

ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE DEVICES

Features

- White SMD package, silicone resin.
- Low thermal resistance.
- Compatible with IR-reflow processes.
- ESD protection.
- Package: 2000pcs / reel.
- Moisture sensitivity level : level 2a.
- RoHS compliant.

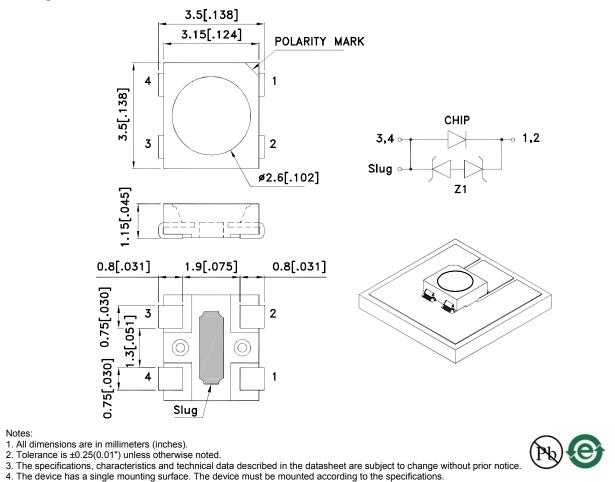
3.5x3.5 mm SMD CHIP LED LAMP

Part Number: AA3535ZG25Z1S-AMT

Green

Description

The Green source color devices are made with InGaN on Al₂O₃ substrate Light Emitting Diode.


Static electricity and surge damage the LEDS.

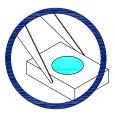
It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs.

All devices, equipment and machinery must be electrically grounded.

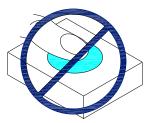
Applications

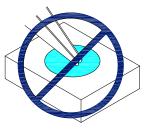
- Signal and symbol luminaire for orientation.
- Marker lights (e.g. steps, exit ways, etc).
- Decorative and entertainment lighting.
- Commercial and residential lighting.
- Automotive interior lighting.

SPEC NO: DSAL4015 APPROVED: WYNEC


REV NO: V.1 CHECKED: Allen Liu DATE: NOV/24/2010 DRAWN: Y.H.Wu PAGE: 1 OF 7 ERP: 1201007423

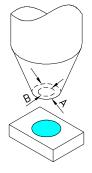
Package Dimensions


Handling Precautions


Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools.

2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.



3. Do not stack together assembled PCBs containing exposed LEDs. Impact may scratch the silicone lens or damage the internal circuitry.

- 4. The outer diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks. The inner diameter of the nozzle should be as large as possible.
- 5. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.
- 6. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production.

Selection Guide

Part No.	Dice	Lens Type	lv (cd) [2] @ 150mA			Φv (lm) [2] @ 150mA			Viewing Angle [1]
				Min.	Max.	Code.	Min.	Max.	2 0 1/2
AA3535ZG25Z1S-AMT	Green (InGaN)	Water Clear	ZC	4.2	5.0	B4	17	20	-
			ZD	5.0	6.0	B5	20	24	
			ZE	6.0	7.0	DC	B6 24	20	120 °
			ZF	7.0	8.0	Во		29	

Notes: 1.0 1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value. 2.Luminous Intensity/ Luminous Flux: +/-15%

