ABC1200 / ABE1200 Series
 1200 W AC-DC Power Supplies

The ABC1200 / ABE1200 Series of AC-DC power supplies provides up to 1200 W of regulated output power through wide input voltage range $85-305$ VAC in a single output of 24 VDC or 48 VDC.

The ABC1200 / ABE1200 Series is available in three compact 1 U height compatible packages offering 12 and 5 VSB standby outputs and a full set of protection features.

The ABC1200 / ABE1200 Series supports digital power management over the Power Management Bus communications protocol. Multiple units may be connected in parallel for redundancy and / or higher power, enabled with the internal OR-ing and current sharing functions.

The ABC1200 / ABE1200 Series complies with the latest international safety standards and displays the CE-Mark for the European Low Voltage Directive (LVD).

Key Features \& Benefits

- Universal input voltage range (85-305 VAC)
- Input inrush current limiting
- 1200 W rated power
- High efficiency up to 94%
- 24 VDC / 48 VDC output voltage available
- Active PFC, EN61000-3-2 compliant (Class C, $>25 \%$ load)
- Low earth / touch leakage current
- Fan speed control function
- 800 LFM airflow for ABC1200 models
- Over temperature, OV, OC and SC protections
- $+12 \mathrm{~V}, 0.5 \mathrm{~A} ;+5 \mathrm{~V}, 1 \mathrm{~A}$ Stand by outputs
- Built-in current sharing and OR-ing for parallel operation and $\mathrm{N}+1$ redundancy
- Remote On / Off signal
- Power good and remote sense signals
- Power Management Bus communication protocol supported
- ITE safety approval to IEC 60950-1
- LED lighting approval to UL 8750

Applications

- Video Wall Display, Entertainment Lighting
- LED Lighting Engine
- Industrial Control Systems
- Industrial Laser Applications
bel
POWER
SOLUTIONS \&
PROTECTION

ABC1200 / ABE1200 Series

1. MODEL SELECTION

MODEL NUMBER	PACKAGE $\&$ COOLING	INPUT VOLTAGE RANGE [VAC]	NOM. OUTPUT VOLTAGE [VDC]	MAX. OUTPUT POWER [W]	MAX. OUTPUT CURRENT [A]	DIMENSIONS

