516) 326-9125 www.hascorelays.com email: info@hascorelays.com

(4) HASCO: REED RELAYS

* SINCE 1976*

DRY CONTACT REED RELAYS 700 SIP SERIES

FEATURES

- Choice or normal, heavy duty or hi voltage
- Epoxy molded

© File E75887
SPECIFICATIONS

Part Number	Nominal Voltage (V)	Must Operate (V)	Must Release (V)	Coil Resistance (Ohms)	Contact Rating	Breakdown Voltage
711-5	5	3.75	0.5	500	AC 10VA, DC 10W max. 100V DC max. 1.0A max. carry 0.3A max. switching	250V DC across contacts 2500V DC contacts to coil
711-12	12	9.0	1.2	1000		
711-24	24	18.0	2.4	2000		

HEAVY DUTY

712-5	5	3.75	0.5	500	AC 70VA, DC 50W max. 150VAC, 200VDC 2.5A max. carry 1.0A max. switching DC 0.7A max. switching AC	300V DC across contacts 2500V DC contacts to coil
712-12	12	9.0	1.2	1000		
712-24	24	18.0	2.4	2000		

HIGH VOLTAGE

$713-5$	5	3.75	0.5	500	AC 50VA, DC 50W max. 300VAC, 350VDC 2.5A max. carry $0.5 A$ max. switching	600V DC across contacts 2500V DC contacts to coil
$713-12$	12	9.0	1.2	1000	2000	18.0

EXTRA HIGH VOLTAGE BREAKDOWN

$714-5$	5	3.75	0.5	500	100VA max. 1.0 A max. switching 2.5 A max. carry $350 \mathrm{VDC} / 300$ VAC max. switching	1000V DC across contacts 2500V DC contacts to coil
$714-12$	12	9.0	1.2	1000	2.4	2000

S.P.D.T. (FORM C)

$703-5$	5	3.75	0.5	125	AC 3VA, DC 3W max. DC 30V 0.5Amp carry 0.2Amp switching	200V min. 2500 V DC contact to coil
$703-12$	12	9.0	1.2	500		
$703-24$	24	18.0	2.4	-		

(1)

* SINCE 1976 *

STANDARD FORM 1A REED RELAY RRH SERIES

FORM 1A, 1 C

DIMENSIONS: inch (mm)

FORM 2A, $2 C$

SPECIFICATIONS COIL RATINGS $\left(20^{\circ} \mathrm{C}\right)$

Contact Form	Part Number	Nominal Voltage (VDC)	$\begin{gathered} \text { Coil } \\ \text { Resistance } \\ \pm 10 \% \end{gathered}$	Must Operate (VDC)	Must Release (VDC)	Rated Current (mA)	Continuous Voltage (max)	Circuit Schematic
1A	RRH1A05	5	500	3.75	0.8	10	10	$: 3<0$
	RRH1A12	12	1000	9.00	1.2	12	20	
SPST-NO	RRH1A24	24	2150	18.00	2.4	11.1	28	
1 C	RRH1C05	5	200	3.75	0.8	25	10	$\because 3 \pm$
	RRH1C12	12	500	9.00	1.2	24	20	
SPST-	RRH1C24	24	2150	18.00	2.4	11.1	28	
2A	RRH2A05	5	140	3.75	0.5	35.7	10	
	RRH2A12	12	500	9.00	1.0	24	20	
DPST-NO	RRH2A24	24	2150	18.00	2.0	11	28	
2C	RRH2C05	5	140	3.75	0.5	35.7	10	$:\left\{\begin{array}{l} \square \\ -3 \end{array}\right.$
	RRH2C12	12	500	9.00	1.0	24	20	
DPDT-	RRH2C24	24	2150	18.00	2.0	11	28	

CHARACTERISTICS

Contact Form	1A, 2A	1C, 2C
Contact Resistance	$100 \mathrm{~m} \Omega$ max. (initial)	$150 \mathrm{~m} \Omega$ max. (initial)
Operate Time	0.5 msec max.	1.0 msec max.
Bounce Time	0.5 msec max.	2.0 msec max.
Release Time	0.2 msec max.	0.2 msec max.
Insulation Resistance	10^{11} (min)	10^{11} (min)
Contact Material	Rhodium	Rhodium
Power	10VA max.	3VA max.
Switching Voltage	200VDCmax.	30VDCmax.
Switching Current	0.5 Amps max.	0.25 Amps max.
Carry Current	1.0Amps max.	0.5 Amps max.
Life Expectancy	10^{8} (signal level)	5×10^{7} (signal level)
	DC250V across open contact	DC200V across open contact
Breakdown Voltage	DC1500V between coil and contact	DC1500V between coil and contact
Operating Temp	$-40 \sim 80^{\circ} \mathrm{C}$	$-40 \sim 80^{\circ} \mathrm{C}$
Storage Temp	$-40 \sim 100^{\circ} \mathrm{C}$	$-40 \sim 100^{\circ} \mathrm{C}$
Minimum Permissible Load	$100 \mathrm{mVDC} 10 \mu \mathrm{~A}$	$100 \mathrm{mVDC} 10 \mu \mathrm{~A}$
Vibration	20 g (10 ~ 2000Hz)	20 g (10 ~ 2000Hz)
Resonant Frequency	3.5 KHz	3.5 KHz

* SINCE 1976 *

611 REED RELAY SERIES

EEATURES

- Encapsulated Body
- Small size

- Available with external shield

SIP SPECIFICATIONS COIL RATINGS $\left(20^{\circ} \mathrm{C}\right)$

Contact Form	Part Number	Nomimal Voltage (VDC)	Coil Resistance $\pm 10 \%$	Must Operate (VDC)	Must Release (VDC)	Rated Current (mA)	Contiguous Voltage (max)
1A SPST-NO	$611-05$	5	500	3.75	0.4	10	Circuit Schematic

CHARACTERISTICS

Contact Arrangement	1 A
Contact Resistance	200 m Ohms max. (initial)
Operate Time	0.3 msec max.
Bounce Time	0.3 msec max.
Release Time	0.05 msec max.
Insulation Resistance	10^{9} (min)
Contract Material	Rhodium
Power	10 VA max.
Switching Voltage	24 VDC max.
Switching Current	0.1 Amps max.
Carry Current	$0.3 \mathrm{Amps} \mathrm{max}$.
Life expectancy	10×8 (signal level)
Breakdown Voltage	DC150V across open contact
Operating Temp	DC500V between coil and contact
Storage Temp	$-40 \sim 85^{\circ} \mathrm{C}$
Minimum Permissable Load	$-50 \sim 125^{\circ} \mathrm{C}$
Vibration	$100 \mathrm{~m} \mathrm{VDC} \mathrm{10} \mathrm{\mu A}$
Resonant Frequency	$20 \mathrm{~g}(10 ~ \sim 55 \mathrm{~Hz})$
3.5 KHz	

SPDT—BAS/BS./SC SINGLE BUTTON CONTACT 2.0 AMP, 5.0 AMP

π

 (5) File LR49291COIL RATINGS FOR STANDARD MODEL

Relay Codes					$\begin{gathered} \text { Coil } \\ \text { Resist. } \end{gathered}$		$\begin{array}{\|l} \hline \text { Pick } \\ \text {-Up } \end{array}$	DropOut		Nom. Pwr (W)
2 Amp	5 Amp	2 Amp	ment	(V)	$\pm 10 \%)$	(mA)	(V)	(V)	(V)	tio
BAS-111-3	BAS-511-3	SC-111-3	SPDT (1 Form C)	3	20	150	2.1	0.3	3.3	$\begin{gathered} \text { Approx. } \\ \hline 0.45 \end{gathered}$
BAS-111-5	BAS-511-5	SC-111-5		5	56	89.3	3.5	0.5	5.5	
BAS-111-6	BAS-511-6	SC-111-6		6	80	75	4.2	0.6	6.6	
BAS-111-9	BAS-511-9	SC-111-9		9	180	50	6.3	0.9	9.9	
BAS-111-12	BAS-511-12	SC-111-12		12	320	37.5	8.4	1.2	13.2	
BAS-111-24	BAS-511-24	SC-111-24		24	1280	18.8	16.8	2.4	26.4	
BAS-111-48	BAS-511-48	SC-111-48		48	5120	9.4	33.6	4.8	52.8	

- FCC Pt 68
- Small Package
- Fully sealed

BAS/BS Series Internal Connections

COIL RATINGS FOR SENSITIVE MODEL

Relay Codes		Contact	Coil Nom.	Resist.	Pick Nom.	$\begin{aligned} & \text { Drop- } \\ & \text {-Up } \end{aligned}$	Out	Nom. Max.	Pwr (W)
2 Amp	2 Amp	ment	(V)	$\pm 10 \%)$	(mA)	(V)	(V)	(V)	tion
BS-211-3	SC-211-3	SPDT (1 Form C)	3	45	66.7	2.1	0.3	4.8	Approx. 0.20
BS-211-5	SC-211-5		5	120	41.7	3.5	0.5	8.0	
BS-211-6	SC-211-6		6	180	33.3	4.2	0.6	9.6	
BS-211-9	SC-211-9		9	400	22.5	6.3	0.9	14.4	
BS-21112	SC-211-12		12	700	17.1	8.4	1.2	19.2	
BS-21124	SC-211-24		24	2800	8.6	16.8	2.4	38.4	

RATING PERFORMANCE

Specifications			Note
Coil	Nominal Voltage	$\begin{aligned} & 3,5,6,9,12, \\ & 24,48 \text { VDC } \end{aligned}$	
	Nominal Power Consumption	0.45 W	
	Pick-up Voltage	70% of nominal voltage	
	Drop-out Voltage	10% of nominal voltage	
Contact	Contact Arrangement	SPDT, 1 Form C	
	Contact Material	SC111 SC211	
	Contact Resistance	Max. $100 \mathrm{~m} \Omega$	at initial value
	Max. Switching Power	$\begin{aligned} & \text { DC 30W/ } \\ & \text { AC } 60 \mathrm{VA} \end{aligned}$	at resistive load
	Max. Switching Volt.	$60 \mathrm{VDC} / 120 \mathrm{VAC}$	
	Max. Switching Current	$\begin{aligned} & \text { 2A DC/AC BAS BS,SC } \\ & \text { 5A DC/AC BAS 511 } \\ & \hline \end{aligned}$	
Time	Operate Time	Approx. 2 mS	at nominal voltage
	Release Time	Approx. 1 mS	
	Bounce Time (Operating)	Max. 2 mS	no bounce in break contact
	Bounce Time (Releasing)	Max. 7 mS	no bounce in make contact
Insulation Resistance		Min. $100 \mathrm{M} \Omega$	at 500 VDC
Dielectric Strength		1000 VAC	1 minute
Vibration Resistance		$\begin{aligned} & 1.5 \mathrm{~mm} \text { DA } \\ & 10 \sim 55 \mathrm{~Hz} \end{aligned}$	
Temperature Range		$-25^{\circ} \mathrm{C} \sim+55^{\circ} \mathrm{C}$	
Life	Mechanical Life	500×10^{4} times	
	Electrical Life	50×10^{4} times	at $24 \mathrm{VDC}, 1 \mathrm{~A}$ resistive load
		10×10^{4} times	at 120 VAC , 0.5 A , resistive load
Weight		Approx. 4 g	

(B) R COMPONENTS INTERNATIONAL, CORP. $\square^{®}$

* SINCE 1976 *

DPDT—DIP PC STANDARD or SENSITIVE 2.0 AMP BIFURCATED CONTACT RELAY

COIL RATINGS FOR STANDARD CAS 112

Relay Code (V)	Contact Arrangement	Nom. Volt. (VDC)	Coil Resist. (Ω $\pm 10 \%)$	Nom. Curr. (mA)	PickUp Volt. (VDC)	DropOut Volt. (V)	Max. Volt. (VDC)	Nom. Pwr (W) Cons'ption
CAS-112-5	$\begin{gathered} \text { DPDT } \\ (2 \\ \text { Form C) } \end{gathered}$	5	45	111.0	3.5	0.5	7.8	Approx. 0.56
CAS-112-6		6	70	90.9	4.4	0.6	9.7	
CAS-112-9		9	140	85.7	6.3	0.9	12.6	
CAS-112-12		12	280	43.1	8.7	1.2	19.4	
CAS-112-24		24	1070	22.4	17.6	2.4	37.6	
CAS-112-48		48	4300	11.1	35.7	4.8	74.2	

Data Measured at $20^{\circ} \mathrm{C}$
COIL RATINGS FOR SENSITIVE CS 212

Relay Code (V)	Contact Arrangement	Nom. Volt. (VDC)	Coil Resist. $(\Omega$ $\pm 10 \%)$	Nom. Curr. (mA)	$\begin{array}{\|l} \hline \text { Pick- } \\ \text { Up } \\ \text { Volt. } \\ \text { (VDC) } \end{array}$	$\begin{gathered} \hline \text { Drop- } \\ \text { Out } \\ \text { Volt. } \\ \text { (V) } \end{gathered}$	Max. Volt. (VDC)	Nom. Pwr (W) Cons'p- tion tion
CS-212-5	$\begin{gathered} \text { DPDT } \\ (2 \\ \text { Form C) } \end{gathered}$	5	167	29.9	3.2	0.5	15.0	0.15
CS-212-6		6	240	25.0	3.7	0.6	18.0	0.15
CS-212-9		9	540	16.7	5.8	0.9	27.0	0.15
CS-212-12		12	960	12.5	8.2	1.2	35.6	0.15
CS-212-18		18	2160	8.3	11.8	1.8	53.4	0.15
CS-212-24		24	3840	6.3	16.6	2.4	70.1	0.15
CS-212B-48		48	11520	4.2	28.1	4.8	121.4	0.20
CS-212-48		48	7680	6.5	22.6	4.8	99.1	0.31

The tolerance is $\pm 10 \%$ for the resistance value, pull-in voltage and drop-out voltage. The values are at ambient temperature, $20^{\circ} \mathrm{C}$.

RATING PERFORMANCE

Specifications				Note
Contact	Contact Arrangement		DPDT, 2 Form C	
	Contact Material		Gold-clad, Ag-Pd alloy	
	Contact Resistance		$100 \mathrm{~m} \Omega$	at initial value
	Max. Switching Power		$\begin{aligned} & \text { DC } 30 \mathrm{~W} \\ & \text { AC } 50 \mathrm{VA} \end{aligned}$	at resistive load
	Max. Switching Voltage		$\begin{aligned} & \text { 125VDC } \\ & \text { 150VAC } \end{aligned}$	
	Max. Switching Current		$\begin{aligned} & \text { 2A 30VDC } \\ & 0.6 / 125 \text { VAC } \\ & 2.5 \mathrm{~A} @ 12 \mathrm{~V} \\ & \hline \end{aligned}$	
Time	Operate Time	(Type CS)	Approx. 5 msec .	
		(Type CAS)	Approx. 5 msec .	
	$\begin{aligned} & \text { Release } \\ & \text { Time } \end{aligned}$	(Type CS)	Approx. 3 msec .	
		(Type CAS)	Approx. 5 msec .	
	Bounce Time (Operating)		Approx. 0.5 to 1 msec .	
	Bounce Time Releasing		Approx. 02.5 to 3 msec .	
Insulation Resistance			$1000 \mathrm{M} \Omega$	at 500 VAC , $25^{\circ} \mathrm{C}, 50 \%$ relative humidity
Dielectric Strength	1000VAC Between coil and contacts 1000VAC Between open contacts			CAS, CS
$\begin{aligned} & \text { FCC Surge } \\ & \text { Strength } \end{aligned}$	1500V Between coil and contactsBetween Adjacent contacts			CS
Vibration Resistance			$10 \mathrm{~g}(10-55 \mathrm{~Hz})$	
Temperature			$\begin{aligned} & -25^{\circ} \mathrm{C} \sim+75^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C} \end{aligned}$	CAS, CS
Life	Mechanical Life		2×10^{7} times	
	Electrical Life		2×10^{6} times	at 20 mV 1 KHz 1 mA resistive load
Weight			5 g	

(G)HASCO
 (R)
 COMPONENTS INTERNATIONAL, CORP.

