Specification

BT45228
 BTHQ128064AVD1-FSTF-12-LEDWHITE-COG

Doc. No.: COG-BTD12864-42

Version November 2010

[^0]DOCUMENT REVISION HISTORY:

$\begin{aligned} & \hline \text { DOCUMENT } \\ & \text { REVISION } \\ & \text { FROM TO } \end{aligned}$	DATE	DESCRIPTION	CHANGED BY	$\begin{gathered} \hline \text { CHECKED } \\ \text { BY } \end{gathered}$
A	2010.11.02	First Release. Based on: a.) VL-QUA-012B REV.Y 2010.12.10 According to VL-QUA-012B, LCD size is small because Unit Per Laminate $=24$ which is more than $6 \mathrm{pcs} /$ Laminate.	LI WEI	CHI SHAO BO

CONTENTS

Page No.

1. GENERAL DESCRIPTION 4
2. MECHANICAL SPECIFICATIONS 4
3. INTERFACE SIGNALS 7
4. ABSOLUTE MAXIMUM RATINGS 9
4.1 ELECTRICAL MAXIMUM RATINGS - FOR IC ONLY 9
4.2 ENVIRONMENTAL CONDITION 10
5. ELECTRICAL SPECIFICATIONS 11
5.1 TYPICAL ELECTRICAL CHARACTERISTICS 11
5.2 APPENDIX - LED CHROMATICS COORDINATES 11
5.3 TIMING SPECIFICATIONS 12
5.4 COMMAND TABLE 15
5.5 INITIAL CODE SETTING (FOR REFERENCE ONLY) 16
5.6 REFERENCE CIRCUIT 16
6. ELECTRO-OPTICAL CHARACTERISTICS 17
6.1 ISO PLOT 17
6.2 OPTICAL CHARACTERISTICS DEFINITION 18
7. LCD COSMETIC CONDITIONS 19
8. REMARK 19

Specification of
 LCD Module Type
 Model No.: COG-BTD12864-42

1. General Description

- 128 x 64 Dots FSTN Positive Black \& White Transflective Dot Matrix LCD Module.
- Viewing Angle: 12 o'clock direction.
- Driving duty: $1 / 65$ Duty, $1 / 7$ bias.
- 'SITRONIX' ST7565P (COG) Dot Matrix LCD Driver or equivalent.
- Logic voltage: 3.3 V .
- FPC connection.
- White LED02 backlight.
- "RoHS" compliance.

2. Mechanical Specifications

The mechanical detail is shown in Fig. 2 and summarized in Table 1 below.

Table 1

Parameter	Specifications	Unit
Outline dimensions	$55.6(\mathrm{~W}) \times 70.2(\mathrm{H}) \times 4.42(\mathrm{D})$ (Included FPC. Excluded pins)	mm
Viewing area	$50.60(\mathrm{~W}) \times 31.0(\mathrm{H})$	mm
Active area	$46.577(\mathrm{~W}) \times 27.697(\mathrm{H})$	mm
Display format	$128(\mathrm{~W}) \times 64(\mathrm{H})$	dots
Dot size	$0.349(\mathrm{~W}) \times 0.418(\mathrm{H})$	mm
Dot spacing	$0.015(\mathrm{~W}) \times 0.015(\mathrm{H})$	mm
Dot pitch	$0.364(\mathrm{~W}) \times 0.433(\mathrm{H})$	mm
Weight	Approx: 14	grams

Supplied by:
Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

Figure 1: Module Specification

Supplied by:

Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

Figure 3: Block Diagram.