2. INPUT SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
AC Input Voltage	PS starts at $85 \mathrm{~V}_{\mathrm{AC}}$ at all load conditions Operating input voltage range ABC1200 / ABE1200 Series is designed to operate with a square or trapezoidal input voltage wave form (i.e. from UPS)	85	100-277	305	$\mathrm{V}_{\text {RMS }}$
DC Input Voltage	Built in fuses safety certified up to 250 V Dc . Operating the 1200 Series above that limit up to $300 \mathrm{~V}_{\mathrm{Dc}}$, does require an external fuse protection *	120	-	300	VDC
Input Frequency	$400 \mathrm{~Hz}(\max 440 \mathrm{~Hz}$) operation over $85-137 \mathrm{~V} \mathrm{AC}$ input range	47	50/60	63	Hz
Input Current	At $180 \mathrm{~V}_{\mathrm{Ac}}$, maximum load, $50 / 60 \mathrm{~Hz}$ At $85 \mathrm{~V}_{\mathrm{Ac}}, 1000 \mathrm{~W}$ load, $50 / 60 \mathrm{~Hz}$ 163 VDC, maximum load $120 \mathrm{Vdc}, 1000 \mathrm{~W}$	-	-	$\begin{gathered} 8.0 \\ 14.5 \\ 9.0 \\ 10.0 \end{gathered}$	Arms A
Inrush Current	At power-on asserted Cold start, $25^{\circ} \mathrm{C}$ ambient, full load Any point of the AC input sine	-		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	A
Fusing	High breaking, 16 / $20 \mathrm{~A}, 277 \mathrm{~V}_{\mathrm{AC}}\left(250 \mathrm{~V}_{\mathrm{DC}}\right.$) on each AC line.	-	-	16 / 20	A
	 At $120 \mathrm{~V}_{\mathrm{AC}}$ 20% rated load 50% rated load 100% rated load	$\begin{aligned} & 88 \\ & 92 \\ & 92 \end{aligned}$			
Efficiency	20% rated load At $230 \mathrm{~V}_{\mathrm{AC}}$ 50% rated load 100% rated load	$\begin{aligned} & 90 \\ & 93 \\ & 94 \end{aligned}$			\%
Input Power Consumption	At power on, no load, 100-277 V_{Ac} range (ABE1200-1T24 / -1T48) At power on, no load, 100-277 V_{Ac} range (ABC1200-1T24-UCF / -PCF) Stand by, no load, nominal 100-277 V_{AC} range		$\begin{gathered} 7.0 \\ 6 \\ 4.0 \end{gathered}$		W
Power Factor	Any nominal input line voltage, $50 / 60 \mathrm{~Hz}$, from 50 to 100% maximum load	0.95	-	-	-
THDi	From 50 to 100% rated load, $100-277 \mathrm{~V}_{\mathrm{AC}}, 50 / 60 \mathrm{~Hz}$.	-	-	20	\%
Harmonic Current Fluctuations and Flicker	Complies with EN 61000-3-2 at $230 \mathrm{~V}_{\mathrm{AC}}, 50 / 60 \mathrm{~Hz}$, Class A, D. Complies with EN 61000-3-2 Class C at $230 \mathrm{~V}_{\mathrm{AC}}, 50 / 60 \mathrm{~Hz},>300 \mathrm{~W}$ load. Complies with EN 61000-3-3 at nominal voltages and full load.				
Earth Leakage Current	Normal conditions $115 \mathrm{~V}_{\text {RMs }}, 60 \mathrm{~Hz}$ 230 Vims, 50 Hz $264 \mathrm{~V}_{\text {RMs }}, 60 \mathrm{~Hz}$ (worst case)		$\begin{aligned} & 130 \\ & 240 \end{aligned}$	400	$\mu \mathrm{A}$
Touch Leakage Current	$264 \mathrm{~V}_{\text {RMS }}, 60 \mathrm{~Hz}$ Normal Condition (NC) Single Fault Condition (SFC)			$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$

* Suggested fuse SIBA 5012434.16 and fuse holder SIBA 5105805.1

ABC1200 / ABE1200 Series

3. OUTPUT SPECIFICATIONS

ABC1200 / ABE1200 Series

3.1 OUTPUT POWER DE-RATING CURVES

Front Fan (Models ABE1200-1T24 / ABE1200-1T48)
Any orientation, V1 nominal

U-Chassis and Perforated Cover
Forced Air Cooling (Models ABC1200-1T24-UCF / -PCF)
Air flow from top, V1 nominal

U-Chassis and Perforated Cover
Forced Air Cooling (Models ABC1200-1T24-UCF / -PCF)
Air flow from AC side, V1 nominal

tech.support@psbel.com belfuse.com/power-solutions

4. POWER MANAGEMENT BUS

The ABC1200 / ABE1200 Series does support communication according to the Power Management Bus 1.2 protocol via SDA, SCL and \#SMBALERT signals as defined in the SMBus Specification version 2.0.
The power supply shall not load the SMBus if it has no input power (SCL \& SDA lines should go to High-Z).
The pull-up resistors ($2.2 \mathrm{k} \Omega$) for these signals shall be external to the power supply and referenced to an external +3.3 V bus voltage.
The DSP circuits inside the power supply are powered by the standby output.
The Power Management Bus is active whatever input power is applied to the power supply or a parallel redundant power supply in the system, provided that their $12 \mathrm{~V}_{\mathrm{SB}}$ are connected in parallel.
Maximum speed of SMBus is 100 kHz .
The ADDR0 and ADDR1 signals, are inputs to the power supply that control the Power Management Bus address assigned to the power supply.
On the system side, the ADDR0 and ADDR1 signals will either be connected to return through a $1 \mathrm{k} \Omega$ pull-down resistor or connected to +3.3 V external bus voltage through a $1 \mathrm{k} \Omega$ pull-up resistor.
The address shall be derived from the logic of this pin as indicated on Outline Drawing and Connections section.
The power supply is a slave only on SMBus device.
For a comprehensive description of ABC1200 / ABE1200 Series Power Management Bus management, do refer to the application note, "ABC1200 / ABE1200 Series Power Management Bus Mgt". Examples of 1200 W Series parameters available through communication bus are:

