15 AMP (SMT)
 MINIATURE
 PC BOARD RELAY

FEATURES

- High performance
- Low seated height
- Flux tight version
- Class F insulation $\left(155^{\circ} \mathrm{C}\right)$ standard
- UL, CUR file E43203
- TUV File R50161256

CONTACTS

Arrangement	SPST (1 Form A) SPDT (1 Form C)
Ratings	Form A and C Max. switched power: 210 W or 2770 VA Max. switched current: 15 A AC, 7 A DC Max. switched voltage: 30 VDC or 300 VAC
UL/CUR TUV	1 Form A 15 A at 125 VAC , general use 10 A at 277 VAC, general use, 100,000 cycles TV - 5120 VAC 1/2 HP at 125 VAC 125 VA at 120 VAC Pilot Duty, 100k cycles (N.O.) 1 Form C 10 A at 277 VAC, general use, 100,000 cycles $1 / 2 \mathrm{HP}$ at 125 VAC N.O. 125 VA at 120 VAC Pilot Duty, 100k cycles (N.O.) 1 Form A 10 A at 277 VAC , Resistive, 25 k cycles, $85^{\circ} \mathrm{C}$ 1 Form C 5 A at 250VAC, Resistive, 25 k cycles, $85^{\circ} \mathrm{C}$ 10 A at 277 VAC , Resistive, 10 k cycles, $85^{\circ} \mathrm{C}$ 12 A at 125 VAC , Resistive, 10 k cycles, $85^{\circ} \mathrm{C}$
Material	Silver tin oxide (gold plating available)
Resistance	< 100 milliohms initially (24 V, 1 A method)

GENERAL DATA

Life Expectancy Mechanical Electrical	$\begin{aligned} & 1 \times 10^{7} \\ & 1 \times 105 \text { at } 10 \text { A } 277 \text { VAC Res. } \end{aligned}$
Operate Time	10 ms max.
Release Time	5 ms max. (with no coil suppression)
Dielectric Strength (at sea level for 1 min .)	1500 Vrms contact to coil 1000 Vrms across contacts
Insulation Resistance	100 megohms min. at 500 VDC, 50% RH
Dropout	Greater than 10% of nominal coil voltage
Ambient Temperature Operating Storage	At nominal coil voltage $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $110^{\circ} \mathrm{C}\left(230^{\circ} \mathrm{F}\right)$ $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $155^{\circ} \mathrm{C}\left(311^{\circ} \mathrm{F}\right)$
Vibration	$0.062{ }^{\text {" }}$ DA at $10-55 \mathrm{~Hz}$
Shock	10 g
Enclosure	P.B.T. polyester
Terminals	Tinned copper alloy, P.C.
Max. Solder Temp.	$270^{\circ} \mathrm{C}$ ($518^{\circ} \mathrm{F}$)
Max. Solder Time	5 seconds
Weight	10 g

COIL

Power	
At Pickup Voltage Max Continuous Dissipation	203 mW
Temperature Rise	$3 \mathrm{~W}^{\circ}$ at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
Temperature	Max. $\left.158^{\circ} \mathrm{F}\right)$ at nominal coil voltage

NOTES

```
1. All values at }2\mp@subsup{0}{}{\circ}\textrm{C}(6\mp@subsup{8}{}{\circ}\textrm{F})\mathrm{ .
2. Relay may pull in with less than "Must Operate" value.
3. Unsealed relays should not be dip cleaned.
4. Specifications subject to change without notice.
```

75 COLUMBIA. ALISO VIEJO, CA 92656. PHONE: (949) 831-5000 • FAX: (949) 831-8642. E-MAIL: SALES@ AZETTLER.COM

RELAY ORDERING DATA

STANDARD RELAYS

COIL SPECIFICATIONS				
Nominal Coil VDC	Must Operate VDC	Max Continuous VDC	Coil Resistance $\pm 10 \%$	
5	3.8	11.2	70	AZ943S-1CH-5DF
6	4.5	13.4	100	AZ943S-1CH-6DF
9	6.8	20.1	225	AZ943S-1CH-9DF
12	9.0	26.8	400	AZ943S-1CH-12DF
18	13.5	40.2	900	AZ943S-1CH-18DF
24	18.0	53.4	1,600	AZ943S-1CH-24DF
48	36.0	107.3	6,400	AZ943S-1CH-48DF

* Substitute " 1 AH " in place of " 1 CH " to indicate 1 Form A contact. Add suffix "G" for gold plated contacts.

MECHANICAL DATA

Dimensions in inches with metric equivalents in parentheses. Tolerance: $\pm .010^{\prime \prime}$

Notes

The soldering profile to the left is an example and is just to show one of various profiles AZ943S has been tested with.

In order to make sure AZ943S fits to a specific profile, we strongly recommend to test under the real environment