* SINCE 1976 *

POWER CONSUMPTION 150mW
SMALL SIZED POLARIZED RELAY BEING CAPABLE FOR WIDE USE

FEATURES

- High sensitive 2 pole relay suitable for signal circuit
- Ultra-high sensitive type 150 mW .

High sensitive type 200 mW . Standard type 400 mW

- Latching type relay provided with memory function is available too
- Adopts twin contacts that are superior in contact reliability
- Gold-clad Silver palladium contact available too
- Completely enclosed type relay with sealed construction
being superior in durability to the environment
- UL File No. 75887
- CSA File No. 180958 (LR93742)
- BABT Certificate No. 609662

APPLICATIONS

- Switch board. Facsimile. Telephones
- Audio equipment. Industrial machines

CONTACT RATING

PC Board Pattern

Schematic (Bottom View)

Contact arrangement		DPDT (2C)
Contact Material.		$\mathrm{Ag}+\mathrm{Au}$ clad or AgPd + Au Clad
Initial contact resistance max. .		Max. $50 \mathrm{~m} \Omega$
Contacting (Resistive load)	Max. switching voltage	220 V DC 250 VAC .
	Max. switching current	2A
	Max. switching power	60 W (DC) 125VA (AC)
	Max. carry current	2A
	Rated contact load	2A 30VDC 1A 125VAC

GENERAL DATA

Life expectancy	Mechanical Life		100,000,000 Operations (at 600cpm)
			300,000 Operations (2A 30VDC) (at 20cpm)
	Eectrical Life		1,000,000 Operations (1A 30VDC) (at 20cpm)
	Operate time (Set/Reset time) Release time		Max. 5 msec .
Operate/Release time			Max. 3.5 msec .
Temperature Characteristics	Coil Temp. Rise	Standard	Less than $40^{\circ} \mathrm{C}$ (at nominal coil voltage)
		Sensitive	Less than $30^{\circ} \mathrm{C}$ (at nominal coil voltage)
	Operate ambient temp.		$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Without being frozen)
	Storage ambient temp.		$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (Without being frozen)
Initial breakdown voltage	Between coil and contacts		1,500Vrms (1 minute)
	Between open contacts		1,000Vrms (1 minute)
Initial insulation resistance	Ambient humidity		Min. 100M Ω (at 500V DC)
Environmental requirement			Max. 85\% RH
Vibration resistance	Vibration (Malfunction)		$10 \sim 55 \mathrm{~Hz}$ at double amplitude of 1.5 mm
	Mechanical damage		Min. $980 \mathrm{~m} / \mathrm{s}^{2}(100 \mathrm{G})$
Shock resistance	Malfunction		Min. $342 \mathrm{~m} / \mathrm{s}^{2}$ (40G)

ORDERING INFORMATION

HAS112 (standard)

See Page 12

 for GraphsNIL: Single side stable
L: 2 coil latching $\quad \mathrm{K}: 1$ coil latching
Coil Voltage

5, 6, 9, 12, 24, 48

* SINCE 1976 *

COIL RATING Single Side Stable at $120^{\circ} \mathrm{C} * 1.5$ \& 3 V Available

Relay Code	Nominal Voltage	Coil Resistance $(\Omega) \pm 10 \%$	Nominal Current (mA)	Pick-Up Voltage	Drop-Out Voltage	Max. Allowable Voltage	Nominal Power (mW)
HAS-112-5	5	62.5	80				
HAS-112-6	6	90	60	70% of	10% of	150% of	
HAS-112-9	9	203	40		Nominal	Nominal	Approx.
HAS-112-12	12	360	30	Voltage	Voltage	Voltage	400 mW
HAS-112-24	24	1440	10				
HAS-112-48	48	5760	8				

COIL RATING 1 Coil Latching at $20^{\circ} \mathrm{C}$

Relay Code	Nominal Voltage	Coil Resistance $(\Omega) \pm 10 \%$	Nominal Current (mA)	Pick-Up Voltage	Max. Allowable Voltage	Nominal Power (mW)
HAS-112K-5	5	69.4	72			
HAS-112K-6	6	100	60	70% of	150% of	
HAS-112K-9	9	225	40	Nominal	Nominal	Approx.
HAS-112K-12	12	400	Voltage	Voltage	360 mW	
HAS-112K-24	24	1600	30			
HAS-112K-48	48	6400	75			

COIL RATING 2 Coil Latching at $20^{\circ} \mathrm{C}$

Relay Code	Nominal Voltage	Coil Resistance $(\Omega) \pm 10 \%$	Nominal Current (mA)	Pick-Up Voltage	Max. Allowable Voltage	Nominal Power (mW)
HAS-112L-5	5	69.4	72			
HAS-112L-6	6	100	60	70% of	150% of	
HAS-112L-9	9	225	40	Nominal	Nominal	Approx.
HAS-112L-12	12	400	30	Voltage	Voltage	360 mW
HAS-112L-24	24	1600	15			
HAS-112L-48	48	6400	7.5			

COIL RATING Single Stable at $20^{\circ} \mathrm{C}$

Relay Code	Nominal Voltage	Coil Resistance $(\Omega) \pm 10 \%$	Nominal Current $(\mathbf{m A})$	Pick-Up Voltage	Drop-Out Voltage	Max. Allowable Voltage	Nominal Power (mW)
HS-212-5	5	167	29				
HS-212-6	6	240	25	80% of	10% of	230% of	
HS-212-9	9	540	16.6		Nominal	Nominal	Approx.
HS-212-12	12	960	12.5	Voltage	Voltage	Voltage	150 mW
HS-212-24	24	3840	6				
HS-212-48	48	15360	3				

COIL RATING 1 Coil Latching at $20^{\circ} \mathrm{C}$

Relay Code	Nominal Voltage	Coil Resistance $(\Omega) \pm 10 \%$	Nominal Current (mA)	Pick-Up Voltage	Max. Allowable Voltage	Nominal Power (mW)
HS-212K-5	5	139	35.9			
HS-212K-6	6	200	30	70% of	200% of	
HS-212K-9	9	450	20	Nominal	Nominal	Approx.
HS-212K-12	12	800	15	Voltage	Voltage	180mW
HS-212K-24	24	3200	7.5			
HS-212K-48	48	12800	3.7			

COIL RATING 2 Coil Latching at $20^{\circ} \mathrm{C}$

Relay Code	Nominal Voltage	Coil Resistance $(\Omega) \pm 10 \%$	Nominal Current (mA)	Pick-Up Voltage	Max. Allowable Voltage	Nominal Power $(\mathbf{m W})$
HS-212L-5	5	139	35.9			
HS-212L-6	6	200	30	70% of	200% of	
HS-212L-9	9	450	20	Nominal	Nominal	Approx.
HS-212L-12	12	800	15	Voltage	Voltage	180mW
HS-212L-24	24	3200	7.5			
HS-212L-48	48	12800	3.7			

©HASCO
 COMPONENTS INTERNATIONAL, CORP.

* SINCE 1976 *

Contact reliability test (DC $10 \mathrm{~V}-10 \mathrm{~mA}, 300 \mathrm{cpm}, 70^{\circ} \mathrm{C}$)

Contact reliability test(DC 10V-10mA, 300cmm, 70

(M) HASCO RELAYS

* SINCE 1976 *

HBS RELAYS

FEATURES

- Small size
- Through hole and surface mount available
- Full sealed

DIMENSIONS

(Units:mm)

COIL DATA (at $20^{\circ} \mathrm{C}$)
FOR STANDARD TYPE
FOR SENSITIVE TYPE

Coil Power W	Coil Resistance Ohm $\pm 10 \%$	$\begin{gathered} \text { Must } \\ \text { Coil } \\ \text { Current } \\ \mathrm{mA} \end{gathered}$	Must Operate Voltage VDC(max)	Release Voltage VDC(min)	Rated Voltage VDC	Coil Resistance Ohm $\pm 10 \%$	Coil Current mA	Must Operate Voltage VDC(max)	Must Release Voltage VDC(min)	Coil Power W
0.20	11.3	132.7	1.20	0.15	1.5	15	100	1.20	0.15	0.15
	45	66.7	2.40	0.30	3	60	50.0	2.40	0.30	
	125	40.0	4.00	0.50	5	167	29.9	4.00	0.50	
	180	33.3	4.80	0.60	6	240	25.0	4.80	0.60	
	405	22.2	7.20	0.90	9	540	16.7	7.20	0.90	
	720	16.7	9.60	1.20	12	960	12.5	9.60	1.20	
	2880	8.3	19.2	2.40	24	3840	6.25	19.2	2.40	

CHARACTERISTICS

Contact Arrangement		SPDT
Contact Material		AgPd (Au clad)
Rated Load		0.5A/125VAC 30VDC
Permission Load		Min. 1mA 5VDC
Max. Switching Power		62.5VA/30W
Max. Switching Current 1 A		
Max. Switching Voltage		125VAC/60VDC
Contact Resistance		MAX. 100mOhm (measured at 1A 6VDC)
Operate Time		5 ms
Release Time		5 ms
Bounce Time		5 ms
Insulation Resistance		1000Mohm min (at 500VDC)
Dielectric Strength		400VAC 1 min . between open contacts
		1000VAC 1min. between contact and coil
Shock Operation		$100 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Operational		$10 \sim 55 \mathrm{~Hz} \quad 3.3 \mathrm{~mm}$
Ambient Temperature		$-30 \sim 70^{\circ} \mathrm{C}$
Humidity		35\% ~85\%
Operation Life	Mechanical	1×10^{5} (1800 operation times/hour)
	Electrical	$1 \times 10^{7} \quad(36000$ operation times/hour)
Dimensions		$12.5 \times 7.5 \times 10 \mathrm{~mm}$
Construction		Sealed
Termination		PCB \& SMT
Weight		2.2g Approx

ORDERING INFORMATION
HBS 12 S GW

GW: Gull WIng P: PCB S: Sensitive; Nil: Standard Coil Voltage
Series

* SINCE 1976 *

SUBMINIATURE RELAYS T SERIES

Compact, Highly Sensitive Relays with Balanced Armature Mechanism

FEATURES

- Compact size and low profile: $5 \mathrm{H} \times 14 \mathrm{~L} \times 9 \mathrm{~W}$ (mm)
- Meets FCC part 68 requirements
- High sensitivity: 140 mW nominal operating power

File E75887

- Dual-in line packaging arrangement fits IC socket
- Single latching type available
- Fully sealed (immersion cleanable)

File LR49291

- UL/CSA

SPECIFICATIONS

Contacts

Arrangement 2 Form C (DPDT)			
Type Bif	Bifurcated crossbar		
Material $\begin{array}{ll}\text { Mo } \\ & \text { St }\end{array}$	Movable contact Station contact	Ag-Pd alloy Gold-clad Ag-Pd alloy	
Rating (resistive load Max. switching Max. switching Max. switching	wer	$\begin{aligned} & 30 \mathrm{~W} D C, 6 \\ & 125 \mathrm{~V} \text { DC/A } \\ & 1 \mathrm{~A} \quad \mathrm{DC} / \mathrm{A} \end{aligned}$	A AC
UL/CSA rating 1A 30V DC, 0.5A 125V AC			
Expected life (min. mechanical Electrical (resistive	ations)	0.2 million at 1 A 30 V DC 0.1 million at 0.5 A 125 V AC	1A 30V DC 5A 125V AC
Contact Resistance		$50 \mathrm{~m} \Omega$ max. at initial value	
Single side stable	Minimum operating power		80 to 110 mW
	Nominal operating power		140 to 200 mW
1 Coil latching	Minimum set and reset power		60 to 80 mW
	Nominal set and reset power		100 to 150 mW

TYPES AND COIL DATA AT $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$

Single side stable

Thru- hole type	Nominal voltage V DC	Coil resistance $(\Omega \pm 10 \%)$	Pick-up voltage V DC	Drop-out voltage V DC	Nominal power consumption W DC	Maximum continuous voltage V DC
T-3	3	64.4	2.25	0.3	0.14	4.5
T-5	5	178	3.75	0.5	0.14	7.5
T-6	6	257	4.5	0.6	0.14	9.0
T-9	9	579	6.75	0.9	0.14	13.5
T-12	12	1028	9.0	1.2	0.14	18.0
T-24	24	2880	18.0	2.4	0.2	36.0

Characteristics (at $20^{\circ} \mathrm{C}$)

Single side stabel	Max. operate time Max. release time (not including bounce)		$\begin{aligned} & \hline 3 \mathrm{mS} \\ & 3 \mathrm{mS} \end{aligned}$
Latching	Max Max (not	bounce)	$\begin{aligned} & 3 \mathrm{mS} \\ & 3 \mathrm{mS} \end{aligned}$
Dielectric withstand Between open co Between coil and Between contact		1000 V 1000 V 1000 V	
Surge withstand vo Between open co Between coil and Between contact		1500 V 1500 V 1500 V	
Insulation resistance			
Vibration resistance Functional Destructive		3 mm DA, 10 to 55 Hz 5 mm DA, 10 to 55 Hz	
Shock resistance Functional Destructive		50G 1	
Temperature range		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	
Weight		Approx. 1.5g	

ORDERING INFORMATION

\quad EXAMPLE
Type of relay
$\mathrm{T}:$ Thru-hole type
$\mathrm{S}: \mathrm{SMD}$

Operating function
Nil: Single side stable
$\mathrm{L}: 1$ Coil latching

1 Coil latching

Thru- hole type	Nominal voltage V DC	Coil resistance $(\Omega \pm 10 \%)$	Pick-up voltage V DC	Drop-out voltage V DC	Nominal power consumption W DC	Maximum continuous voltage V DC
TL-3	3	90	2.25	2.25	0.1	4.5
TL-5	5	250	3.75	3.75	0.1	7.5
TL-6	6	360	4.5	4.5	0.1	9.0
TL-9	9	810	6.75	6.75	0.1	13.5
TL-12	12	1440	9.0	9.0	0.1	18.0
TL-24	24	3840	18.0	18.0	0.15	36.0

* SINCE 1976 *

SUBMINIATURE RELAYS T SERIES
DIMENSIONS
T-RELAY (THRU-HOLE TYPE)
(b) Formed terminal type

TS-relay (Surface mount type)

(Call for specifications on complete mounting \& hole layout as well as surface mount pinouts)

MOUNTING LAYOUT
Mounting hole layout for T-relay

Tolerance: $\pm 0.1(\pm 0.004)$

Mounting pad layout for TS-relay

820
Soldering pad for termina
Temporary glue pad for stand-off A or B
Tolerance: $\pm 0.1(\pm 0.004)$

WIRING DIAGRAM

1 coil latching

SURFACE MOUNT TYPE-Soldering \& Mounting Recommendations

1. Conditions for terminal soldering by reflow soldering method.

$\mathrm{T}_{1}=+120^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad \mathrm{t}_{1}=60 \mathrm{~s}$ to 90 s $\mathrm{T}_{2}=+180^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C} \quad \mathrm{t}_{2}=30 \mathrm{~s}$ max. $\mathrm{T}_{3}=+245^{\circ} \mathrm{C}$ max.
2. Usage of stand-off $A \& B$ in base area.