- Input voltage status
- Output voltages +V1 measured value
- Output current on +V1 measured value
- Current sharing status
- Thermal health measured value
- Fan health status
- Power-On / Working hours
- Product information
- Status information

Failures shall be reported by Power Management Bus for all failure types:

- Fan fault
- Protections failure (OV, OC, OT)
- Voltages out of specification

5. SIGNALING \& CONTROL SPECIFICATIONS

Base signals and controls are accessible from signal connector P204.

SIGNAL	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT	
+PS_Inhibit (Active High)	Input low voltage ($\mathrm{lin}^{\mathrm{N}}=0 \mu \mathrm{~A}$)	0	-	0.8	V	
	Input high voltage ($\mathrm{l}_{1 \times}=500 \mu \mathrm{~A}$ at 5.5 V)	2.5	-	5.5		
	V1 disabled when PS_Inhibit is pulled high					
	V1 enabled when PS_Inhibit is floating or low $5 \mathrm{~V}_{\text {SB }}$ and $12 \mathrm{~V}_{\text {SB }}$ not affected by PS Inhibit					
-PS_Inhibit (Active Low)	Input low voltage ($\mathrm{l}_{\mathrm{IN}=}=-800 \mu \mathrm{~A}$ at 0 V$)$	0	-	0.8	V	
	Input high voltage ($\operatorname{lin}=-200 \mu \mathrm{~A}$ at 2.5 V$)$	2.5	-	5.5		
	($\mathrm{l} \mathrm{N}=700 \mu \mathrm{~A}$ at 5.5 V)					
	V1 disabled when -PS_Inhibit is pulled low					
	V1 enabled when -PS_Inhibit is floating or high					
	$5 \mathrm{~V}_{\text {SB }}$ and $12 \mathrm{~V}_{\text {SB }}$ not affected by -PS_Inhibit					
Power_OK * (PS_OK)	Logic level low (<10 mA sinking)	-	-	0.7	V	
	Logic level high ($200 \mu \mathrm{~A}$ sourcing)	2.4	-	3.45		
	Low to high time after V1 in regulation	150	-	350	ms	
	Power down warning time	2	-	-		
I_Share	The I_SHARE signals shall be daisy chained among power supplies operating in parallel. On a single power supply operating it provides current measurement on V1 output. On multiple power supplies operating in parallel, it provides current measurement on master V1output.					
SDA, SCL, \#SMBALERT, ADDRO, ADDR1	These are signals which support Power Management B note ABC1200 / ABE1200 Series Power Management	tocol	specifie	in the	lication	
RSVD RX, RSVD TX	Mainly intended for internal use, these RX and TX signals - available at the output signal connector P204 - may be used to access some DSP functions (monitoring, threshold settings, debug functions). These signals work as an UART $\mathrm{Rx} / \mathrm{Tx}$ port and can also work as a RS-232 Rx/Tx port by building in the "RS-232 LINE DRIVERS/RECEIVERS" IC					
$5 \mathrm{~V}_{\text {SB }}$ Output **	Active and in regulation after an $85<\mathrm{V}_{\mathrm{AC}}<305$ is applied	-	-	500	ms	
	Not affected by PS_Inhibit. Available on P204, pin\#4					
12 V SB Output ***			-	500	ms	
	Not affected by PS_Inhibit. Available on P204, pin\#16					

