tyc:
Electronics

Product Facts

- Choice of jacket materials

■ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
[$-67^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}$]
■ Size and weight savings

- Excellent flexibility
- Resistance to solvents and chemicals

Miscellaneous

Power Cables

Applications

Tyco Electronics offers a range of flexible Raychem power cables that are insulated and jacketed using materials that provide improved performance over other materials, such as CSP/EPR, silicone, or PCP/Butyl. Four different types of cable are available:
Type TR is a general purpose, single-wall, $125^{\circ} \mathrm{C}\left[257^{\circ} \mathrm{F}\right]$ construction normally specified for use inside cabinets in protected areas.
Type $\mathbf{Z H I}$ is a halogen-free $105^{\circ} \mathrm{C}$ [221 ${ }^{\circ} \mathrm{F}$] cable with good oil resistance. It is particularly suitable for use in offshore, ship, and mass transit applications where low-fire-hazard performance is required. Refer to Raychem specification WCD 2015.

Type FTR is a dual-wall, $125^{\circ} \mathrm{C}$ [$257^{\circ} \mathrm{F}$], diesel-oilresistant cable originally developed for tank engine compartment applications. It meets the German BWB VG 95218 specification. Refer to Raychem specification WCD 2002.
Type AFR is a $105^{\circ} \mathrm{C}\left[221^{\circ} \mathrm{F}\right]$, single-extrusion, abrasionresistant, flame- and fuel-resistant,radiation-crosslink ed polyolefin.

Type ZHPCG is a halogenfree, $115^{\circ} \mathrm{C}\left[239^{\circ} \mathrm{F}\right.$ cable with good oil resistance and resistance to water. It is particularly suitable to the Mass Transit, Marine and Off-Shore industries where its low fire hazard performance and flexibility are key to a successful installation. Refer to Raychem Specification WSD 1265.

Each offers particular advantages for specific applications and each is also available in multiconductor constructions and shielded and jacketed versions. Cables offer size and weight savings, good resistance to abrasion and cut-through, and the ability to operate in difficult environments. are U.S. equivalents.

USA: 1-800-522-6752 Canada: 1-905-470-4425 Мехico: 01-800-733-8926 C. America: 52-55-5-729-0425

Power Cables (Continued)

Specifications/Approvals*

Series	Agency	Military	Raychem
TR	-	Def. Stan. 61-12 Part 31 (jacket material)	WCD 2003, WCD 51/160
ZHI	-	-	WCD 2015
FTR	-	BWB VG 95218 Types G, H, and K	WCD 2002
AFR	UL style 3496	-	WCD 2011, WCD 51/160
ZHPCG	-	-	WSD 1265

*See specifications listed for details of performance.

Conductors (Tinned Soft Copper)

$\begin{aligned} & \text { Conductor Size } \\ & \mathrm{mm}^{2} \end{aligned}$	Stranding				Max. Resistance at $20^{\circ} \mathrm{C}$ in $\Omega / \mathrm{km}(\Omega / 1000 \mathrm{ft})$ Class 5/6
	IEC Class 5		IEC Class 6		
	No. x mm	Nom. Dia.	No. x mm	Nom. Dia.	
1.5	30×0.25	1.49 [.05]	85×0.15	1.53 [.06]	13.20 [4.02]
2.5	50×0.25	1.90 [.07]	140×0.15	2.40 [.09]	7.82 [2.38]
4.0	56×0.30	2.49 [.10]	228×0.15	2.90 [.11]	4.85 [1.48]
6.0	84×0.30	3.00 [.12]	189×0.20	3.60 [.14]	3.23 [0.98]
10.0	80×0.40	4.60 [.18]	324×0.20	4.55 [.18]	1.88 [0.57]
16.0	126×0.40	5.70 [.22]	513×0.20	5.50 [.22]	1.19 [0.36]
25.0	196×0.40	7.10 [.28]	783×0.20	7.30 [.29]	0.78 [0.24]
35.0	276×0.40	8.50 [.33]	1107×0.20	8.55 [.34]	0.55 [0.17]
50.0	396×0.40	10.30 [.41]	702×0.30	10.15 [.40]	0.39 [0.12]
70.0	360×0.50	12.40 [.49]	999×0.30	12.00 [.47]	0.27 [0.08]
95.0	475×0.50	14.50 [.57]	1332×0.30	14.05 [.55]	0.20 [0.06]
120.0	608×0.50	16.00 [.63]	1702×0.30	16.30 [.64]	0.15 [0.05]
150.0	777×0.50	18.00 [.71]	2109×0.30	17.40 [.68]	0.13 [0.04]
185.0	925×0.50	20.00 [.79]	2590×0.30	20.00 [.79]	0.10 [0.030]
240.0	1221×0.50	23.00 [.91]	-	-	0.08 [0.024]
300.0	1554×0.50	26.00 [1.0]	-	-	0.06 [0.018]
400.0	2035×0.50	30.00 [1.2]	-	-	0.05 [0.015]

Note: Types TR and FTR use IEC Class 6 conductors.
Types ZHI and AFR use IEC Class 5 conductors.