The Stand-offs shown in the Fig. 3 are designed to anchor relays temporarily to PC board with glue before terminal soldering.
b. In case of vapor phase soldering

$\mathrm{T}_{1}=+120^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad \mathrm{t}_{1}=40 \mathrm{~s}$ to 60 s $\mathrm{T}_{2}=+180^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C} \quad \mathrm{t}_{2}=60 \mathrm{~s}$ max. $\mathrm{T}_{3}=+215^{\circ} \mathrm{C}$ max.

* SINCE 1976 *

KLT MINIATURE POWER RELAYS
 SPDT 3, 6, 12, 15 \& 20 AMP

DIMENSIONS: mm (inch)

MOUNTING HOLES
(BOTTOM VIEW)

ORDERING INFORMATION
Model No
NIL: Class B
Class F

Contact Arrangement:

$$
\begin{array}{ccc}
A=1 \text { Form } A & B=1 \text { Form } B & C=1 \text { Form } C \\
(S P S T-N O) & \text { (SPST-NC) } & \text { (SPDT) }
\end{array}
$$

Contact Material \& Rating:

3 Amp = Silver, gold flash
6 Amp = Silver cadmium oxide
12 Amp = Silver cadmium oxide
15 Amp = Silver tin indium oxide
$20 \mathrm{Amp}=$ Silver tin indium oxide

Nominal Voltage:

FEATURES

- Highly reliable, low cost
- Miniature size \& large switch capacity up to 20A
- High dielectric strength type
- Fully Sealed
- Inexpensive

ELECTRICAL RATINGS

3 Amp: 3A at 120VAC or 28VDC resistive
6 Amp: 6A at 120VAC or 28VDC; 6A at 240VAC general purpose; $1 / 4 \mathrm{hp}$ at 120VAC
12 \& 15 Amp: 12A at 120VAC or 28VDC; 12A at 240VAC general purpose; 7A at 277VAC general purpose; $1 / 4 \mathrm{hp}$ at 120VAC; 15A at 120VAC resistive
Pilot duty: 40A in-rush, 4A steady state at 125VAC
10A in-rush, 1A steady state at 240VAC
N.O. only, Single Pole:

10A at 12VDC Tungsten; 15A at 120VAC Tungsten
$1 / 2 \mathrm{hp}$ at 120VAC; 5.4A at 277 VAC Ballast
GENERAL DATA
Contact resistance: $50 \mathrm{~m} \Omega$ Max.
Operate Time: 8 ms Max. (at nominal voltage)
Operate Bounce Time: 3 ms Max
Release Time: 5 ms Max.
Release Bounce Time: 8 ms Max .
Max. Switching Voltage: 277VAC \& 125VDC
Min. Permissible Load (reference value):
3 Amp: 5VDC at 1 mA
$6,12,15$ \& 20 Amp: 5VDC at 100 mA
Insulation Rating: Class B \& Class F
Insulation Resistance: more than $100 \mathrm{M} \Omega$ at 500 VDC
Dielectric Strength: 750VAC ($50 / 60 \mathrm{~Hz}$), between open contacts $1500 \mathrm{VAC}(50 / 60 \mathrm{~Hz})$, between coil \& contact
Vibration: 1.5 mm double amplitude, 10 to 50 Hz
Shock: $100 \mathrm{~m} / \mathrm{sec}^{2}$ (approx. 10G's)
Operation Frequency: Mechanical: 18,000 operations/hour
Electrical: 1,800 operations/hour (under rated load)
Service Life: Mechanical: 10 million operations
Electrical: 100,000 operations min. at rated resistive load
Temperature Range: Class B: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Class F: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Temperature Rise: Less than 35 degrees
Humidity: 45\% - 85\% RH
Approximate Weight: 12 grams
COIL RATINGS

Nominal Coil Voltage	Coil Resistance in Ohms, $\pm 10 \%$ at $20^{\circ} \mathrm{C}$ $6,12,15 \mathrm{Amp}$	Coil Resistance in Ohms, $\mathbf{\pm} \mathbf{1 0 \%}$ at $20^{\circ} \mathrm{C}$ $\mathbf{2 0 ~ A m p}$	Must Operate Voltage at $20^{\circ} \mathrm{C}$	Must Release Voltage at $20^{\circ} \mathrm{C}$	Maximum Voltage
3VDC	25	20			
5VDC	70	55			
6VDC	100	80	75% max.	10% min.	130% of
9VDC	225	180	of nominal	of nominal	nominal
12VDC	400	320	voltage	voltage	voltage
18VDC	900	1100			
24VDC	1600	1280			
48VDC	6400	5120			

REMARK

- Use alcohol, freon or water for cleaning. (water temperature not to exceed $50^{\circ} \mathrm{C}$)

MHAECO RELAYS

* SINCE 1976 *

SLT RELAYS

FEATURES

- Small size
- Light weight
- Low power consumption
- PC board mounting
- Fully sealed

DIMENSIONS

COIL DATA (at $20^{\circ} \mathrm{C}$)

Rated Voltage VDC	Coil Resistance Ohm $\pm 10 \%$	Must Operate Voltage VDC(max)	Must Release Voltage VDC($\mathbf{m i n}$)	Maximum Voltage VDC	Coil Power W
6	60	4.8	0.30	110% of rated voltage	0.6
9	135	7.2	0.45		
12	240	9.6	0.60		
24	960	19.2	1.20		

CHARACTERISTICS

Contact Arrangement	$1 \mathrm{~A}, 1 \mathrm{C}$
Contact Material	$\mathrm{AgCdo} \mathrm{AgSnO2} \mathrm{AgSnO2In2O3}$
Contact Rating (resistive)	$20 \mathrm{~A} / 14 \mathrm{VAC} \mathrm{\quad 10A/120VAC}$
Max. Switching Power	280 W 120VA
Max. Switching Voltage	$42 \mathrm{VDC} \mathrm{380VAC}$
Contact Resistance	MAX .100 mOhm
Operate Time	MAX .10 ms
Release Time	MAX .5 ms
Insulation Resistance	1000 Mohm min (at 500VDC)
Dielectric Strength	50 Hz 500 VAC between contacts
	50 Hz 500 VAC between contact and coil
Shock Operation	100 g
Vibration Operational	$10 \sim 55 \mathrm{~Hz}$ Double Amplitude 1.5mm
Ambient Temperature	$-40 \sim 85 \mathrm{C}$ degree
Humidity	20 C degree 85\%
Operation Life	Mechanical
	10 M times
Weight	0.1 M times

ORDERING INFORMATION

SLT 1A 20 DC12 -1

©HASCO / RELAYS COMPONENTS INTERNATIONAL, CORP.

DIMENSIONS

COIL DATA

Rated Voltage	Coil Resistance $\Omega \pm 10 \%$	Must Operate Voltage VDC(max)	Must Release Voltage VDC(min)	Maximum Voltage VDC	Coil Power W
	225	6.8	1.2	120% of	0.64
	155	6.0	0.9	rated voltage	0.93

CHARACTERISTICS

Contact Arrangement		Two $2 \times 1 \mathrm{C}$
Contact Material		$\mathrm{AgSnO} 2 \mathrm{Ag} \mathrm{-} \mathrm{SnO}_{2} \mathrm{In}_{2} \mathrm{O}_{3}$
Contact Rating (resistive)		$2 \times 10 \mathrm{~A}$ 14VDC
Max. Switching Power		$2 \times 140 \mathrm{~W}$
Max. Switching Voltage		$2 \times 24 \mathrm{VDC}$
Contact Resistance		$\leq 100 \mathrm{~m} \Omega$ Max.
Operate Time		10 ms
Release Time		5 ms
Insulation Resistance		$1000 \mathrm{M} \Omega \min (500 \mathrm{VDC})$
Dielectric Strength		50 Hz 1000 V 1 min . between contacts 50 Hz 1000 V 1 min . between contact and coil
Shock Operation		10 g
Vibration Operational		10~40Hz Amplitude 1.27mm
Ambient Temperature		$-40 \sim 105^{\circ} \mathrm{C}$
Operation Life	Mechanical	10^{7}
	Electrical	10^{5} (at rated load)
Weight		25g Approx

ORDERING INFORMATION

MKB

FEATURES

- Switching capacity up to 20A
- Six different contact arrangements
- PCB mounting
- Open and sealed type is available

DIMENSIONS

CONTACT DATA

Arrangements	$\begin{gathered} \hline 1 \text { Form } \mathrm{A} \\ 1 \mathrm{~A} \end{gathered}$	$\begin{gathered} 1 \text { Form B } \\ 1 B \end{gathered}$	$\begin{gathered} 1 \text { Form C } \\ \text { No } \end{gathered}$	$\begin{aligned} & \hline 1 \mathrm{C} \\ & \mathrm{NC} \end{aligned}$	$\begin{array}{\|c} \hline 2 \text { Form mA } \\ 2 \mathrm{~A} \end{array}$	$\begin{gathered} 2 \text { Form B } \\ 2 B \end{gathered}$	$\begin{aligned} & 2 \text { Form C } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { 2C } \\ & \mathrm{NC} \end{aligned}$
Schematic	1	7	Γ			7	Γ	7
Max. Switching Current	20A	10A	20A	10A	2X20A	2X7A	2X15A	2X5A
Max. Switching Voltage	75VDC/60VAC							
Continuous Current	15A	10A	15A	10A	2X10A	2X7A	2X7A	2X5A
Max. Switching Power	200W/500VA							
Min. Load	0.5A, 12VDC							
Contact Material	Silver Alloy							
Initial Resistance	$100 \mathrm{~m} \Omega$ (at 1 A, 5 VDC)							
Electrical Life	$2 \mathrm{X} 10^{5} \mathrm{OPS}$ (at $10 \mathrm{~A}, 5 \mathrm{VDC}$)							
Mechanical Life	$1 \mathrm{X10}{ }^{7}$ OPS							

SPECIFICATIONS

Insulation Resistance	$100 \mathrm{M} \Omega, 500 \mathrm{VDC}, 1 \mathrm{~min}$	Vibration	$\mathrm{DA}, 1.5 \mathrm{~mm}, 10 \sim 55 \mathrm{~Hz}$, functional
Dielectric Strength	500 Vrms	Shock	$10 \mathrm{~g}, 11 \mathrm{~ms}$, functional
Operate Time	3 ms	Drop	1 m
Release Time	1.5 ms	Ambient Temperature	$-40 \sim+85^{\circ} \mathrm{C}$
Power Consumption	1.1 W	Weight	Open: 8 g Sealed $: 12 \mathrm{~g}$

COIL DATA

$\begin{aligned} & \text { Coil } \\ & \text { VDC } \end{aligned}$	Pull-in Voltage VDC		Drop-out Voltage VDC		Nominal Current mA	Coil Resistance$\Omega \pm 10 \%$	Max. Operating Voltage VDC
	1A, 1B, 1C, 2A, 2B	2 C	1B, 2B	1A, 1C, 2A, 2C			
006	3.75	4.5	0.35	0.7	215	28	8
012	7.5	9.0	0.7	1.4	93	130	16
024	15.0	18	1.4	2.8	46	520	31

ORDERING INFORMATION

(BHASCO $/$ RELAYS

* SINCE 1976 *

SSD SERIES/3, 6 OR 10 AMP SPDT RELAY

Fill F75887

DIMENSIONS: mm (inch)
File LR49291

TERMINAL ARRANGEMENT

(BOTTOM VIEW)

LIGHTNING IMPULSE TEST

ORDERING INFORMATION

SSD		106PH	DC12
		Contact Material \& Rating:	Nominal Voltage:
Model	Nil = Class B	$103=$ Silver, gold flash, 3A	$3=3 \mathrm{VDC} ; 5=5 \mathrm{VDC} ;$
No.	$\mathrm{F}=$ Class F	$106=$ Silver Cadmium	$6=6 \mathrm{VDC} ; 9=9 \mathrm{VDC} ;$
		oxide, 6A	$12=12 \mathrm{VDC} ;$
		$110=$ Silver Cadmium	$24=24 \mathrm{VDC} ;$
		oxide, 10A	$48=48 \mathrm{VDC}$

FEATURES

- Highly reliable, low cost
- Miniature size \& large switch capacity up to 10 A
- High dielectric strength type
- Printed circuit terminals fits grid with 2.54 mm
- UL/CSA recognized
- Fully Sealed

SPECIFICATIONS

CONTACT DATA

Arrangement: 1 Form C (SPDT), 1 Form A (SPST-NO), 1 Form B (SPST-NC)
Material \& Rating: Silver, gold flash: 3A at 24 VDC or 120V AC, 1.5 A at 240 V AC, resistive

Silver Cadmium oxide: 6A at 24VDC or 120VDC, 3A at 240 V AC, resistive
Silver Cadmium Oxide: 10A at 24 VDC or 120VAC, 5A at 240VAC, resistive 6A, 300VAC and $1 / 8 \mathrm{hp}$. 120/240VAC
Max. operating Voltage: 250VAC \& 125VDC
Min. permissible load (reference value): Silver contact: 5VDC, 1 mA Other contact: 5VDC, 100mA
Service life: Mechanical: 20 Million operations
Electrical: 100,000 operations min. at rated resistive load
(See coil data chart)
Voltages: From 3V to 48 V
Power (at $20^{\circ} \mathrm{C}$): Nominal: 0.45 watt
GENERAL DATA
Contact resistance: $50 \mathrm{~m} \Omega$ Max.
Operate time: Approx. 6ms (at nominal voltage)
Operate bounce time: Approx. 2ms
Release time: Approx 2 ms
Insulation resistance: More than $100 \mathrm{M} \Omega$ at DC 500 V
Dielectric strength: 750 V AC $(50 / 60 \mathrm{~Hz})$, between open contact; 3000 V AC $(50 / 60 \mathrm{~Hz})$, between coil \& contact
Vibration: 1.5 mm double amplitude, 10 to 50 Hz
Shock: $100 \mathrm{~m} / \mathrm{sec}^{2}$ (approx. 10G's)
Operation frequency: Mechanical: 18,000 operations/hour
Electrical: 1,800 operations/hour (under rated load)
Temperature range: Class B: $-45^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Class F: $-45^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Temperature rise: Less than 35 degrees
Humidity: $45 \%-85 \%$ RH
Approximate weight: 10 g
NOTE: The data shown above are of initial value
4000V AC DIELECTRIC STRENGTH BETWEEN COIL \& CONTACT AVAILABLE

COIL RATINGS

Nominal Coil Voltage	Coil Resistance in Ohms $\pm 10 \%$ at $20^{\circ} \mathrm{C}$	Sensitive Coil Resistance in Ohms $\pm 10 \%$ at $20^{\circ} \mathrm{C}$	Must Operate Voltage at $20^{\circ} \mathrm{C}$	Must Release Voltage at $20^{\circ} \mathrm{C}$	Maximum Voltage
3VDC	20				
5VDC	56	80	75% max.	10% min.	130% of
6VDC	80	110	of nominal	of nominal 9VDC	180

REMARK

- Use alcohol, freon or water for cleaning. (water temperature not to exceed $50^{\circ} \mathrm{C}$)

(1).
 COMPONENTS INTERNATIONAL, CORP.