* When V1 is On, a P_OK low may indicates V1 under voltage condition. When two 1200 W models operate in parallel, P _OK low in one unit indicates that it is not sharing the expected amount of current (current sharing fault). A $3.3 \mathrm{k} \Omega$ internal pull up to a 3.3 V internal reference voltage is used; do not add any other external pull up.
** The 5VSB outputs of two or more 1200 W models operating in parallel, cannot be connected in parallel in turn, since doing so results in power supplies damage.
*** The 12VSB outputs of two or more 1200 W models operating in parallel can be connected in parallel in turn, taking into account that the maximum available power will not be higher of a single operating power supply one.

ABC1200 / ABE1200 Series

5.1 BASE SIGNALS / CONTROLS TIMING

AC/DC INPUT OFF-TO-ON AND ON-TO-OFF TIMINGS

PS_INHIBIT OFF-TO-ON AND ON-TO-OFF TIMINGS

V1 rise time	$10 \mathrm{~ms} \leq \mathrm{T} 2 \leq 150 \mathrm{~ms}$
V1 On - POWER_OK delay	$150 \mathrm{~ms} \leq \mathrm{T} 3 \leq 350 \mathrm{~ms}$
Power down warning	$\mathrm{T} 11 \geq 1 \mathrm{~ms}$
V1 On - POWER_OK delay	$150 \mathrm{~ms} \leq \mathrm{T} 3 \leq 350 \mathrm{~ms}$
PS_Inhibit - POWER_OK low delay	$\mathrm{T} 8 \leq 3 \mathrm{~ms}$
PS_Inhibit - V1 On delay	$\mathrm{T} 9 \leq 1700 \mathrm{~ms}$

Europe, Middle East +35361225977

North America +14087855200
6. PROTECTION SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Input Under Voltage	Auto-recovering, hiccup mode.	58	75	82	V_{AC}
Input Fuse	High breaking, 16/20 A, $277 \mathrm{~V}_{\mathrm{AC}}(250 \mathrm{VDC})$ on each $A C$ lines.	-	-	16/20	A
Over Current	At nominal input voltages V1: Hiccup mode, auto-recovering $5 \mathrm{~V}_{\text {sB }}$: Auto-recovering 12Vsb: Hiccup mode, auto-recovering See Output Ratings Table section	-		150	$\begin{gathered} \text { \%\|1 Rated } \\ \text { A } \\ \text { A } \end{gathered}$
Short Circuit	At nominal input voltages V1: Hiccup mode, auto-recovering. 5 V sB: Auto-recovering $12 \mathrm{~V}_{\mathrm{sB}}$: Hiccup mode, auto-recovering.	-	-	-	
Over Voltage	V1, Power shut down, latch off. $12 \mathrm{~V}_{\text {sB }}$, Hiccup mode, auto-recovering.	116		$\begin{aligned} & 145 \\ & 150 \end{aligned}$	\% $\mathrm{V}_{\text {noм }}$
Over Temperature (ambient)	Hiccup mode, auto-recovering.	70	-	-	${ }^{\circ} \mathrm{C}$
Over Temperature (on secondary side)	Hiccup mode, auto-recovering.	-	-	-	${ }^{\circ} \mathrm{C}$
Fan Fault Protection	Relevant to the ABE1200-1T24 / ABE1200-1T48 models. The DSP monitors the signals (frequency generator) provided by both fans. If one fan fails, the DSP asserts maximum speed the other fan and provides an alarm indication through Power Management Bus. If both fans fail, the DSP provides an alarm indication through LED and through Power Management Bus and after 20 s , does shut down V 1 . PS INHIBIT or AC/DC input have to be cycled to resume operations, after removed the fault.				
Isolation: Primary-to-Secondary	Reinforced	5660 4000	-		Voc $V_{A C}$
Isolation: Input-to-Earth	Basic Production tested at 2642 VDC	$\begin{aligned} & 2642 \\ & 1865 \end{aligned}$			$\begin{aligned} & V_{D C} \\ & V_{A C} \end{aligned}$
Isolation: Output-to-Earth	Basic	1500	-	-	V_{AC}
Equipment Protection Class	Class I				