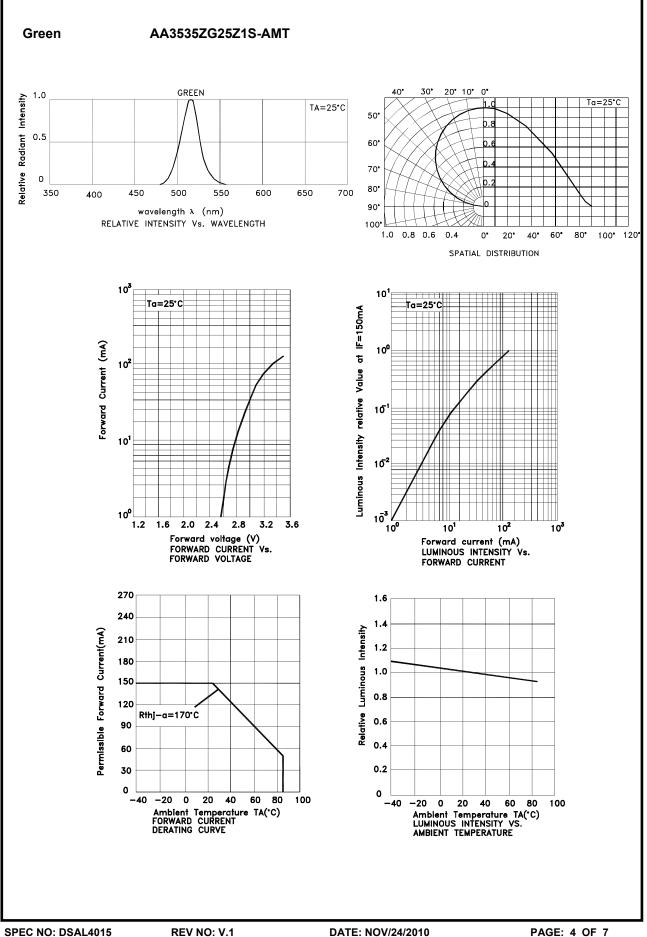
Absolute Maximum Ratings at TA=25°C

Parameter	Symbol	Value	Unit	
Power Dissipation	PD	600	mW	
Junction Temperature [1]	TJ	110	°C	
Operating Temperature	Тор	-40 To +85	°C	
Storage Temperature	Tstg	-40 To +85	°C	
DC Forward Current [1]	lf	150	mA	
Reverse Voltage	VR	5	V	
Peak Forward Current [2]	Іғм	300	mA	
Thermal Resistance [1] (Junction/ambient)	Rth j-a	170	°C/W	
Thermal Resistance [1] (Junction/solder point)	Rth j-S	50	°C/W	
Electrostatic Discharge Threshold (HBM)	8000	V		

Notes:

1.Results from mounting on PC board FR4(pad size ≥ 70mm²), mounted on pc board-metal core PCB is recommend

for lowest thermal Resistance.


2.1/10 Duty Cycle, 0.1ms Pulse Width.

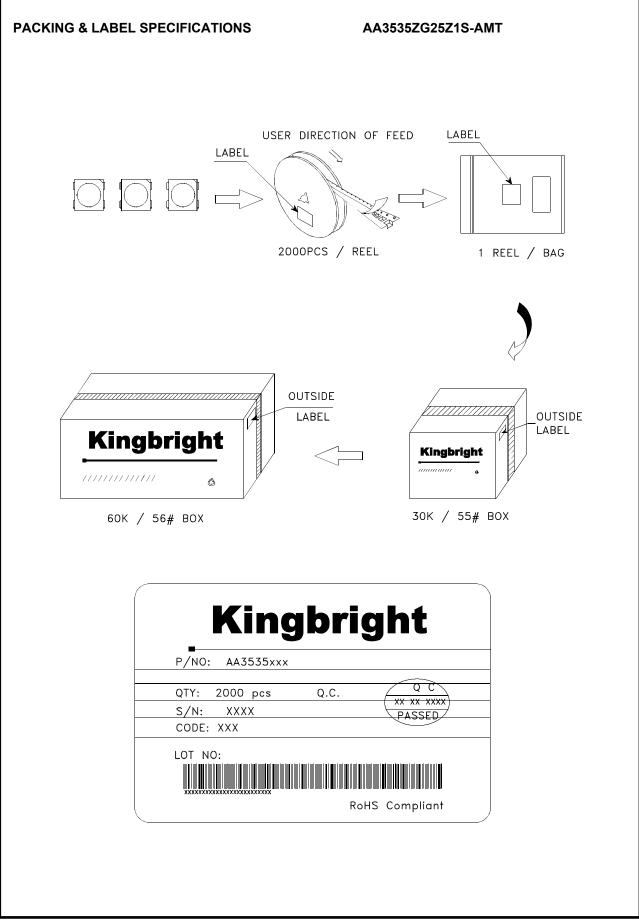
Electrical / Optical Characteristics at TA=25°C