* SINCE 1976 *

SPDT 10 AMP HIGH SENSITIVE LOW PROFILE

MHR SERIES

ORDERING INFORMATION

MHR 16 C DC12V

FEATURES

- Subminiature Light Weight Relay
- Switching Capacity Up to 16 Amp
- High Sensitivity

COIL RATING

Rate Voltage (VDC)	Coil Resistance		Rated Current(mA)		Must Operate Voltage	Must Dropout Voltage	Maximum Voltage	Power Consumption (W)
	$\Omega \pm 10 \%$				\% of Rate Voltage (at $+20^{\circ} \mathrm{C}$)			
	1A	1C	1A	1C				
5	125	55.5	40	90				
6	180	80		76				1 Form A:
9	405	180	22	50	80 Max	5 Min	130 Max	0.2 Approx.
12	720	320	16	37.5				1 Form C:
24	2880	1280	8	18.7				0.4 Approx.

CHARACTERISTICS

Contact Arrangement	SPST (1 Form A)
Contact Material	$\mathrm{AgCdO}_{2}, \mathrm{AgSnO}_{3,}, \mathrm{AgInO}_{2}$
Contact Resistance	50mChms Max
Contact Rating (resistive load)	1Form A: 1 Form C: "H" Type: 16A/125, 250VAC 10A/125VAC Standard: 10A/125, 250VAC, 10A/30VDC 5A/250VAC, 3VDC 1/10 HP 125, 277VAC $1 / 10 \mathrm{HP} 125,277 \mathrm{VAC}$
Switching Voltage	DC125V/AC250V Max
Operate Time	10ms Max
Release Time	4ms Max
Insulation Resistance	500MOhms min. (500V DC)
Dielectric Strength	$1000 \mathrm{~V} / \mathrm{ms}$, 1 minute between open contact $1500 \mathrm{~V} / \mathrm{ms}$, 1 minute between coil and contact
Shock resistance	10g Approx.
Vibration	55 Hz , Amplitude 1.5mm
Ambient Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operation Life	Mechanical: $10^{7} \quad$ Eectrical: $10{ }^{5}$
Weight	9g Approx.

DIMENSIONS mm (inches)

1 FORM A

1 FORM C

KSD205
DPDT 6 AMP

TINGS

Note: The rated current and coil resistance are measured at a coil temperature at $20^{\circ} \mathrm{C}$ with tolerances of $+15 \%,-20 \%$ for rated current $+10 \%$ for rated coil resistance.
CONTACT RATINGS

Load Type Item	Resistive load (p.f. =1)	$\begin{gathered} \text { Inductive Load } \\ \text { (p.f. }=0.4, \\ L / R=7 \mathrm{msec}) \end{gathered}$
Material	Ag CdO	
Rated load	120VAC 6A 30VDC 6A	120VAC 3.0A 30VDC 3.0A
Carry current	6A	
Max. operating voltage	250VAC, 125VDC	
Max. operating current	6A	3.0A
Max. switching capacity	600A, 120W	300VA, 60W
Minimum permissible load (reference value)	5VDC, 100mA	

CHARACTERISTICS

Contact resistance	$50 \mathrm{~m} \Omega$ max.
Operate time	10 msec. max.
Release time	5 msec. max.
Operating Frequency	Mechanically: 18,000 operations/hour, Electrically: 1,800 operations/hour (under rated load)
Insulation resistance	$100 \mathrm{M} \Omega$ min. (at 500 VDC)
Dielectric strength	$1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 minute between coil and contact, dissimilar pole $750 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 minute between non-continuous contacts of same pole
Vibration	1.5 mm double amplitude, 10 to 55 Hz
Shock	$100 \mathrm{~m} / \mathrm{sec}^{2}$ (approx 10 G 's $)$
Ambient temperature	Operating: -25 to $+60^{\circ} \mathrm{C}$
Humidity	$45-85 \%$ RH
Service life	Mechanically: $10,000,000$ operations min.
Weight	Approx. 10 g.

ORDERING INFORMATION
KSD205 DC xx
3 to 24 VDC

DIMENSIONS: mm (inch)

TERMINAL ARRANGEMENT
(Bottom View) Numbers For Reference Only

MOUNTING HOLES (Pin View)

©HASCO
 RELAYS
 COMPONENTS INTERNATIONAL, CORP.

* SINCE 1976 *

HAT-900 SERIES HEAVY DUTY
SPDT 40A NORMALLY OPEN \& 30A NORMALLY CLOSED

GENERAL SPECIFICATIONS

Contact Material: silver cadmium oxide with copper base Max. continuous rated voltage: 110% of nominal voltage. Pull-In voltage: 75% of nominal voltage. Max @ $25^{\circ} \mathrm{C}$.
Drop-Out voltage: 10% of nominal voltage. Min @ $25^{\circ} \mathrm{C}$.
Contact Resistance: $20 \mathrm{~m} \Omega$ max. (Initial value)
Operating Temp: Class B: $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Class F: $-20^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Insulation Resist: DC $500 \mathrm{~V} 10 \mathrm{M} \Omega \mathrm{min}$.
Dielectric Strength: AC 2000V between contact and coil, frame and contact, coil and frame one minute. AC 1500 V between contacts one minute.
Operate Time: approx. 15 ms .
Release Time: approx. 10 ms .
Electrical Life: 10×10^{4} operation min. for 30A resistive load (N.O.)
5×10^{4} operations min. for 40A Resistive Load (N.O.)
Mechanical Life: 10×10^{6} operation min.
DC COIL SPECIFICATIONS

Nominal Voltage (VDC)	Resistance $\mathbf{1 0 \% @ 2 5 0} \mathrm{C}$ (Ohms)	Coil Power $@ 255^{\circ} \mathrm{C}$ (Watts)
5	27	.93
6	40	.90
9	97	.84
12	155	.93
15	256	.88
18	380	.85
22	640	.76
24	660	.87
48	2560	.88
110	13400	.90

AC COIL SPECIFICATIONS

Nominal Voltage (at $25^{\circ} \mathrm{C}$)	Resistance $\mathbf{1 0 \% @ \mathbf { 2 5 }}$ $(\mathbf{O h m s})$	Coil Power @ 25 (VA)
12VAC	27	
24VAC	120	
110VAC	2,360	Approx
120VAC	3,040	2 VA
220VAC	13,490	
240VAC	15,735	
277VAC	20,300	

MAXIMUM LOAD SPECIFICATIONS

Voltage	Load Type	SPNC	SPNO
AC	Resistive	30A 277VAC	40A 277VAC
	Motor	$\begin{aligned} & \text { 1HP 120VAC } \\ & \text { 2HP 277VAC } \end{aligned}$	$\begin{aligned} & \text { 1HP } 120 \text { VAC } \\ & \text { 2HP } 277 \mathrm{VAC} \end{aligned}$
	General Purpose	30A 277VAC	40A 277VAC
	Ballast	10A 120VAC 10A 277VAC	$\begin{aligned} & \text { 30A 120VAC } \\ & \text { 20A 277VAC } \end{aligned}$
	Tungsten	2 A 120 VAC	10A 120VAC
DC	Resistive	30A 28VDC	30A 28VDC

[^0]
©HASCO RELAYS

* SINCE 1976 *

HAT-900 SERIES HEAVY DUTY

OUTLINE DIMENSIONS

MECHANICAL SPECIFICATIONS

 901 OPEN STYLE

PC BOARD LAYOUT VIEWED TOWARD TERMINALS

HAT 901 SERIES

HAT 902 SERIES

HAT 903 SERIES

(1)
 RELAYS

* SINCE 1976 *

HAT-904 SERIES DPDT HEAVY DUTY

FEATURES

- 30A switching capabilities
- DPST-NO and DPDT configuration
- Meets VDE 8mm spacing, 4 KV dielectric
- Meets UL Class F construction
- Dust cover or sealed version: PCB or QC Terminal

CONTACT DATA

Contact Form	DPST-NO(2H), DPDT (2Z)
Initial Contact Resistance	$50 \mathrm{~m} \Omega$ (measured at 1A 6VDC)
Contact Material	Silver cadmium oxide
R NO A T I	30A 120VAC/277V AC 20A 28VDC 1HP 120V AC, 2.5HP25V AC TV - 10
N NC G	3A 28VDC/277V AC 2A 480V AC 1 A 600 V AC
Switching Current	Max 30A
Switching Voltage	Max 277V AC
Electrical Life	(Resistive)30A 250V AC 1-105 (Motor)2HP 250V AC 1-10 ${ }^{5}$
Mechanical Life	5-10 ${ }^{6}$

COIL DATA

Coil Consumption	$\mathrm{AC} \pm 4.0 \mathrm{VA}, \mathrm{DC} \pm 1.7 \mathrm{~W}$
Coil Voltage	$\mathrm{DC} \pm 6-110 \mathrm{~V}, \mathrm{AC} \pm 24-277 \mathrm{~V}$
Coil Resistance	see table below

SPECIFICATION

Insulation Resistance	1000M $\Omega 500 \mathrm{VDC}$
Dielectric Strength Between coil \& contacts Between open contacts Between contact poles	$\begin{aligned} & 4000 \mathrm{~V} \mathrm{AC} \\ & 1500 \mathrm{~V} \mathrm{AC} \\ & 2000 \mathrm{~V} \end{aligned}$
Operate Time	15 ms
Release Time	10 ms
Ambient Temperature AC DC	At rated voltage $\begin{aligned} & -40 \pm 66^{\circ} \mathrm{C} \\ & -55 \pm 85^{\circ} \mathrm{C} \end{aligned}$
Humidity	35-85\%
Vibration	$1.65 \mathrm{~mm} 10-55 \mathrm{~Hz}$
Shock	$100 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction $1000 \mathrm{~m} / \mathrm{s}^{2}$ Mechanical
Dimensions (mm)	$52.32 \times 34.5 \times 30.43$
Weight	approx. 86g
Termination	PCB \& QC
Construction	Dust cover and Sealed
Flammability	U1.94-V0

TABLE

Nominal Voltage VDC	Pull-in Voltage VDC	Drop-out Voltage VDC	Coil Resistance Ω ($\pm 10 \%$)	Nominal Voltage V AC	Pull-in Voltage V AC	Drop-out Voltage V AC	$\begin{gathered} \text { Coil } \\ \Omega(\pm 10 \%) \end{gathered}$	
							60 Hz	50 Hz
6	4.5	0.6	22	24	19.2	7.2	39	52
12	9.0	1.2	86	120	96.0	36.0	950	1390
24	18.0	2.4	350	208	166.4	62.4	2841	3900
48	36.0	4.8	1390	240	192.0	72.0	3800	5200
110	82.5	11.0	7255	277	221.6	83.1	5200	7255

[^1]906 JERICHO TPKE., NEW HYDE PARK, NY 11040 / (516) 328-9292 FAX: (516) 326-9125 www.hascorelays.com email: info@hascorelays.com

(1) HASCO RELAYS

* SINCE 1976 *

ORDERING INFORMATION

OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT

USEFUL CURVES

(1)

* SINCE 1976 *

SUBMINIATURE RELAYS/AUTOMOBILE RELAYS

P.C. BOARD TYPE CARB SERIES

SPECIFICATIONS

Operate Time		15 msec. max.	
Release Time		10 msec. max.	
Breakdown Voltage		$1000 \mathrm{CAC}(60 \mathrm{HZ})$ for 1 minute between open contacts. 1500 V AC (60 HZ) for 1 minute between coil and contacts.	
Insulation Resistance		More than $100 \mathrm{M} \Omega$ at 500 V DC	
Shock Resistance		10G min.	
Ambient Temperature		N	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
		H	$-55^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$
Operating Speed		1800 operations/hour	
Life	Mechanical	Over 10,000,000 operations	
	Electrical	Over 100,000 operations	
Weight		Approx. $18 \sim 19 \mathrm{~g}$	

COIL RATINGS

Rated Voltage	Resistance $(\pm 10 \%$ at 20 C$)$	Rated Current $(\pm 10 \%$ at 20 C$)$	Pick-up Voltage (Max.)	Drop-out Voltage (Min.)	Allowable Voltage (Max.)	Rated Operating Power Consumption
12 VDC	90 ohm	133 mA	9.6 V	1.2 V	14.4 V	
24 VDC	680 ohm	63 mA	19.2 V	2.4 V	1.6 W	
48 VDC	2300 ohm	21 mA	38.4 V	4.8 V	28.8 V	

CONTACT RATINGS

DIMENSIONS AND SCHEMATICS

ORDERING INFORMATION

Bottom View

[^2]
(M) HASCO AUTOMOTIVE RELAY

* SINCE 1976 *

CAR 40 AMP OR 30 AMP AUTOMOTIVE RELAY
FEATURES

- High contact rating (40A)
- High temperature design
-1 Form A and 1 Form C arrangements
- Quick connect and P.C. Board terminals
- Mounting Tab option

COIL RATING

Rate Voltage	Coil Resistance	Rated Current	Must Operate Voltage	Must Dropout Voltage	Maximum Voltage	Power Consumption (W)
(VDC)	$\Omega \pm 10 \%$	(mA)	\% of Rate Voltage ($\mathrm{At}+20^{\circ} \mathrm{C}$)		(20 ${ }^{\circ} \mathrm{C}$)	
6	20	300	70 Max	10 Min	130Max	1.8W
12	80	150				
24	320	75				

CHARACTERISTICS

Contact Arrangement	SPST (1 Form A), SPDT (1 Form C)
Contact Material	40 A (AGSNO2)
Contact Resistance	$50 \mathrm{~m} \Omega \mathrm{Max}$
Contact Rating (resistive load)	40 A 14 VDC (1 Form A) 30A 14 VDC (1 Form C)
Switching Voltage	DC 75 V
Operate Time	10 ms Max
Release Time	10 ms Max
Insulation Resistance	$100 \mathrm{M} \Omega$ min. (500V DC)
Dielectric Strength	$500 \mathrm{~V} / \mathrm{msBetween}$ coil and contact
Shock resistance	20 g Approx. 20 g
Vibration Resistance	$10-40 \mathrm{~Hz}$, Amplitude $1.27 \mathrm{~mm}, 10-40 \mathrm{~Hz} 1.27 \mathrm{~mm}$
Ambient Temperature	$-40^{\circ} \mathrm{Cto}+85^{\circ} \mathrm{C}$
Humidity	20 to 85% R.H
Operation Life	Mechanical: $10^{6} \quad$ Bectrical: 10^{5}
Weight	30 gr. Approx.