7. ENVIRONMENTAL SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Operating Temperature Range	No derating up to $60^{\circ} \mathrm{C}$ (ABE1200) and up to $55^{\circ} \mathrm{C}$ (ABC1200) See derating curves above 1200 W starts at $-40^{\circ} \mathrm{C}$ upon warm up delay	-20	-	60	${ }^{\circ} \mathrm{C}$
Operating Temperature Range with Derating	See derating curves and conditions in the Output Specifications section	-	-	70	${ }^{\circ} \mathrm{C}$
Storage Temperature Transportation Temperature	As per IEC/EN 60721-3-1 Class 1K4 As per IEC/EN 60721-3-2 Class 2K4	-40	-	85	${ }^{\circ} \mathrm{C}$
Humidity	RH, Non-condensing Operating. Non-operating	-	-	$\begin{aligned} & 90 \\ & 95 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Operating Altitude	Power derating above 1800 m	-	-	5000	m
Shock	Operating: \quad Half sine, $30 \mathrm{~g}, 18 \mathrm{~ms}, 3$ axes, 6 x each (3 positive and 3 negative). Non-Operating: Half sine, $50 \mathrm{~g}, 11 \mathrm{~ms}, 3$ axes, $6 x$ each (3 positive and 3 negative).	Half sine, $30 \mathrm{~g}, 18 \mathrm{~ms}, 3$ axes, 6 x each (3 positive and 3 negative). Half sine, $50 \mathrm{~g}, 11 \mathrm{~ms}, 3$ axes, 6 x each (3 positive and 3 negative).			
Vibration	Operating: Sine, $10-500 \mathrm{~Hz}, 1 \mathrm{~g}, 3$ axes, $1 \mathrm{oct} / \mathrm{min} ., 60 \mathrm{~min}$. Random, $5-500 \mathrm{~Hz}, 0.02 \mathrm{~g}^{2} / \mathrm{Hz}, 1 \mathrm{grms}, 3 \mathrm{axes}, 30 \mathrm{~min}$. Non-Operating: $5-500 \mathrm{~Hz}, 2.46$ grms $\left(0.0122 \mathrm{~g}^{2} / \mathrm{Hz}\right), 3$ axes, 30 min .				
MTBF	Full load, $25^{\circ} \mathrm{C}$ ambient, 100% duty cycle, Full load, $40^{\circ} \mathrm{C}$ ambient, 75% duty cycle Telcordia SR-332 Issue 2	$\begin{aligned} & 700000 \\ & 600000 \end{aligned}$		-	Hours
Useful Life	Nominal $\mathrm{V}_{\text {IN }}, 80 \%$ load, $40^{\circ} \mathrm{C}$ ambient (IPC9592)	-	7	-	Years

ABC1200 / ABE1200 Series

8. ELECTROMAGNETIC COMPATIBILITY (EMC) - EMISSIONS

PARAMETER	DESCRIPTION / CONDITION	STANDARD	PERFORMANCE CLASS
Conducted	115, 230, 277 Vrms, Maximum load	EN 55032 EN 55011 (ISM) FCC Part 15	B
Radiated		$\begin{aligned} & \text { EN } 55032 \\ & \text { EN } 55011 \text { (ISM) } \end{aligned}$ $\text { FCC Part } 15$	B *
Line Voltage Fluctuation \& Flicker	At 20%, 50% and 100% maximum load Nominal input voltages	EN 61000-3-3	
Harmonic Current Emission	230 VAC input voltage, $50 / 60 \mathrm{~Hz}$ 230 VAC $50 / 60 \mathrm{~Hz}$, >300 W load	EN 61000-3-2	$\begin{gathered} \mathrm{A}, \mathrm{D} \\ \mathrm{C} \end{gathered}$

* Performance referred to the enclosed package with additional HF chokes on output power and signal cables. Radiated emission relevant to the UCF and PCF package variants, should be assessed at system level.