Supplied by:
Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

3. Interface signals

Table 2(a): Pin Assignment

Supplied by:
Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

Table 2(b): Pin Assignment

Pin No.	Symbol	Description
16	D7	This is an 8-bit bi-directional data bus that connects to an 8-bit standard MPU data bus. When the serial interface is selected ($\mathrm{P} / \mathrm{S}=\mathrm{LOW}$), then D7 serves as the serial data input terminal (SI) and D6 serves as the serial clock input terminal (SCL). At this time, D0 to D5 are set to high impedance. When the chip select is inactive, D0 to D7 are set to high impedance.
17	D6	
18	D5	
19	D4	
20	D3	
21	D2	
22	D1	
23	D0	
24	$\mathrm{E}(\overline{\mathrm{RD}})$	When connected to 8080 series MPU, this pin is treated as the " $\overline{\mathrm{RD}}$ " signal of the 8080 MPU and is LOW-active. The data bus is in an output status when this signal is "L". When connected to 6800 series MPU, this pin is treated as the "E" signal of the 6800 MPU and is HIGH-active. This is the enable clock input terminal of the 6800 Series MPU.
		When connected to 8080 series MPU, this pin is treated as the "WR" signal of the 8080 MPU and is LOW-active.
25	R/W(WR)	The signals on the data bus are latched at the rising edge of the $\overline{\mathrm{WR}}$ signal. When connected to 6800 series MPU, this pin is treated as the " R / W " signal of the 6800 MPU and decides the access type : When R/W = " H ": Read. When R/W = "L": Write.
26	D/C	This is connect to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or command. D/C = "H": Indicates that D0 to D7 are display data. D/C= "L": Indicates that D0 to D7 are control data.
27	CS1	This is the chip select signal. When /CS1 = "L", then the chip select becomes active, and data/command I/O is enabled.
28	$\overline{\mathrm{RES}}$	When $\overline{\mathrm{RES}}$ is set to " L ", the register settings are initialized (cleared). The reset operation is performed by the /RES signal level.

4. Absolute Maximum Ratings

4.1 Electrical Maximum Ratings - for IC Only

Table 3

Parameter	Symbol	Min.	Max.	Unit
Power Supply voltage (Logic)	VDD	+0.3	+3.6	V
Power Supply voltage (VDD2)	VDD2	+0.3	+3.6	V
Power Supply voltage (V0, VOUT)	V0, VOUT	+0.3	+14.5	V
Power Supply voltage (V1, V2, V3, V4)	V1, V2, V3, V4	V0	+0.3	V

Note:

1. The VDD2, V0 to V4 and VOUT are relative to the VSS $=0 \mathrm{~V}$ reference.
2. Insure that the voltage levels of $\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$, and V 4 are always such that VOUT $\geqq \mathrm{V} 0 \geqq \mathrm{~V} 1 \geqq \mathrm{~V} 2 \geqq \mathrm{~V} 3 \geqq \mathrm{~V} 4$.
3. Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover, it is recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of the LSI outside of these conditions may not only result in malfunctions of the LSI, but may have a negative impact on the LSI reliability as well.

Figure 3

4.2 Environmental Condition

Table 4

Item	Operating Temperature (Topr)		StorageTemperature(Tstg)(Note 1)		Remark
	Min.	Max.	Min.	Max.	
Ambient Temperature	$0^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$+65^{\circ} \mathrm{C}$	Dry
Humidity (Note 1)	$\begin{aligned} & 90 \% \text { max. } \mathrm{RH} \text { for } \mathrm{Ta} \leq 40^{\circ} \mathrm{C} \\ & <50 \% \mathrm{RH} \text { for } 40^{\circ} \mathrm{C}<\mathrm{Ta} \leq \text { Maximum operating } \\ & \text { temperature } \end{aligned}$				No condensation
Vibration (IEC 68-2-6) cells must be mounted on a suitable connector	Frequency: $\quad 10 \sim 55 \mathrm{~Hz}$Amplitude: 0.75 mmDuration: 20 cycles in each direction.				3 directions
Shock (IEC 68-2-27) Half-sine pulse shape	Pulse duration: 11 ms Peak acceleration: $981 \mathrm{~m} / \mathrm{s}^{2}=100 \mathrm{~g}$ Number of shocks: 3 shocks in 3 mutually perpendicular axes.				3 directions

Note 1: Product cannot sustain at extreme storage conditions for long time.