ORDERING INFORMATION
CAR T 1C P 30 DC12-S

DIMENSIONS mm (inches)

(1) HASCO: AUTOMOTIVE RELAY

* SINCE 1976 *

CAR \& CART 80 AMP AUTOMOTIVE RELAY
FEATURES

- High contact rating (80A)
- Quick connect and P.C. Board terminals
- 1 Form A and 1 Form C arrangements
- Mounting Tab optional

COIL RATING

Rate Voltage (VDC)	Coil Resistance Ohms $\mathbf{1 0 \%}$	Max Coil Voltage	Rated Current (mA)	Must Operate Voltage	Must Dropout Voltage	Power Consumption (W)
6	20	7.8	300	4.2	0.6	
12	80	15.6	150	8.4	1.2	1.8 W
24	320	31.2	75	16.8	2.4	

CAUTION: 1. The use of any coil voltage less than the rated coil voltage will compromise the operation of the relay.
2. Pickup and release voltages are for test purposes only and are not to be used for design criteria

CHARACTERISTICS

Contact Arrangement	SPST (1 Form A), SPST (1 Form B), SPDT (1 Form C)
Contact Material	$\mathrm{AgSnO}_{2}, \mathrm{AgNi}$
Contact Resistance	$\leq 30 \mathrm{~m} \Omega \quad$ Item 3.12 of IEC2555-7
Contact Rating (resistive load)	50A, 80A 14 VDC (1 Form A); 40A, 60A 14 VDC (1 Form B);
	NO: 50A, 80A 14VDC; NC: 40A, 60A14VDC (1 Form C)
Max Switching Voltage	75VDC
Max Switching Power	980W
Max Switching Current	80A
Operate Time	$\leq 7 \mathrm{mS} \mathrm{Max}$
Release Time	$\leq 5 \mathrm{mS} \mathrm{Max}$
Operation Life	1,000,000
	100,000 1 Form A@80Amp; 15,000 1 Form B \& 1 Form C @ 80 Amps,
Insulation Resistance ${ }^{1 /}$	100MOhms min. (500V DC)
Dielectric Strength ${ }^{1 /}$	500V/ms between coil and contact
Shock Resistance	20g Approx. 20g
Vibration Resistance	$10-40 \mathrm{~Hz}$, Amplitude 1.27mm, $10-40 \mathrm{~Hz} 1.27 \mathrm{~mm}$
Ambient Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Relative Humidity	85\% R.H. (at $40^{\circ} \mathrm{C}$)
Weight	46g (CAR); 48g (CART)

ORDERING INFORMATION
CAR I 1 C P 80 DC12-S

S: Sealed NIL: Not sealed 6: 6VDC 12: 12VDC 24: 24VDC 1 Form A 80 Amp Form C 60 Amp NC 80 Amp NO 1 Form A 60 Amp Nil: Quick Connect P: PC Pin
1A: 1 Form A
1C: 1 Form C
1B: 1 Form B
T = Mounting Tab Nil: No Mounting Tab Series

DIMENSIONS mm (inches)

(MHASCO/ RELAYS
 COMPONENTS INTERNATIONAL, CORP.

*SINCE 1976 *

SPR RELAYS

FEATURES

- Small size for high density mounting
- Up to 5000VAC Dielectric strength
- Fully Sealed

DIMENSIONS (Units: mm)

Rated Voltage V DC	Coil Resistance Ohm $\pm 10 \%$	Must Operate Voltage V DC (max)	Must Release Voltage V DC (min)	Maximum Voltage V DC	Coil Power W
5	62	3.50	0.5		
6	90	4.20	0.6	130% of rated voltage	0.40
12	360	8.40	1.2		
24	1,440	16.8	2.4		
48	5,760	33.6	4.8		
60	7,500	42.0	6.0		
110	25,200	77.0	11.0		

CHARACTERISTICS

Contact Arrangement		1A, 1B, 1C,	2A, 2B, 2C
Contact Material		$\mathrm{AgCdO}_{2}, \mathrm{AgSnO}_{2}$	
Contact Rating (resistive);		12A/ 16A 250VAC; 10A 24VDC	8A 250VAC, 8A 24VDC
Max. Switching Power		$3,000 \mathrm{VA} / 4,000 \mathrm{VA}$	2,000VA
Max. Switching Voltage		440VAC	
Max. Switching Current		16 A	8 A
Initial Contact Resistance (at 1A 6VDC)		MAX. 50mOhm	
Operate time		MAX. 10 ms	
Release Time		MAX. 5 ms	
Insulation Resistance		$1,000 \mathrm{M} \mathrm{ohm} \mathrm{min} \mathrm{(at} \mathrm{500VDC)}$	
Dielectric Strength		1,000VAC between open contacts 5,000VAC between contact and coil 2,500VAC between contact sets	
Operating temperature Storage temperature		$\begin{aligned} & -40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} \end{aligned}$	
Humidity		$20^{\circ} \mathrm{C} 35 \%-85 \%$	
Operation life	Mechanical	10×10^{6} operations (72,000 operations/hour)	
	Electric	10×10^{4} operations (360 operations/hour)	
Weight		13.5 g Approx.	
Vibration Resistance		10 to $150 \mathrm{~Hz} \mathrm{10g/5g}$	
Shock	Functional	$100 \mathrm{~m} / \mathrm{s} 2$	
Resistance	Destructive	$1000 \mathrm{~m} / \mathrm{s} 2$	

* SINCE 1976 *

SPR RELAYS
SPR PCB LAYOUT (BOTTOM VIEW) 400 mW COIL

16A: 1A, 1B, 1C	12A: 1A, 1B, 1C		$\frac{8 A: 2 A, 2 B, 2 C}{K \text { Type }}$
K Type	K Type	R Type	

SCHEMATIC

ORDERING INFORMATION

SPR		$\mathbf{1 6}$	DC	K
Series	Contact Form: 1A,		Voltage DC: 5, 6, 12,	Pole Distance K: 5 mm ONLY

SPR		$\mathbf{1 2}$	DC	
Series	Contact Form: 1A,		Voltage DC: $5,6,12$,	Pole Distance:
	1B, 1C	Contact Current	$24,48,60,110$	K: 5 mm
				R: 3.5 mm

SPR		$\mathbf{8}$	DC	
Series	Contact Form: 2A,		Voltage DC: 5, 6, 12,	Pole Distance:
	$2 B, 2 C$	Contact Current	$24,48,60,110$	K: 5mm ONLY

जHASCO
 RELAYS
 COMPONENTS INTERNATIONAL, CORP.

* SINCE 1976 *

PR SERIES

COMPACT POWER RELAYS 1C (16A, 10A), 2C (5A)
FEATURES

- High breakdown voltage (4,000V AC between coil and contact)
- Large switching capacity (16A 240V AC)
- Fully sealed

TYPICAL APPLICATIONS

General electronic controls or systems, Machine tool controls, Energy control circuits, Industrial machinery controls, Consumer
controls (Air-conditioner, Rerigerator, Microwave Oven, etc.), Vending machine, Office machine, etc.

COIL RATINGS

Rated Voltage	$\begin{gathered} \text { Resistance } \\ \left(\pm 10 \% \text { at } 20^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	Rated Current ($\pm 10 \%$ at $20^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Pick-up } \\ \text { Voltage (Max.) } \end{gathered}$	$\begin{aligned} & \text { Drop-Out } \\ & \text { Voltage (Min.) } \end{aligned}$	Allowable Voltage (Max.)	Rated operating power
5V DC	47Ω	106.3 mA	4V DC	0.5V DC	6V DC	Approx 0.5 W
6V DC	68Ω	88 mA	4.8 V DC	0.6V DC	7.2V DC	
9V DC	155Ω	58 mA	7.2V DC	0.9 V DC	10.8V DC	
12 V DC	275Ω	44 mA	9.6V DC	1.2 V DC	14.4V DC	
24 V DC	1,100 Ω	22 mA	19.2V DC	2.4 V DC	28.8V DC	
48 V DC	4,400 Ω	11 mA	38.4 V DC	4.8 V DC	57.6V DC	
110V DC	14,400 Ω	7.6 mA	80V DC	11 V DC	120 V DC	

* Coil resistance varies $\pm 0.4 \%$ for each $\pm 1^{\circ} \mathrm{C}$ change in coil temperature

CONTACT RATINGS

Type \& Arrangement	PR-1 (1a, 1c)		PR-1 (1a, 1c)		PR-2 (2a, 2c)	
$\underbrace{\text { Load }}_{\text {Item }}$	$\begin{aligned} & \text { R load } \\ & (\text { p.f. }=1) \end{aligned}$	$\begin{gathered} \text { L load } \\ \text { (p.f. }=0.7 \text {) } \end{gathered}$	$\begin{aligned} & \text { R load } \\ & (\text { p.f. }=1) \end{aligned}$	$\begin{gathered} \mathrm{L} \text { load } \\ (\text { p.f. }=0.7) \end{gathered}$	$\begin{aligned} & \text { R load } \\ & (\text { p.f. }=1) \end{aligned}$	$\begin{gathered} \text { L load } \\ (\text { p.f. }=0.7) \end{gathered}$
Rated load	$\begin{aligned} & 16 \mathrm{~A} 220 \mathrm{~V} \text { AC } \\ & 16 \mathrm{~A} 30 \mathrm{~V} D \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 16A 220V AC } \\ & 8 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & \text { 10A } 220 \mathrm{~V} \text { AC } \\ & 10 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{gathered} 10 \mathrm{~A} 220 \mathrm{~V} \text { AC } \\ 5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{gathered}$	5A 220V AC 5A 30V DC	$\begin{aligned} & 5 \mathrm{~A} 220 \mathrm{~V} \text { AC } \\ & 2.5 \mathrm{~A} 30 \mathrm{~V} \text { DC } \end{aligned}$
Carry current	1/2 hp 120VAC 16A		1/4 hp 120VAC 10A		1/8 hp 120VAC 5A	
Max. operating voltage	380 V AC, 120V DC					
Max. operating current	16A/3A Tungsten		10A/3A Tungsten		5A	
Max. switching capacity	3,520VA, 480W	1,760VA, 240W	2,200VA, 300W	1,100VA, 150W	1,100VA, 150W	550VA, 75W
Material	AgCdO					
Contact resistance	Less than $50 \mathrm{~m} \Omega$ (initial value)					

SPECIFICATIONS

Operate time	$15 \mathrm{~m} \mathrm{sec} . \mathrm{max}$.
Release time	$10 \mathrm{~m} \mathrm{sec} . \mathrm{max}$.
Breakdown voltage	$1,000 \mathrm{~V} \mathrm{AC}(60 \mathrm{~Hz})$ for 1 minute between open contacts
	$4,000 \mathrm{~V} \mathrm{AC}(60 \mathrm{~Hz})$ for 1 minute between coil and contacts
Insulation resistance	More than $1,000 \mathrm{M} \Omega$ at 500 V DC
Vibration resistance	$10 \sim 55 \mathrm{~Hz}$ at double amplitude of 1.5 mm
Shock resistance	$10 \mathrm{G} \mathrm{min}$.
Ambient temperature range	$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
Operating speed	1,800 operations/hour
Life	Mechanical
	Electrical (R load)
Weight	Over $10,000,000$ operations 100,000 operations

906 JERICHO TPKE., NEW HYDE PARK, NY 11040 / (516) 328-9292 FAX: (516) 326-9125 www.hascorelays.com email: info@hascorelays.com

(M) RASCO\% RELAYS
 COMPONENTS INTERNATIONAL, CORP.

* SINCE 1976 *

PR SERIES
COMPACT POWER RELAYS

DIMENSIONS AND SCHEMATICS PR

P.C.B. Pattern (Bottom View)		
PR1		PR2
16A Type	10A Type	5A Type
K Type	K Type	K Type

P.C.B. Pattern (Bottom View)		
PR1		PR2
16A Type	10A Type	5A Type
R Type	R Type	R Type

P.C.B. Pattern (Bottom View)					
PR1				PR2	
16A Type		10A Type		5A Type	
a	c	a	c	a	c
	©	 man	$=\sqrt{2}$	가플 들 -rn	

 * SINCE 1976 *
HPR RELAYS

DIMENSIONS

COIL DATA (at $20^{\circ} \mathrm{C}$)

Rated Voltage VDC	Coil Resistance Standard Type Ohm $\pm 10 \%$	Coil Resistance Sensitive Type Ohm $\pm 10 \%$	Must Operate Voltage VDC(max)	Must Release Voltage VDC(min)	Coil Power Standard Type W	Coil Power Sensitive Type W
3	20	45	2.25	0.15		
5	55	125	3.75	0.25		
6	80	180	4.50	0.30		0.20
9	180	400	6.75	0.45		
12	320	720	9.00	0.60		
18	720	1600	13.5	0.90		
24	1280	2800	18.0	1.20		

CHARACTERISTICS

Contact Arrangement		SPST-NO, SPDT		
Contact Material		Silver Alloy		
Contact Rating (resistive)		SPST-NO		
		SPDT	NO	
			NC	
Contact Resistance		Max. 100mOhm (measured at 1A, 24VDC)		
Operate Time		Max. 8ms		
Release Time		Max. 5ms		
Insulation Resistance		1000Mohm min (at 500VDC)		
Dielectric Strength		1000VAC 1min. between open contacts		
		4000VAC 1min. between contact and coil		
Shock Operation		$100 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction		
		$1000 \mathrm{~m} / \mathrm{s}^{2}$ Mechanical		
Vibration Operational		$10 \sim 55 \mathrm{~Hz} 1.66 \mathrm{~mm}$		
Ambient Temperature		$-40 \sim 70^{\circ} \mathrm{C}$		
Humidity		35\% 95\%		
Operation Life	Mechanical	10×10^{7}		
	Electrical	10×10^{6}		
Dimensions		$20.5 \times 10.6 \times 15.3 \mathrm{~mm}$		
Terminal		PCB		
Weight		7g Approx		

ORDERING INFORMATION

(M)

* SINCE 1976 *

RPR RELAYS

DIMENSIONS

(Unit: mm)

COIL RATINGS

Rated Voltage VDC	Coil Resistance Standard Type Ohm $+/-10 \%$	Coil Resistance Sensitive Ohm+/-10\%	must Operate Voltage VDC(max)	Must Release Voltage VDC(max)	Coil Power Standard Type	Coil Power Sensitive Type
3	20	45	2.25	0.15	0.45	0.20
5	55	125	3.75	0.25		
6	80	180	4.50	0.30		
9	180	400	6.75	0.45		
12	320	720	9.00	0.60		
18	720	1600	13.5	0.90		
24	1280	2800	18.0	1.20		

CONTACT RATINGS

Contact Arrangement	Form 1A = SPST-NO Form 1C = SPDT		
Contact Material	Silver Alloy		
Contact Rating (Resistive)	Form 1A = SPDT-NO	$\begin{gathered} 0.20 \mathrm{~W} \\ 3 \mathrm{~A} / 250 \mathrm{VAC}, \\ 3 \mathrm{~A} / 30 \mathrm{VDC}, \end{gathered}$	$\begin{gathered} 0.45 \mathrm{~W} \\ \text { 5A/250VAC, } \\ \text { 5A/30VDC, } \\ \text { 10A/125VAC } \end{gathered}$
	SPDT NO	5A/25	VAC
	NC		
Contact Resistance	MAX. 100 mOhm (measured at 1A, 24VDC)		
Operate Time	MAX. 8ms		
Release Time	MAX. 5ms		
Insulation Resistance	1000Mohm min (at 500VDC)		
Dielectric Strength	1000VAC 1min between open contacts		
	2500VAC 1min between contact and coil		
Shock Operation	10 g		
Vibration Operational	$10 \sim 55 \mathrm{~Hz} 1.5 \mathrm{~mm}$		
Ambient Temperature	$\sim 40 \sim 700^{\circ} \mathrm{C}$		
Humidity	35\%~95\%		
Operational Life	10 times 107		
	10 times 105		
Terminal	PCB		
Weight	6g Approx		

ORDERING INFORMATION

RPR	$\mathbf{1 A}$	$\mathbf{1 2}$	$\mathbf{- 1}$	\mathbf{S}
Series	Contact Form	Coil Voltage	Nil: Sealed,	S: Sensitive;
	$1 \mathrm{~A}, 1 \mathrm{C}$	$3,5,6,9,12,18,24$	I: Unsealed	Nil: Standard