9. ELECTROMAGNETIC COMPATIBILITY (EMC) - IMMUNITY

PARAMETER	DESCRIPTION / CONDITION		STANDARD	TEST LEVEL	CRITERIA
	Reference standard for ITE Reference standard for Industrial/IMS equipment		$\begin{aligned} & \text { EN } 55024 \\ & \text { EN 61000-6-2 } \end{aligned}$		
ESD	15 kV air discharge, 8 kV contact, at any point of the system.		EN 61000-4-2	4	A
Radiated Field	$10 \mathrm{~V} / \mathrm{m}, 20-2700 \mathrm{MHz}, 1 \mathrm{KHz}, 80 \% \mathrm{AM}$.		EN 61000-4-3	3	A
Electric Fast Transient	$\pm 2 \mathrm{kV}$ on AC power port for 1 minute		EN 61000-4-4	3	A
Surge	$\pm 2 \mathrm{kV}$ line to line; $\pm 4 \mathrm{kV}$ line to earth on AC power port		EN 61000-4-5	4	A
Conducted RF Immunity	$10 \mathrm{~V}_{\text {RMS }}, 0,15-80 \mathrm{MHz}, 1 \mathrm{kHz}, 80 \% \mathrm{AM}$		EN 61000-4-6	3	A
Dips and Interruptions	200-277 VAC:	Drop-out to 0\% for 10 ms Dip to 40% for 5 cycles (100 ms) Dip to 70% for 25 cycles (500 ms) Drop-out to 0\% for 5 s	$\begin{aligned} & \text { EN61000-4-11 } \\ & \text { EN61000-4-11 } \\ & \text { EN61000-4-11 } \\ & \text { EN61000-4-11 } \end{aligned}$		$\begin{gathered} \text { A }^{\star} \\ \text { A (derate to } 900 \mathrm{~W}) \\ \text { A } \\ \text { B } \end{gathered}$
	100-127 V AC :	Drop-out to 0\% for 10 ms Dip to 40% for 5 cycles (100 ms) Dip to 70% for 25 cycles (500 ms) Drop-out to 0\% for 5 s	$\begin{aligned} & \text { EN 61000-4-11 } \\ & \text { EN 61000-4-11 } \\ & \text { EN 61000-4-11 } \\ & \text { EN 61000-4-11 } \end{aligned}$		A (derate to 400 W) A (derate to 700 W) B

* Performance referred to $+5 \mathrm{VSB},+12 \mathrm{VSB}$ and V1 (PS_OK goes to low level after 8 ms as per timing described at page 8

10. SAFETY AGENCIES APPROVALS

CERTIFICATION BODY	SAFETY STANDARDS	CATEGORY
CSA / UL	CSA C22.2 No. 60950-1, UL 60950-1; 2007, 2nd edition +A1 + A2	Information Technology Equipment
IEC IECEE	UL8750, CSA22.2 No. 250.13	LED Lighting
CB Certification	IEC/EN 60950-1 2nd edition + A1 + A2	Information Technology Equipment
	Directive 2014/35/EU: Electrical Safety:	Information Technology Equipment
CE	Low Voltage electrical equipment (LVD)	
	Directive 2014/30/EU: Electromagnetic Compatibility (EMC)	
	Directive 2011/65/EU: RoHS 2	
	Meets all essential requirements of the standard IEC/EN/ULCSA 61010-1 2nd edition	