5. Electrical Specifications

5.1 Typical Electrical Characteristics

$$
\text { At } \mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VDD}=+3.3 \pm 5 \%, \mathrm{VSS}=0 \mathrm{~V}
$$

Table 5

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage (Logic)	VDD-VSS		3.14	3.3	3.47	V
Supply voltage (LCD) (built-in)	$\begin{aligned} & \hline \text { VLCD } \\ & \text { =V0-VSS } \end{aligned}$	$\mathrm{Ta}=0^{\circ} \mathrm{C}$, Character mode, VDD $=+3.3 \mathrm{~V}$, Note 1	-	8.9	-	V
		$\mathrm{Ta}=25^{\circ} \mathrm{C}$, Character mode, VDD $=+3.3 \mathrm{~V}$, Note 1	8.5	8.8	9.1	V
		$\mathrm{Ta}=+50^{\circ} \mathrm{C}$, Character mode, $\mathrm{VDD}=+3.3 \mathrm{~V}$, Note 1	-	8.5	-	V
Low-level input signal voltage	$\mathrm{V}_{\text {ILC }}$	Note 2	VSS	-	0.2xVDD	V
High-level input signal voltage	$\mathrm{V}_{\mathrm{IHC}}$	Note 2	0.8xVDD	-	VDD	V
Supply Current (Logic \& LCD)	IDD	$\text { VDD }=+3.3 \mathrm{~V}, \text { Note } 1,$ Character mode	-	0.46	0.69	mA
		VDD $=+3.3 \mathrm{~V}$, Note 1 , Checker board mode	-	0.78	1.2	mA
Supply current of White LED02 backligh	VLED	Forward current $=2 \times 15 \mathrm{~mA}$	3.2	3.6	4.0	V
Luminance (on the backlight surface) of backlight		Number of LED dice $=2$ dies.	-	495	-	$\mathrm{cd} / \mathrm{m}^{2}$

Note 1: There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.
Note 2: D/C, D0 to D5, D6, D7, E($\overline{\mathrm{RD}}), \mathrm{R} / \mathrm{W}(\overline{\mathrm{WR}}), \overline{\mathrm{CS}} 1, \mathrm{C} 86, \mathrm{P} / \mathrm{S}, \overline{\mathrm{RES}}$ terminals.
Note 3: Do not display a fixed pattern for more than 30 min . because it may cause image sticking due to LCD characteristics. It is recommended to change display pattern frequently. If customer must fix display pattern on the screen, please consider to activate screen saver.

5.2 Appendix - LED Chromatics Coordinates

Figure 4

Supplied by:

Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

5.3 Timing Specifications

System Bus read/Write Characteristics 1 (For the $\mathbf{8 0 8 0}$ Series MPU)
At $\mathrm{Ta}=0^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}, \mathrm{VDD}=+3.3 \mathrm{~V} \pm 5 \%$, VSS $=0 \mathrm{~V}$.
Table 6

Item	Signal	Symbol	Condition	Rating		Units
				Min.	Max.	
Address hold time	A0	tAH8		0	-	Ns
Address setup time		tAW8		0	-	
System cycle time		tcyc8		240	-	
Enable L pulse width (WRITE)	WR	tCCLW		80	-	
Enable H pulse width (WRITE)		tCCHW		80	-	
Enable L pulse width (READ)	RD	tCCLR		140	-	
Enable H pulse width (READ)		tCCHR		80		
WRITE Data setup time	D0 to D7	tDS8		40	-	
WRITE Address hold time		tDH8		0	-	
READ access time		tACC8	$C \mathrm{~L}=100 \mathrm{pF}$	-	70	
READ Output disable time		toh8	$\mathrm{CL}=100 \mathrm{pF}$	5	50	

*1 The input signal rise time and fall time ($\mathrm{tr}, \mathrm{t} f$) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) $\leqq(\mathrm{tCYC8}-\mathrm{tcCLW}-\mathrm{tcCHW})$ for (tr +tf$) \leqq(\mathrm{tCYC8}-\mathrm{tCCLR}-\mathrm{tCCHR})$ are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tcCLW and tcCLR are specified as the overlap between /CS1 being "L" (CS2 = " H ") and /WR and /RD being at the "L" level.