UJ SERIES
MINI POWER RELAYS, 15A (1C), 10A (2C)

ORDERING INFORMATION

SPECIFICATIONS

Operate time	$25 \mathrm{msec} . \max .(\mathrm{AC}, \mathrm{DC})$
Release time	$25 \mathrm{msec} . \mathrm{max} .(\mathrm{AC}, \mathrm{DC})$
Breakdown voltage	$1,000 \mathrm{~V} \mathrm{AC}(60 \mathrm{~Hz})$ for 1 minute between open contacts
	$1,500 \mathrm{~V} \mathrm{AC}(60 \mathrm{~Hz})$ for 1 minute between coil and contacts
Insulation resistance	More than $100 \mathrm{M} \Omega$ at 500 V DC
Vibration resistance	$10 \sim 55 \mathrm{~Hz}$ at double amplitude of 1 mm.
Shock resistance	$100 \mathrm{~m} / \mathrm{s}^{2} \mathrm{Malfunction} ,1000 \mathrm{~m} / \mathrm{s}^{2}$ Mechanical
Ambient temperature range	$-40 \sim+70^{\circ} \mathrm{C}$
Life	Mechanical
	Electrical (R load)
Weight	10×10^{7}

TABLE

Nominal Voltage VDC	Pick-up Voltage VDC	Drop-Out Voltage VDC	Coil Resistance Ω	Nominal Voltage VAC	Pick-up Voltage VAC	Drop-out Voltage VAC	Coil Resistance Ω
5	4.0	0.5	$27.5 \pm 10 \%$	6	4.8	1.8	$11.5 \pm 10 \%$
6	4.8	0.6	$40 \pm 10 \%$	12	9.6	3.6	$46 \pm 10 \%$
12	9.6	1.2	$160 \pm 10 \%$	24	19.2	7.2	$184 \pm 10 \%$
24	19.2	2.4	$650 \pm 10 \%$	48	38.4	14.4	$735 \pm 10 \%$
48	38.4	4.8	$2600 \pm 5 \%$	120	96.0	36.0	$4550 \pm 15 \%$
110	88.0	11.0	$11000 \pm 15 \%$	$220 / 240$	176.0	66.0	$14400 \pm 15 \%$

* When requiring pull-in voltage $<80 \%$ of nominal voltage, special order.

DIMENSIONS

	Bottom View	P.C.B. pattern	Schematic	Outline			
$\stackrel{5}{5}$				Series 5mm Terminals (Quick Connect)			
$\xrightarrow{\bigcirc}$							
5		$1+0-61+$	0 -		A	B	C
			15	UJ1	27.6	21.5	34
			\% $\square-$	UJ2	27.6	21.5	36
			\cdots	UJ3	27.6	31.5	36

[^3]
RAILMOUNT SOCKET AVAILABLE

ORDERING INFORMATION

CONTACT DATA

Contact Form	2C, 3C		4 C	
Initial Contact Resistance	$50 \mathrm{~m} \Omega$			
(measured at $1 \mathrm{~A}, 30 \mathrm{VDc}$)				

COIL DATA

Coil Consumption	DC: 0.9 W	AC: 1.2 VA
Coil Voltage	$5 \sim 110 \mathrm{VDC}$	$6 \sim 240 \mathrm{VDC}$
Coil Resistance	see table below	

SPECIFICATIONS

Insulation Resistance	$1000 \mathrm{M} \Omega, 500 \mathrm{VDC}$
Dilectric Strength Between coil and Contact Between open contacts	$1500 \mathrm{VAC}, 1 \mathrm{~min}$ $1000 \mathrm{VAC}, 1 \mathrm{~min}$
Operate Time	25 ms
Release Time	25 ms
Ambient Temperature	$-40 \sim 85^{\circ} \mathrm{C}$
Humidity	$35 \% \sim 95 \% \mathrm{RH}$
Vibration Resistance	$1.5 \mathrm{~mm}, 10 \sim 55 \mathrm{~Hz}$
Shock Resistance	$100 \mathrm{~m} / \mathrm{s}^{3}$ Malfunction
	$1000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{Mechanical}$
Dimensions (mm)	28 X 21.5 X 35
Weight	approx .37 g
Termination	PCB \& Plug-in
Construction	Dust Cover

TABLE

Nominal Voltage VDC	Pick-up Voltage VDC	Drop-Out Voltage VDC	Coil Resistance Ω	Nominal Voltage VAC	Pick-up Voltage VAC	Drop-out Voltage VAC	Coiil Resistance Ω
5	4.0	0.5	$27.5 \pm 10 \%$	6	4.8	1.8	$11.5 \pm 10 \%$
6	4.8	0.6	$40 \pm 10 \%$	12	9.6	3.6	$46 \pm 10 \%$
12	9.6	1.2	$160 \pm 10 \%$	24	19.2	7.2	$184 \pm 10 \%$
24	19.2	2.4	$650 \pm 10 \%$	48	38.4	14.4	$735 \pm 10 \%$
48	38.4	4.8	$2600 \pm 5 \%$	120	96.0	36.0	$4550 \pm 15 \%$
110	88.0	11.0	$11000 \pm 15 \%$	$220 / 240$	176.0	66.0	$14400 \pm 15 \%$

DIMENSIONS

Series			
	A	B	C
UJ1	27.6	21.5	34
UJ2	27.6	21.5	36
UJ3	27.6	21.5	36
UJ4	27.6	21.5	36

GHAECO / RELAYS TERMINOLOGY
 COMPONENTS INTERNATIONAL, CORP.

* SINCE 1976 *

CONTACT

(1) Contact arrangement

Denotes the contact switching combinations available on a relay and are defined in terms of number of poles, number of throws (single or double), normal position (open or close), and the sequence to make and break.

Fundamental contact arrangements are given in Table 1.

(2) Contact type

The one structure of contact forming the contact parts, Single contact and Bifurcated contact are offered.

(3) Contact material

The contacts are fastened to the movable leaf spring and stationary terminal to ensure electrical contact. Usually they are made of materials that mainly consist of silver because of its high electrical and thermal conductivity. For small-current loads, the gold-plated or the gold-overlay silver contacts are generally used.

(4) Contacting

The typical power, voltage or current, which a relay can turn on and off under specified conditions of load, ambient temperature and humidity. Usually, the contact rating refers to resistive load.
(5) Max. switching power

The upper limit of power which can be switched by the contacts. This value will be lower than the product of the maximum voltage and the maximum current. Care should be taken not to be exceed this value.

COIL

(1) Nominal voltage

A single value of voltage intended to be applied to the coil.

(2) Nominal power

The value of power used by the coil at nominal voltage. For DC coils, expressed in Watts.

Nominal power $=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
V: Nominal Voltage
R: Coil Resistance (at $20^{\circ} \mathrm{C}$)

(3) Coil resistance

The resistance of the coil for temperature conditions listed in the catalog. (usually at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$)

(4) Pick-up (Set) voltage

When the coil voltage is increased gradually from 0 V , the relay will operate at a certain voltage. This voltage is called the Pick-up voltage. The Pick-up voltage in the catalog shows the maximum value. In case of latching relay, the Pick-up voltage is called the Set Voltage.

(6) Max. switching voltage

The maximum open circuit voltage which can safely be switched by the contacts. AC and DC voltage maximums will differ in most cases.

(7) Max. switching current

The maximum current which can safely be switched by the contacts. AC and DC current maximums may differ.
Table 1 Fundamental contact arrangement

Form	Description	Symbol	Performance
A	Make (NO)		The combination in which the contacts are open in normal or unoperated position.
B	Break (NC)		The combination in which the contacts are closed in the unoperated position.
C	Transfer (BBM)		The combination in which Form B (NC) contact open before Form A (NO) contacts close.
D	Continuous (BBM)		The combination in which Form A (NO) contact close before Form B (NC) contacts open.

Note: 1. Abbreviations used to define the nature of the contacts are as follows:

(8) Min. switching current

The minimum value of current that can be reliably switched by the contacts.

(9) Contact resistance

The electrical resistance of closed contacts measured at their associated terminals.

| NO: Nomally open | M: Make | BBM: Break before Make |
| :--- | :--- | :--- | :--- |
| NC: Nomally closed | B: Break | MBB: Make before Break |

2. Double switching combinations are called 2 Form $A(2 A)$ or 2 Form $C(2 C)$.
3. The following abbreviations are used occasionally.

SP: Single pole ST: Single throw
DP: Double pole DT: Double throw
Ex. SPST NO : 1 Make (1 Form A or 1a)
SPST NC : 1 Break (1 Form B or 1b)
SPDT: 1 Transfer (1 Form C or 1c)
DPDT : 2 Transfer (2 Form C or 2c)
4 PDT : 4 Transfer (4 Form C or 4c)

(5) Drop-out (Reset) voltage

When the coil voltage on an operate relay is decreased gradually, the relay will release at a certain voltage. This voltage is called the Drop-out voltage. The Drop-out Voltage in the catalog shows the minimum value. In case of latching relay, the Drop-out voltage is called the Reset voltage, when the reverse voltage is increased on the coil of operate relay, the voltage which the relay will release.

(6) Operating power

The value of power used by the coil at Pickup voltage

(7) Max. continuous voltage

The maximum value of voltage that can be applied continuously to the coil without causing damage.
$\begin{array}{llll}\text { NO: Nomally open } & \text { M: Make } & \text { BBM: Break before Make } \\ \text { NC: Nomally closed } & \text { B: Break } & \text { MBB: Make before Break }\end{array}$

(8) Operating function

- Single side stable type:

Relay which turns on when the coil is energized and turns off when de-energized.

- 1 Coil latching type:

Relay with a latching construction that can maintain the on or off state with a pulse input. With one coil, the relay is set or reset by applying signals of opposite polarities.

- 2 Coil latching type:

Relay with a latching construction composed of 2 coils, set coil and reset coil. The relay is set or reset by alternately applying pulse signals of the same polarity.

* SINCE 1976 *

MAIN POINTS TO SELECT SUITABLE RELAY

A relay may meet with a variety of ambient conditions during actual usage. In order to avoid unexpected failure in result, testing over practical range under actual operating condition is required. For proper use of relays, the characteristics of the selected
relay should be well known, and the conditions of relay use has to be investigated to determine whether they are matched to the environmental conditions, In addition, the coil conditions, contact conditions, and the ambient conditions for the relay that is actu-
ally used must be sufficiently known in determining the relay specifications. The table below shows a summary of points of consideration for relay selection. It may be used as a reference for investigation of items and points of caution.

Table 2. Main Ponts to Select Relays

Item	Specification Points	Consideration Points
Contact	Contact arrangement	Contact forms, number of poles, Contact sequence
	Contact load	Level of load, AC or DC, resistive or indicative or capacitive, counter voltage of inductive load
	Contact material	Contact material should be matched to the level of load
	Life	Number of operations, Frequency in switching
Coil	Coll voltage	Nominal voltage, power source ripple
	Pick-up and Drop-out voltage	Fluctuation in supply voltage, Rise in Pick-up and Drop-out voltage due to the coil resistance rise
	Coil resistance	Power consumption of coil. Increase of resistance due to the coil temperature rise
	Temperature rise	Ambient temperature and coil temperature rise according to the applied voltage.
Insulation	Dielectric strength Surge withstand voltage Insulation resistance	Do specifications of the relays match that required in the equipment?
Environment	Ambient temperature and humidity	Range of ambient temperature and humidity in the use location.
	Vibration and shock	Level of vibration and shock in the use location.
	Ambient atmophere	No presence of gas which may cause contact failure.
Others	Mounting method	The method of flux coating, soldering, washing and mounting
	Cover	Material of cover (compatibility with washing solution)
	Relay construction	Sealed or non-sealed type relays
	Special condition	Are there any special conditions?

CONTACT

(1) Contact load

The phenomena in the contacts of relays greatly vary depending on contact load level such as kind of load and current level as well as contact material and size, opening speed and contact bounce.

- Switching current

AC current is alternately reduced to zero but DC current is not, so the arc discharge current at breaking of load current is hard to be extinguished for DC current.
Therefore the duration of the arc discharge is longer in DC circuit than AC circuit and the maximum DC switching current is smaller than AC load.

- Resistive load

Resistive load is a standard load in life tests and the contact ratings in catalogue are usually specified with resistive load. In resistive load circuit, it is assumed that there is no inrush or counter breaking current on switching of loads.

- Inductive load

Inductive loads such as electromagnetic relay, solenoids and motors easily generate a high counter voltage between their coils and cause arc discharge across the relay contacts.
Because the level of inductive load is affected by the load current and the power factor (coso), the life is decreased when the power factor is lowered.
In circuit with load such as motor, solenoid, transformer and others, an inrush current
of several times larger than the steady current is generated at the time of connecting the load.
It is necessary to select the contact that has a sufficient capacity for the conditions.

- Capacitive load

In a capacitive load circuit, an inrush current of 20 to 40 times larger than the steady state current is produced. A surge suppressor should be used to prevent contact welding.

Table 3. Typical Load and Inrush Current

Kind of Load	Inrush current
Resistive load	Steady state current
Solenoid load	$10 \sim 20$ times of the steady state current
Motor load	$5 \sim 10$ times of the steady state current
Incandescent lamp load	$10 \sim 15$ times of the steady state current
Mercury lamp load	Approx. 3 times of the steady state current
Condenser load	$20 \sim 40$ times of the steady state current
Transformer load	$5 \sim 15$ times of the steady state current
Contactor load	$3 \sim 10$ times of the steady state current

(2) Contact material

Relay contacts must be made from material that allows contact resistance to be low and stable, that is not quickly worn by the arc, and that has a high fusing point. At present there is no material that meets these conditions, and it appears unlikely that one will be found in the near future.

(3) Low level circuit

Circuits with several volts and several mA or less are called low-level circuits. At low levels, silver contacts form an oxide or sulfide film on their surface under certain conditions, which makes contact resistance unstable.
If the circuit impedance is high, although the high contact resistance itself does not cause problems, the noise is easily produced.
To maintain stability of contact resistance in a sulfurating atmosphere, contacts of gold overlayed on silver-palladium are effective.

* SINCE 1976 *

COIL

(1) Coil voltage of DC relay

For the operation of DC relays, standards exist for power source voltage, with DC voltage standards set at 5, 6, 9, 12, 24 and 48. Because of the gradual increase or decrease of the current impressed on the coil causing possible delay in movement of the contacts, there is a possibility that the specified contact capacity may not be satisfied.
So, consideration should be given to the method of applying voltage on the coil.

(2) Power source fluctuation

As a power source for DC relays, a battery or either a half or full wave rectifier circuit with smoothing capacitor is used.
The characteristics with regard to the excitation voltage of the relay will change depending on the type of power source, and thus, in order to display stable characteristics, the most desirable method is perfect DC.
In the case of ripple included in the DC power source, if the smoothing capacitor is too small, humming develops and unsatisfactory condition is produced, due to the influence of the ripple.

PERFORMANCE

(I) Contact resistance

(a) Contact wipe

The contact resistance of clean surface is extremely low, such as several $\mathrm{m} \Omega$. In practice, some kind of film is formed on to almost all of the contact surfaces and the contact resistance varies depending on the properties of that film.
To clean such film and stabilize contact resistance, distance of the contact wipe is increased.
When contacts open and close, the contacted surfaces slid together, thus effecting a breakage of nonconductive film formed on the contact surfaces.
(b) Contamination of contact surface

The possible causes of contamination that effects increases in contact resistance are as follows.