ABC1200 / ABE1200 Series

11. CONNECTIONS AND PIN DESCRIPTION

CONNECTIONS	CONNECTOR	REFERENCE	FUNCTION
AC Input Connections	P1: AMTEK TB25C-B02P-13-00A-L M4 GROUND STUD	1	Line 1
		2	Line 2
		3	Protection Earth
DC Input Connections	P200, P201, P202, P203: BRASS M4 THREADED TERMINALS		24 V Optional $24 / 48 \mathrm{~V}$
		P200	+V1 +V1
		P201	+V1 -
		P202	V1 RTN V1 RTN
		P203	V1 RTN
Signal Connector	P204: MOLEX 501876-1640	1	RMT (-)
		2	RMT (+)
		3	I-SHARE
		4	$+5 \mathrm{~V}_{\text {SB }}$
		5	PS_INHIBIT
		6	PS_OK
		7	SCL
		8	SDA
		9	\#SMBALERT
		10	ADDR0
		11	-PS_INHIBIT
		12	ADDR1
		13	RSVD_RX (OUT)
		14	RSVD_TX (OUT)
		15	RTN
		16	$+12 \mathrm{~V}_{\text {SB }}$
Additional Control Functions		SW600	V1_ADJ (UP)
		SW601	V1_ADJ (DOWN)
		DL600	Bi-colour LED
		Off	No AC/DC input power provided
		Blinking Green	Input power good, standby active, V1 inhibited
		Steady Green	V1 Active
		Steady or Blinking red	Power Supply Fault

12. MECHANICAL SPECIFICATIONS

PARAMETER	DESCRIPTION / CONDITION
	$1150 \mathrm{~g}(2.53 \mathrm{lb})-$ ABC1200-1T24-UCF
Weight	$1250 \mathrm{~g}(2.75 \mathrm{lb})-$ ABC1200-1T24-PCF
	$150 \mathrm{~g}(3.42 \mathrm{lb})-$ ABE $200-1 \mathrm{~T} 24 /$ ABE1200-1T48
	$101.6 \times 234.0 \times 41.0 \mathrm{~mm}(4.00 \times 9.21 \times 1.61 \mathrm{in})-$ ABC1200-1T24-UCF
Overall Dimensions	$101.6 \times 234.7 \times 41.0 \mathrm{~mm}(4.00 \times 9.24 \times 1.61 \mathrm{in})-$ ABC1200-1T24-PCF
	$101.6 \times 264.1 \times 41.0 \mathrm{~mm}(4.00 \times 10.4 \times 1.61 \mathrm{in})-$ ABE1200-1T24 / ABE1200-1T48

ABC1200 / ABE1200 Series

12.1 OUTLINE DRAWING \& CONNECTIONS - U-CHASSIS FORCED AIR COOLING (ABC1200-1T24-UCF)

M4 Ground Stud

Figure 1. Mechanical Drawing - ABC1200-1T24-UCF Model

Figure 2. Front View - ABC1200-1T24-UCF Model

Figure 6. Rear View - ABC1200-1T24-UCF Model

ABC1200 / ABE1200 Series

12.2 OUTLINE DRAWING \& CONNECTIONS - PERFORATED COVER FORCED AIR COOLING (ABC1200-1T24-PCF)

Figure 4. Mechanical Drawing - ABC1200-1T24-PCF Mode/

Figure 5. Front View - ABC1200-1T24-PCF Model

Figure 6. Rear View - ABC1200-1T24-PCF Model

ABC1200 / ABE1200 Series

12.3 OUTLINE DRAWING \& CONNECTIONS - FRONT MOUNTED FAN (ABE1200-1T24 / ABE1200-1T48)

Figure 7. Mechanical Drawing - ABE1200-1T24 / ABE1200-1T48 Models

Figure 8. Front View - ABE1200-1T24 / ABE1200-1T48 Models

Figure 9. Rear View - ABE1200-1T24 / ABE1200-1T48 Models

For more information on these products consult: tech.support@psbel.com
NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