Figure 5: The timing diagram of system bus read/write (For the 8080 Series MPU)

Supplied by:

Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

System Bus read/Write Characteristics 2 (For the 6800 Series MPU)

At $\mathrm{Ta}=0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}, \mathrm{VDD}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=0 \mathrm{~V}$.

Table 7

Item	Signal	Symbol	Condition	Rating		Units
				Min.	Max.	
Address hold time	A0	tAH6		0	-	ns
Address setup time		tAW6		0	-	
System cycle time		tcyc6		240	-	
Enable L pulse width (WRITE)	WR	tEWLW		80	-	
Enable H pulse width (WRITE)		tEWHW		80	-	
Enable L pulse width (READ)	RD	tEWLR		80	-	
Enable H pulse width (READ)		tEWHR		140		
WRITE Data setup time	D0 to D7	tDS6		40	-	
WRITE Address hold time		tDH6		0	-	
READ access time		tACC6	$C L=100 \mathrm{pF}$	-	70	
READ Output disable time		tOH6	$\mathrm{CL}=100 \mathrm{pF}$	5	50	

*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, ($\mathrm{tr}+\mathrm{tf}$) $\leqq(\mathrm{tcYC6}-\mathrm{tEWLW}-\mathrm{tEWHW})$ for $(\mathrm{tr}+\mathrm{tf}) \leqq(\mathrm{tcYC6}-\mathrm{tEWLR}-\mathrm{tEWHR})$ are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tEWLW and tEWLR are specified as the overlap between $\overline{C S 1}$ being "L" (CS2 = "H") and E.

Figure 6: The timing diagram of system bus read/write (For the 6800 Series MPU)

Supplied by:

Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

Reset Timing

At $\mathrm{Ta}=0{ }^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}, \mathrm{VDD}=+3.3 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=0 \mathrm{~V}$.

Table 8

Item	Signal	Symbol	Condition	Rating			Units
				Min.	Typ.	Max.	
Reset time		tR		-	-	1.0	us
Reset "L" pulse width	/RES	trw		1.0	-	-	us

*1 All timing is specified with 20% and 80% of VDD as the standard.