- Adherence of fiber, scale and particles of plastic mold, etc.
- Adherence of silicone oxides.
- Adherence and deposits of non-conducting material produced through a chemical reaction with the gas absorbed onto the contact face.
- Adherence and deposits of carbon powders produced at contact surface.
- Oxidation and sulfuration of metallic powders on the contact surface.
(c) A bifurcated contact is contaminated

The bifurcated spring is cut deeply enough and separated so as to provide a good independence in a contact even when some insulating particle is trapped between the contact on one side.
In this case, the contact of the other side can

This ripple is calculated using the formula described in Fig. 4 and it is necessary to give consideration to use of a power source with less than a 5% ripple.

(3) Coil resistance

The resistance of coil is specified according to the nominal voltage of the relay. Generally, the nominal value of coil resistance is that at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ and the allowable range is limit-
Fig. 4. Ripple factor of rectifier circuit

Ripple factor $=\frac{\mathrm{E} \text { max. }-\mathrm{E} \text { min. }}{\mathrm{E} \text { mean }} \times 100(\%)$
E max. = Maximum value of ripple portion
E min. $=$ Minimum value of ripple portion
E mean = Average value of ripple portion
serve to maintain a good contact, with the sufficient mechanical independence between the two members. So, the bifurcated contacts have successfully reduced contact failures.

(d) Sealed relay

Sealed relays are available. This feature excludes the ingress of organic gases and dust in atmosphere and allows immersion cleaning.
When a sealed type relay switches the load in the presence of organic gases inside relay, it produces carbon powders on the contacts which create rise of contact resistance and acceleration of contact consumption. In order to avoid such problems, the constituent components are annealed for physical and chemical stability. This annealing process drives off residual volatiles in the plastics, insuring a contaminant free environment inside the sealed relay, resulting in more stable contact resistance over life.
Fig. 5. Relationship of Relay Performance

* SINCE 1976 *

PERFORMANCE

(3) Coil temperature rise

When voltage is applied to a coil, its temperature increases due to juele heat. Coil temperature rise can be calculated from the temperature coefficient of the copper wire by measuring the coil resistance.
The coil temperature rise can be obtained by the next expression.

$$
\mathrm{T}=\mathrm{T} 2-\mathrm{Ta}=\frac{\mathrm{R} 2-\mathrm{RI}}{\mathrm{RI}}(\mathrm{~K}+\mathrm{TI})+\mathrm{T} 1-\mathrm{Ta}
$$

where, T: Coil temperature rise $\left({ }^{\circ} \mathrm{C}\right)$
TI: Initial ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
T 2 : Coil temperature after the test $\left({ }^{\circ} \mathrm{C}\right)$
Ta: Ambient temperature after the test $\left({ }^{\circ} \mathrm{C}\right)$
RI: Coil resistance at $\mathrm{T} 1^{\circ} \mathrm{C}(\Omega)$
R2: Coil resistance at $\mathrm{T} 2{ }^{\circ} \mathrm{C}(\Omega)$
K: Constance (= 235 for copper wire)
however, I T1-Ta $1 \leq 5\left({ }^{\circ} \mathrm{C}\right)$
(4) Hot coil and Cool coil

The coil temperature with no voltage applied on the coil is usually to be equal to the ambient temperalure. When voltage is applied to the coil, the coil temperature rises, increasing both coil resistance and pick-up voltage. The coil with it's temperature rise due to voltage impression is called a Hot Coil. To the contrary, when no voltage is impressed on coil, the coil, temperature of which is equal to ambient temperature, is called a Cool Coil.
In general, the values for characteristics such as pick-up voltage, drop-out voltage and so on are measured at the ambient temperature of $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$, Cool Coil conditions. For the Hot Coil, because of it's pick-up voltage rise, there is a possibility that it may not operate under the same conditions as Cool Coil. Thus, care is required.

(5) Operating range

(a) Maximum continuous voltage

The maximum voltage that can be applied continuously to the coil without causing damage. When a voltage greater than the maximum continuous voltage is applied to the coil (layers may short) the coil may burn out, due to the temperature rise. Do not exceed the usable operating range shown in the Fig. 7.
(b) Pick-up voltage

As the ambient temperature rises, the coil resistance increases, pick-up voltage. Figure 7, line B refers to the relationship. The upper

Figure 6(a) shows the duration characteristics. Fig. 6(b) shows the voltage characteristics in a steady state at constant supply voltage.
portion of line-B in Fig. 7 shows the range of voltage which can be applied to the coil. Line-A is maximum continuous voltage. Thus the relay operating range is the portion surrounded by line A and B.
In order to have stable operation of relay, the APP voltage and the ambient temperature should be in the operating range.
If the ambient temperature increases, pickup voltages rises, while maximum continuous voltage decrease. Care is required.

(6) Operate time and Release time

There is variation in Operate time and Release Time depending upon voltage/ power applied to coil.
Figure 8 shows an example of relationship between Operate Time and Release Time. Figure 8 refers to the phenomenon that according to the fluctuation of coil impressed voltage, Operate Time greatly varies, while Release Time is small. To the extent of large coil impressed voltage, the Operate Time is rapid, but if it is too rapid, the make contact bounce time may be extended.

(7) Safety standards

Laws and regulations demand securing the safety of users from dangers such as electric shock and fire lying around household appliances and other consumer electric equipment or devices.
Major industrial countries across the world already have their own safety standards such as those under control of 'The Electrical Appliance and Material Control Law' in Japan, UL in U.S. .A., CSA in Canada, VDE in Germany, SEMKO in North Europe and BS in GB.

Fig. 7 Operating range

Fig. 8 Operate and Release time

The influence depends on the strength of the magnetic field and it should be checked at the installation. In such a case suitable measures such as magnetic shielding or selection of adequate in arrangement of relay should be taken so as to avoid problems.

AMBIENT ENVIRONMENT

(1) Silicone compound atmosphere

Silicone compounds such as silicone rubber, silicone paint, silicone grease, etc. emit volatile silicone gas. Note that when silicone is used near relays, switching contacts in the presence of its gas causes silicon to adhere to the contacts and may result in contact failure. In this case, use a substitute that is not silicone based. If the use of silicone com-
pound is inevitable, use a plastic-sealed relay.
(2) Influence of external magnetic field When transformers, speakers or magnets are located near a relay the characteristics may change and faulty operations may result due to the strong magnetic field generated from the equipment.

* SINCE 1976 *

MOUNTING OF RELAYS

(I) Mounting direction

Mounting direction is important for optimum relay characteristics.

(2) Shock and vibration resistance

It is ideal to mount the relay so that the movement of contacts and armature is perpendicular to the direction of vibration or shock, as shown in Fig. 10.
(3) Contact reliability

It is recommended to mount the relays so that the surfaces of its contacts are vertical and in Lipper location of relay inside. Such mounting methods prevent dirt and dust as well as scattered contact material (produced due to large loads from which arcs are gen-
erated) and powdered metal from adhering to them. Furthermore, it is not desirable to switch both a large load and a low level load with a single relay. The scattered contact material produced when switching large load adheres to the contacts when switching the low level load and may cause contact failure. Therefore, avoid mounting the relay with its low level load contacts located below the large load contacts.
(4) Adjacent mounting

When many relays are mounted close together, abnormally high temperatures may result from the combined heat generated. Mount relays with sufficient spacing
between them to prevent heat buildup. This also applies when a large number of boards mounted with relays are installed as in a card rack. Be sure the ambient temperature of the relays does not exceed the value listed in the catalog.
Fig 10. Direction of relays

RELAY SOLDERING AND WASHING GUIDELINES

Guidelines

- Avoid bending and terminals to make the relay self-clinching. Relay performance cannot be guaranteed if the terminals are bent.
- Adjust the position of the PC board so that flux does not overflow onto the top of it.
- Use rosin-based flux, which is non-corrosive and requires no washing.
- Do not use Automatic Flux Coating Method to dust-cover type relays.
- Do not overflow onto the top of PC Board, in such a case, the flux may even penetrate a flux-resistant type relay.
- Be sure to preheat before soldering.
- Preheating acts to improve solderability.
- Preheat according to the following conditions.

Temperature	$100^{\circ} \mathrm{C} 212^{\circ} \mathrm{F}$ or less
Time	Within approx. 1 minute

- Note that long exposure to high temperatures (e.g. due to a malfunctioning unit) may affect relay characteristics.

Automatic Soldering

- Flow solder is the optimum method for soldering. - Unless otherwise specified, solder
- Adjust the level of solder so that It does not over- under the following conditions dependflow onto the top of the PC board. ing on the type of relay.

Solder Temperature	Approx. $250^{\circ} \mathrm{C} 482^{\circ} \mathrm{F}$
Soldering Time	Within approx. 5 seconds
Solder Ratio	$\mathrm{Sn} / \mathrm{Pb}=60 / 40$ or $63 / 37$

Hand Soldering - Keep the tip of the soldering iron clean.

Solder Iron	30 W to 60 W
Iron Tip Temperature	Approx. $300^{\circ} \mathrm{C} 572^{\circ} \mathrm{F}$
Solder Time	Within approx. 3 seconds

- Immediate air cooling is recommended to prevent deterioration of the relay and surrounding parts due to soldering heat.
- Although the sealed type relay can be cleaned, avoid immersing the relay into cold liquid (such as washing solvent) immediately after soldering. Doing so may deteriorate the sealing performance.
* SINCE 1976 *

RELAY SOLDERING AND WASHING GUIDELINES

Process
6. Washing

7. Coating

Guidelines

- Do not wash flux-resistant type relays and dust cover type relays by immersion.
- Careless washing may cause washing solvent to penetrate the relay.
- Plastic sealed type relays can be washed by immersion. Use washing solvents shown in Table 6
- Use of other washing solvents may damage the relay case and cover, and also cause washing solvent to penetrate the relay.
- Avoid ultrasonic washing on relays. Use of ultrasonic cleaning may cause breaks In the coil or slight sticking of contacts due to the ultrasonic energy

Table 6. Washing solvent compatibility chart for sealed relays

Washing solvent	
Chlorinated	Chlorothene VG, N Trichloroethylene Perchloroethylene Methylene chloride
Alcohol	Ethanol IPA
Aqueous	Hollis 310 Indusco 624, 1000 Lonco Terg

- If the PC board is to be coated to prevent the insulation of the PC board from deteriorating due to corrosive gases and high temperature, note the following.
- Do not coat dust-cover type relays and flux-resistant type relays.
- Depending on the type, some coating materials may have an adverse affect on relays, select coating materials carefully.

RELAY TERMINOLOGY: PERFORMANCE

(1) Operate (Set) time

Time from initial energization to the first opening of closed contact or first closing of open contact. This time does not include any bounce time. In case of latching relays, this is called "Set time". (cf. Fig. 1.)

(2) Release (Reset) time

Time from initial de-energization of the relay coil to first opening of closed contact or first closing of open contact. This time does not include any bounce time.
In case of latching relays, this is called "Reset time".
This means the time from initial reverse energization of the coil to first opening of closed contact or first closing of open contact. (cf. Fig. 1.)

(3) Bounce time

Internally caused intermittent and undesired opening of closed contact or closing of open contacts of a relay. (cf. Fig. 1)

(4) Dielectric strength

The maximum. allowable AC (RMS) voltage ($50 / 60 \mathrm{~Hz}$) which may be applied between two specified test points, usually for 1 minute in duration. In general, the maximum leak current is I mA.

(5) Surge withstand voltage

The maximum allowable peak surge voltage which may be applied between two specified test points.
Usually, wave form of this test is specified indicating peak value, rise time and. fall time. (cf. Fig. 2.) In FCC Part 66, T1 = $10 \mu \mathrm{~S}, \mathrm{Vp}$ 1500V are specified.
(6) Insulation resistance

The resistance between all mutually insulated conducting sections of the relay. This value changes depending on the ambient temperature and humidity.

Fig. 1 Typical time traces of relay

Fig. 1 Ware form of Surge test

RELAY TERMINOLOGY: PERFORMANCE

(7) Capacitance

The electrostatic capacitance between mutually insulated conducting sections of the relay. Usually this value is measured at 1 kHz .
(8) Life

- Mechanical life

The minimum number of operations which the relay can be operated under nominal conditions with no load on the contacts.

- Electrical life

The minimum number of operations which the relay can be operated under nominal conditions with specified load on the contacts.
(9) Vibration resistance

The resistance to the vibration applicable to the relay, expressed as a displacement and frequency range.

- Functional

The vibration which can be applied to the relay during service without causing the openings of the closed contacts for more than the specified time.

- Destructive

The vibration which can be allowed by the relay during shipping, installation, without damages and changes in its operating characteristics.

(10) Shock resistance

The resistance to the shock applicable to the relay, expressed as an acceleration in G.

- Functional

The shock can be applied to the relay during service without causing the openings of the closed contacts for more than the specified time.

- Destructive

The shock which can be allowed by the relay during shipping, installation, without damage and changes in its operating characteristics.

(11) Temperature range

The range of ambient temperature in which the relay can be used without damages in its characteristics or functions.

(12) Safely standard

Standard for the prevention of electric shock hazards and fire accidents differs in content from country to country.
UL (U.S.A.),
VDE (Germany)
SEMKO (Sweden), CSA (Canada)
BS (G.B.)
(13) Structure of relays

Relays are classified in 4 types as Fig. 3 by the structure of terminals, cover and case, and mounting method of the relay.
Fig. 3. Structure of relays
(Y: Yes N: No)

Item	Dust cover Type	Flux Free Type	Sealed Type	Surface Mount Type
Structure				
Characteristics	Most basic construction and there is gap between cover and base, and between base and terminals.	Terminals are sealed with base by sealant. The joint level between cover and base is higher than the PC board surface.	All the gaps between case and base, base and terminals are sealed by sealant.	All the gaps between case and base, base and terminals are sealed by sealant. Terminals are formed in "L" shape intended to be soldered by reflow soldering.
Mounting Method	Insertion mounting	Insertion mounting	Insertion mounting	Surface mounting
Automatic Flux Coating	N	Y	Y	Y
Automatic Soldering	N	Y	Y	Y
Automatic Washing	N	N	Y \quad Note 1	Y Note I
Manual Soldering	Y	Y	Y	-
Environmental Gas Resistance	N	N	Y Note 2	Y Note 2

Note 1. It is needed to select suitable washing solvent.
2. In explosive gas environment, use the metallic hermetic seal types.

High Reliability Supported by Uniques Technology

Deactivated Rhodium Contact:

OKI reed switches are highly reliable because rhodium is used as the contact material. Rhodium has two excellent features as the contact material: Extreme hardness, which improves the resistance against sticking; and a high melting point, which greatly reduces the contact surface consumption due to Joule heat or arc discharge affected by the current, and also improves the resistance against sticking. However, being a platinum metal, the surface of rhodium has active absorption and catalytic actions. Rhodium plating greatly absorbs organic impurities and forms a polymer in the course of operation, increasing contact resistance as shown in Fig. 21. This is especially noticeable a lower load level operation. OKI has developed a unique oxygen treatment method to deactivate the rhodium surface, in which organic impurities adhered to the surface are burned with oxygen and oxygen molecules are selectively absorbed to
produce a stabilized contact resistance. This unique method won the highest prize (Schneider Award) on the occasion of the 21st Annual National Relay Conference held in Oklahoma, U.S.A. in 1973. Patents have been obtained not only in Japan (Pat. No. 916386) but also in U.S.A. (Pat. No. 3857175) and West Germany (Pat. No. 2303587).