Parameter	Symbol		Value			11	
Parameter	Symbol	Code.	Min.	Тур.	Max.	Unit	
Wavelength at peak emission IF=150mA	λ peak			515		nm	
		1	513		522	nm	
Dominant Mayalanath) dom [4]	2	518		527		
Dominant Wavelength IF=150mA	λ dom [1]	3	523		532		
		4	528		537		
Spectral Line Half-width IF=150mA	Δλ			30		nm	
Forward Voltage IF=150mA	Vf [2]		2.9	3.5	4.0	V	
Allowable Reverse Current	IR				85	mA	
Temperature coefficient of λ peak IF=150mA, -10 $^\circ$ C \leq T \leq 100 $^\circ$ C	TC λ peak			0.09		nm/° C	
Temperature coefficient of λ dom IF=150mA, -10 $^\circ$ C \leq T \leq 100 $^\circ$ C	$TC \lambda$ dom			0.03		nm/° C	
Temperature coefficient of VF IF=150mA, -10 $^\circ$ C \leq T \leq 100 $^\circ$ C	TCv			-2.7		mV/° C	


Notes:

1.Wavelength: +/-1nm.

AA3535ZG25Z1S-AMT


Reflow soldering is recommended and the soldering profile is shown below. Other soldering methods are not recommended as they might cause damage to the product.

CHECKED: Allen Liu

DRAWN: Y.H.Wu

PAGE: 5 OF 7 ERP: 1201007423

Reliability Test Items And Conditions

The reliability of products shall be satisfied with items listed below

Lot Tolerance Percent Defective (LTPD): 10%

No.	Test Item	Standards	Test Condition	Test Times / Cycles	Number of Damaged
1	Continuous operating test	-	Ta =25°C ,IF = maximum rated current*	1,000 h	0 / 22
2	High Temp. operating test	EIAJED- 4701/100(101)	Ta = 100°C IF = maximum rated current*	1,000 h	0 / 22
3	Low Temp. operating test	-	Ta = -40°C, IF = maximum rated current*	1,000 h	0 / 22
4	High temp. storage test	EIAJED- 4701/100(201)	Ta = maximum rated storage temperature	1,000 h	0 / 22
5	Low temp. storage test	EIAJED- 4701/100(202)	Ta = -40°C	1,000 h	0 / 22
6	High temp. & humidity storage test	EIAJED- 4701/100(103)	Ta = 60°C, RH = 90%	1,000 h	0 / 22
7	High temp. & humidity operating test	EIAJED- 4701/100(102)	Ta = 60°C, RH = 90% IF = maximum rated current*	1,000 h	0 / 22
8	Soldering reliability test	EIAJED- 4701/100(301)	Moisture soak : 30°C,70% RH, 72h Preheat : 150~180°C(120s max.) Soldering temp : 260°C(10s)	3 times	0 / 18
9	Thermal shock operating test	-	Ta = -40°C(15min) ~ 100°C(15min) IF = derated current at 100°C	1,000 cycles	0 / 22
10	Thermal shock test	-	Ta = -40°C(15min) ~ maximum rated storage temperature(15min)	1,000 cycles	0 / 22
11	Electric Static Discharge (ESD)	EIAJED- 4701/100(304)	C = 100pF , R2 = 1.5KΩ V = 8000V	Once each Polarity	0 / 22
12	Vibration test	-	a = 196m/s² , f = 100~2KHz , t = 48min for all xyz axes	4 times	0 / 22

* : Refer to forward current vs. derating curve diagram

Failure Criteria

Items	Symbols	Conditions	Failure Criteria
luminous Intensity	lv	IF = 150mA	Testing Min. Value <spec.min.value 0.5<="" td="" x=""></spec.min.value>
Forward Voltage	VF	IF = 150mA	Testing Max. Value ≥Spec.Max.Value x 1.2
Reverse Current	IR	VR = Maximum Rated Reverse Voltage	Testing Max. Value ≥Spec.Max.Value x 2.5
High temp. storage test	-	_	Occurrence of notable decoloration, deformation and cracking