Figure 7: Reset Timing

5.4 Command Table

Table 9

Command	Command Code											Function
	A0	/RD	/WR	D7	D6	D5	D4	D3		D1	D0	
(1) Display ON/OFF	0	1	0	1	0	1	0	1			$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1	Dis	splay	y sta	rt ad	ddr		Sets the display RAM display start line address
(3) Page address set	0	1	0	1	0	1	1	Pag	e ad	dr		Sets the display RAM page address
(4) Column address set upper bit Column address set lower bit	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0 0	0 0				Most colu Leas colu	t sig mn st si mn	nific add gnifi addr	cant ress cant ress	Sets the most significant 4 bits of the display RAM column address. Sets the least significant 4 bits of the display RAM column address.
(5) Status read	0	0	1	Status				0	0	0	0	Reads the status data
(6) Display data write	1	1	0	Write data								Writes to the display RAM
(7) Display data read	1	0	1	Read data								Reads from the display RAM
(8) ADC select	0	1	0	1				0				Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0			0			$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Sets the LCD display normal/ reverse 0 : normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0			0			0	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1		0				Sets the LCD drive voltage bias ratio 0: $1 / 9$ bias, $1: 1 / 7$ bias (ST7565P)
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15) Common output mode select	0	1	0	1	1		0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$			*	Select COM output scan direction 0 : normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1				Select internal power supply operating mode
(17) Vo voltage regulator internal resistor ratio set	0	1	0	0	0					$\begin{aligned} & \text { sisto } \\ & \text { tio } \end{aligned}$		Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \text { Elec } \end{gathered}$	$\begin{gathered} 0 \\ \text { ctror } \end{gathered}$	$\begin{gathered} 0 \\ \text { ic vo } \end{gathered}$	$\begin{gathered} 0 \\ \text { olum } \end{gathered}$	$\begin{gathered} 0 \\ \text { ne va } \end{gathered}$		Set the Vo output voltage electronic volume register
(19) Static indicator ON/OFF Static indicator register set	0	1	0	1	0	0	0	0	0		$\begin{gathered} 0 \\ 1 \\ \text { Mode } \end{gathered}$	0: OFF, 1: ON Set the flashing mode
(20) Booster ratio set	0	1	0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	1 0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			select booster ratio 00: $2 \mathrm{x}, 3 \mathrm{x}, 4 \mathrm{x}$ 01: $5 x$ 11: $6 x$
(21) Power saver												Display OFF and display all points ON compound command
(22) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(23) Test	0	1	0	1	1	1	1	*	*	*		Command for IC test. Do not use this command

Supplied by:

Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

5.5 Initial code setting (for reference only)

Table 10

Description	Setting data
Reset	$0 x e 2$
LCD bias set	$0 x a 3$
ADC select	$0 x a 0$
Common output mode select	$0 x c 8$
V5 voltage regulator internal resistor ratio set	0×25
Electronic volume mode set	0×81
Electronic volume	0×13
Power control set	0×25
Display start line set	$0 x 40$
Page address set	$0 x b 0$
Column address upper bit set	$0 x 10$
Column address lower bit set	$0 x 04$
Display all point ON/OFF	$0 x a 4$
Display normal or reverse	$0 x a 6$

5.6 Reference circuit

Supplied by:
Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU
Telephone: +44 (0)1493602602
Email: sales@midasdisplays.com
Fax: +44 (0)1493665111

6. Electro-Optical Characteristics

Table 11

Item	Symbol	Temp. ${ }^{\circ} \mathrm{C}$	Value			Unit	Condition	
			Min.	Typ.	Max.			
Driving voltage	Vop	+25	-	8.8	-	V	Vop= optimum voltage	
Response time	Ton	+25	-	202	303	msec	Vop $=$ Optimum voltage$\theta=0^{\circ}, \phi=0^{\circ}$	
	Toff		-	85	128			
Optimum viewing area $\mathrm{Cr} \geq 2$	$\theta 1$ (6 o'clock)	+25	27	38	-	DEG	$\phi=0^{\circ}$	$\begin{aligned} & \text { Vop= Optimum } \\ & \text { voltage } \\ & \text { (Remark 1) } \end{aligned}$
	日2(12 o'clock)		21	30	-		$\phi=0^{\circ}$	
	\$1(3 o'clock)		28	40	-		$\theta=0^{\circ}$	
	¢2(9 o'clock)		31	30	-			
Contrast ratio	Cr	+25	3	4.7	-	-	$\begin{gathered} \text { Vop = Optimum voltage } \\ \theta=0^{\circ}, \phi=0^{\circ} \\ \hline \end{gathered}$	
Transmittance		+25	13\%	19\%	-	-	Vop = Optimum voltage	

Remark 1: Due to hardware limitation, the maximum measurable angle is 50°

6.1 ISO plot

Supplied by:
Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

6. 2 Optical Characteristics Definition

a.) Viewing Angle

b.) Contrast Ratio

B1 = segments luminance in case of non-selected waveform
$\mathrm{B} 2=$ segments luminance in case of selected waveform

c.) Response Time

Supplied by:
Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

[^0]: Supplied by:
 Midas Components Limited, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 ODU