Automatic Sealing:

Sealing, the moment when a pressed and plated reed contact and a glass tube are united to form a reed switch, is the most important stage in the manufacturing process requiring strict control of conditions. At this stage, the working temperature reaches approx. $1,000^{\circ} \mathrm{C}$ causing evaporation of impurities from the glass tube and contamination and damage of the contact part of the reed switch. To prevent this, OKI has imposed severe standards on the selection of materials, and established a unique automatic
sealing method. By thus improving the manufacturing process, OKI is able to produce reed switches of the highest quality.

Flux Scanning Method:

In spite of severe control of the sealing process, there is a slight probability that foreign matter such as magnetic particles may enter the glass. After extensive study in the detection of micro impurities, OKI has adopted the highly reliable flux scanning method. In flux scanning, as shown in Fig. 22, external magnetism is moved so that foreign matter near the reed is forced to jump to the contact part. The contact resistance then measured is used as the standard for the selection of characteristics. We have thus succeeded in remarkably improving the reliability of reed switches by replacing conventional visual checking with the latest flux scanning method.

Fig. 22

See following pages for technical quality control support (or reliability data).

(

* Magnets also available

Notes:

1 Pull-in \& drop-out were measured by using OKI standard coil. * This value of drop-out is prescribed when pull-in is over 20AT. When pull-in is less than 20AT, drop-out are 5 MIN \& RLS/OP >0.7. Tolerance at measurement is $\pm 2 \mathrm{AT}$. (Fig.1)

2 Measurements are made by the four-terminal voltage reduction method where the 100AT excitation is given to the switch using the OKI standard coil to close the contacts, and 10 mA current is applied.
3 This value varies depending on the pull-in value (contact gap). In this measurement, the pull-in value is about 20AT. (MIL-STD-202D METHOD 301)
4 Measurement is made by using a DC 100 V super megger. (MIL-STD-202D METHOD 302)
5 The values show those at MHz .
6 The value is obtained from the dry test under continuous current flow.
7 The value shows the time required for the contacts to cause the first contact bounce after applying the voltage to the OKI standard test coil. The time is shown at Top in Fig. 2

8 Bouncing is caused when the contact close. Bounce time means the time when opening and closing of the contacts are being repeated before the contacts are completely closed. Shown by bounce.

9 Release time means the time from the moment the voltage applied to the test coil as removed to the moment the contacts open. Shown by Tris.
10 Resonant frequency is a vibrating frequency inherent to the reed switch. Avoid application of vibration at this frequency to the switch, otherwise it will cause misoperation.
11 The reed switch can be operated with a frequency higher than the maximum operating frequency. However, operation with such a frequency will often cause an endless chattering at the time of ON operation. It is recommended for the designer to take the maximum operating frequency into consideration when designing systems and circuits.

12 Dimensions of standard coil. A: Inner diameter of standard coil.
B: Length of standard coil.

Fig. 1

	ORD221	ORD229	ORD2210	ORD2211	ORD2212	ORD2210V	ORT551
	1A (offset)	1A	1A	1A	1A	1A	1C
	$1 \sim 40$	$15 \sim 60$	15 ~ 60	$15 \sim 60$	15 ~ 45	$20 \sim 60$	$10 \sim 30$
	5 min .	6 min .	7 min .	8 min .	RLS/OP>0.8	7 min .	5 min .
	100 max.						
	200 min .	600 min .	250 min .	200 min .	150 min .	1000 min.*	200 min .
	$10^{9} \mathrm{~min}$.	$10^{10} \mathrm{~min}$.	$10^{10} \mathrm{~min}$.	$10^{\circ} \mathrm{min}$.	$10^{9} \mathrm{~min}$.	$10^{10} \mathrm{~min}$.	$10^{9} \mathrm{~min}$.
	0.3 max.	0.5 max.	0.5 max.	0.3 max.	0.5 max.	0.5 max.	1.5 max.
	10	50	AC70(VA) / DC50(W)	50	10	100	3
	AC100 / DC100	AC300 / DC350	AC150 / DC200	AC 100 / DC 100	AC 100 / DC 100	AC300 / DC350	AC30 / DC30
	DC 0.3	DC 0.5	AC0.7 / DC 1.0	0.5 In rush 3A	DC 0.2	DC 1.0 max	DC 0.2
	1.0	2.5	2.5	2.5	0.5	2.5 max	0.5
	0.3 max.	0.6 max.	0.5 max.	0.6 max.	0.4 max.	0.5 max.	1.0 max.
	0.5 max.	0.5 max.	0.5 max.	0.4 max.	1.0 max.	0.5 max.	(NC) 1.5 max. / (NO) 1.0 max.
	0.5 max.	0.05 max.	0.5 max.				
	2750 ± 250	2500 ± 250	2500 ± 250	4600 ± 500	4200 ± 300	2500 ± 250	6000 ± 4000
	500	500	500	500	500	500	200
	450	500	500	450	450	450	550
	5000	5000	5000	5000	5000	5000	5000
	$3.7 \varnothing \times 15$	4.60×21	4.60×21	$3.7 \varnothing \times 15$	$3.7 \varnothing \times 15$	$3.7 \varnothing \times 15$	4.60×10
	6	3	3	6	6	6	10
	Miniature offset (Rh)	High breakdown voltage (Rh)	High power (Rh)	Lamp load (Rh) 3.4W Low sound (Rh)	Closed differential type	Vacuum *Dependent on A/T	Ultra-miniature transfer (Rh)

Fig. 2

13 If a shock of more than 30 G is applied to a reed switch, the pull-in value of the switch will be often caused to change from the standard specification. Therefore, it is recommended not to use the reed switch which has been given such a shock.
14 If a vibration of more than 1 kHz is applied to a reed switch, even a very small acceleration to it will easily cause the switch to misoperate to close due to its resonant frequency.
15 In practice the reed switch can operate beyond the specified range. In case of magnet driving, however, some magnets show decrease of magnetic flux even at the lowest temperature of the range depending on their temperature characteristics. Therefore, it is recommended to consider the range as a general guide line.
16 The actual tensile strength is more than 5 kg (breakdown). However, considering the lead not to get out of position, the value for the static load is shown here.

Test Procedure (2)

for operate, release and bounce time

Environmental Characteristics Table 2

	Characteristics (Common to All Types)	Nost Conditions
Shock	Shall not misoperate with shock of 30G $(11 \mathrm{msec})$ applied	MIL-STD-202E METHOD 213B
Vibration	Shall not misoperate with max. 20G $(10-55 \mathrm{~Hz})$	MIL-STD-202E METHOD 210A
Temperature range	Shall be operational in the range of -40 to $125^{\circ} \mathrm{C}$	MIL-STD-202E METHOD 107D
Lead tensile strength	Shall withstand against 2 kg static load	MIL-STD-202E METHOD 211A

* SINCE 1976 *

	HCC228	HCC211	HCC213
Contact Form	1A	A	1A
Contact Position	Center	Center	Center
Contact Material	Ruthenium/Gold	Ruthenium/Gold	Ruthenium/Gold
Max Contact Rating	10W	10W	10W
Max Switching Voltage	200VDC 140VAC	200VDC 140VAC	170 DC 120 AC
Max Switching Current	500 mA	500 mA VDC VAC	500mA AC/DC
Max Initial Contact Resistance	$10^{6} \mathrm{~m} \Omega$	$95 \mathrm{~m} \Omega$ (25AT)	$150 \mathrm{~m} \Omega$ (AT)
Pull in Value ± 5 (AT)	10-35	7/20	7/20
Min Drop out Value (AT)	4-20	3-15	3-16
Min Breakdown Voltage	$10 / 15$ $15 / 20$ $20 / 35$ 180 240 280	230 V	210
Max Contact Capacitance	0.3pF	0.25pF	0.35pF
Min Insulation Resistance	$10^{6} \mathrm{~m} \Omega$	$10^{6} \mathrm{~m} \Omega$	$10^{6} \mathrm{~m} \Omega$
Typ Resonant Frequency	6700 Hz	11300 HZ	17900 Hz
Electrical Life (Resistive loads)	2x10 @ ${ }^{\text {a }}$ V 100mA 125Hz	$2 \times 10^{7} @ 5 \mathrm{~V} 100 \mathrm{~mA} \mathrm{125Hz}$	2x10@50V 100mA 125Hz

For a comprehensive engineering Reed Switch Catalog, contact factory. (Magnets Also Available.)

SURFACE MOUNT AVAILABLE

HASCO has the largest stock of the most used reed switches.
They range in a variety of sensitivities. Our reeds can be cut and bent to meet your specifications. They are also available encapsulated in plastic with or without wire.

Q
 COMPONENTS INTERNATIONAL, CORP.

* SINCE 1976 *

	HCC2212	HCC229	HCC9216	HCC9215
Contact Form	1A	1A	1A	1A
Contact Position	Center	Center	Center	Center
Contact Materia	Ruthenium/Gold	Ruthenium/Gold	Ruthenium/Gold	Gold/Ruthenium
Max Contact Rating	$\begin{aligned} & \text { 15/30 30/50 } \\ & 15 \mathrm{~W} 20 \mathrm{~W} \end{aligned}$	70W	10W	10W
Max Switching Voltage	200 VDC 140VAC	200VDC250VDC	7/15 AT 15/25AT 180VDC 130VAC 200VDC 140VAC	200VDC 140VAC
Max Switching Ourrent	1000 mAACDC	15/25 25/70	7/15 AT 15/25AT 250mA ACDC 500 ACDC	$\begin{aligned} & 8 / 15 \quad 15 / 70 \\ & 250 \mathrm{mADCAC} 500 \mathrm{ACDC} \end{aligned}$
Max Initia Contact Resistance	$110 \mathrm{~m} \Omega$	$90 \mathrm{~m} \Omega$	100 m ,	$100 \mathrm{~m} \Omega$
Pull in Value ± 5 (AT)	15/50	15/70	7/25	$8 / 70$
Min Drop out Value (AT)	11/35	8/32	3/18	4/16
Min Breekdown Voltage	$\begin{array}{lll} 15 / 25 & 25 / 35 & 35 / 50 \\ 275 & 325 & 400 \end{array}$	$\begin{array}{lll} 15 / 25 & 25 / 51 & 45 / 70 \\ 400 & 580 & 780 \end{array}$	$\begin{aligned} & 7 / 15 A T \text { 15/25AT } \\ & 200 \quad 250 \end{aligned}$	$\begin{array}{lll} 8 / 15 & 15 / 25 & 20 / 30 \\ 200 & 275 & 325 \end{array}$
Max Contact Cepaaitance	$\begin{aligned} & \hline 15 / 25 \text { 25/50 } \\ & 0.3 P \mathrm{~F} \\ & 0.25 \mathrm{PF} \end{aligned}$	0.2pF	$\begin{array}{ll} 7 / 15 & 15 / 25 \\ 0.30 \mathrm{pF} 125 \mathrm{pF} \end{array}$	$\begin{aligned} & \hline 8 / 25 A T \quad 20 / \\ & 0.3 \end{aligned}$
Min Insulation Resistance	$10^{6} \mathrm{~m} \Omega$	$10^{6} \mathrm{~m} \Omega$	$10^{6} \mathrm{~m} \Omega$	$10^{6} \mathrm{~m} \Omega$
Typ Resonant Frequency	5500Hz	3200	9000Hz	5500Hz
Beectrical Life (Resistive loads)	5x10@2OV 500mA 125Hz	$10^{\circ} @ 20 \mathrm{~V} 00 \mathrm{~mA} \mathrm{125} \mathrm{Hz}$	$10 ¢ @ 2 \mathrm{~V} 4 \mathrm{~mA} \mathrm{170Hz}$	$10^{7} 12 \mathrm{~V} 4 \mathrm{~mA}$

For a comprehensive engineering Reed Switch Catalog, contact factory. (Magnets Also Available.)

SURFACE MOUNT AVAILABLE

HASCO has the largest stock of the most used reed switches.
They range in a variety of sensitivities. Our reeds can be cut and bent to meet your specifications. They are also available encapsulated in plastic with or without wire.

* SINCE 1976 *

	HCC551	HCC311	HCC3215
Contact Form	C	A	1A
Contact Position	Offset	Center	Center
Contact Material	Ruthenium/Gold	Ruthenium/Gold	Ruthenium/Gold
Max Contact Rating	5W	10W	$\begin{array}{ll} 5 / 15 & 15 / 35 \\ 5 \mathrm{~W} & 10 \mathrm{~W} \\ \hline \end{array}$
Max Switching Voltage	175VDC 125VAC	200VDC 140VAC	$\begin{aligned} & \hline 5 / 15 \quad 15 / 35 \\ & \text { 160VDC200VAC 140VAC } \end{aligned}$
Max Switching Current	400 mA DC 280 mA AC	500mA $1000 \mathrm{~mA} \mathrm{AC/DC}$	$\begin{array}{ll} \hline 5 / 15 & 15 / 35 \\ 250 \mathrm{~mA} & 500 \end{array}$
Max Initial Contact Resistance	$140 \mathrm{~m} \Omega$	$150 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$
Pull in Value	10/30	7/21	6/35
Min Drop out Value (AT)	5	3/16	3/27
Min Breakdown Voltage	200 V	200 V	$15 / 15$ $14 / 23$ $18 / 32$ 200 250 300
Max Contact	0.8pF	0.30pF	0.30pF
Min Insulation Resistance	$10^{6} \mathrm{~m} \Omega$	$10^{6} \mathrm{~m} \Omega$	$10^{6} \mathrm{~m} \Omega$
Typ Resonant Frequency		10800	8600Hz
Eectrical Life (Resistive loads)		2x10@5V 100mA 125Hz	10@12V 4mA 170Hz

For a comprehensive engineering Reed Switch Catalog, contact factory. (Magnets Also Available.)

SURFACE MOUNT AVAILABLE

HASCO has the largest stock of the most used reed switches.
They range in a variety of sensitivities. Our reeds can be cut and bent to meet your specifications. They are also available encapsulated in plastic with or without wire.

(H)HASCO
 COMPONENTS INTERNATIONAL, CORP.
 REED SWITCHES

* SINCE 1976 *

Our reed switches are available in multiple styles and housing types in either SMT or through hole designs. We can custom bend and produce any reed configuration either bare or in a housing. Simply send us your specs for us to quote.

Please note: Hasco can produce and/or stuff any PC board with a reed switch or relay in house at our state of the art production facility.

HASCO

906 Jericho Turnpike
New Hyde Park, New York, 11040
(516) 328-9292 • Fax (516) 326-9125
email: info@hascorelays.com
www.hascorelays.com

[^0]: Shock Operational -10 g for 11 ms w/no contact opening Shock Destructive - 100g

[^1]: *When recounting pull-in voltage $<70 \%$ of nominal voltage, special order powered.

[^2]: 906 JERICHO TPKE., NEW HYDE PARK, NY 11040 / (516) 328-9292 FAX: (516) 326-9125 www.hascorelays.com email: info@hascorelays.com

[^3]: 906 JERICHO TPKE., NEW HYDE PARK, NY 11040 / (516) 328-9292 FAX: (516) 326-9125 www.hascorelays.com email: info@hascorelays.com