Materials Performance Summary

Material	Tensile Strength $\mathbf{N} / \mathbf{m m}^{2}$ typical	Abrasion Resistance	Cut Through	Temperature Rating ${ }^{\circ} \mathrm{C}$ 10000 h	Preferred Color
TR	20	Excellent	Good	125	Black
ZHI	9	Good	Good	Very Good	105
FTR	18	Excellent	Good	125	Black
AFR	18	Good	Good	Good	105
ZHPCG	8	Good	115	Grey	

Note: Where a higher operating temperature is required, Raychem SPEC 55 provides outstanding performance up to $200^{\circ} \mathrm{C}$ continuous operating temperature.
For these or other special applications, please contact Tyco Electronics.

Dimensions are in millimeters and inches unless otherwise specified. Values in brackets are U.S. equivalents.

Dimensions are shown for reference purposes only. Specifications subject to change.

USA: 1-800-522-6752 Canada: 1-905-470-4425 Mexico: 01-800-733-8926 C. America: 52-55-5-729-0425
tyca
Electronics

Power Cables (Continued)

Table 1. Nominal Diameters and Maximum Weights

Conductor Size (mm^{2})	TR 16			FTR 16		
	Part No.	Nom. OD in mm (in)	Max. weight in $\mathrm{kg} / \mathrm{km}$ (lb/1000 ft)	Part No.	Nom. OD in mm (in)	Max. weight in $\mathrm{kg} / \mathrm{km}$ (lb/1000 ft)
1.5	-	-	-	-	-	-
2.5	TR 16-2.5	3.9 [.15]	34.0 [22.8]	-	-	-
4.0	-4	4.5 [.17]	51.0 [34.2]	FTR 16-4	5.6 [.22]	69.0 [46.2]
6.0	-6	5.2 [.20]	73.0 [48.9]	-6	6.3 [.25]	94.0 [63.0]
10.0	-10	6.2 [.24]	117.0 [78.4]	-10	7.5 [.29]	147.0 [98.5]
16.0	-16	7.4 [.29]	182.0 [121.9]	-16	8.8 [.35]	220.0 [147.4]
25.0	-25	9.3 [.37]	274.0 [183.6]	-25	10.7 [.42]	323.0 [216.4]
35.0	-35	10.6 [.42]	383.0 [256.6]	-35	12.1 [.48]	444.0 [297.5]
50.0	-50	12.5 [.49]	542.0 [363.1]	-50	14.0 [.55]	619.0 [414.7]
70.0	-70	14.6 [.57]	765.0 [512.6]	-70	16.2 [.64]	861.0 [576.9]
95.0	-95	17.0 [.67]	1020.0 [683.4]	-95	18.8 [.74]	1148.0 [769.2]
120.0	-	-	-	-120	21.3 [.84]	1484.0 [994.3]

Table 2. Nominal Diameters and Maximum Weights

Conductor Size (mm^{2})	ZHI 15			AFR 35		
	Part No.	Nom. OD in mm (in)	Max. Weight in $\mathrm{kg} / \mathrm{km}(\mathrm{lb} / 1000 \mathrm{ft})$	Part No.	Nom. OD in mm (in)	Max. Weight in $\mathrm{kg} / \mathrm{km}(\mathrm{lb} / 1000 \mathrm{ft})$
1.5	ZHI 15-1.5	4.09 [.16]	33.5 [22.4]	AFR 35-1.5	2.8 [.11]	31.0 [20.8]
2.5	-2.5	4.69 [.18]	48.8 [32.7]	-2.5	3.9 [.15]	42.0 [28.1]
4.0	-4	5.49 [.22]	72.1 [48.3]	-4	4.8 [.19]	61.0 [40.9]
6.0	-6	6.16 [.24]	99.8 [66.9]	-6	6.2 [.24]	92.0 [61.6]
10.0	-10	8.20 [.32]	159.0 [106.5]	-10	7.0 [.28]	143.0 [95.8]
16.0	-16	9.30 [.37]	223.0 [149.4]	-16	8.1 [.32]	211.0 [141.1]
25.0	-25	10.90 [.43]	331.0 [221.8]	-25	10.3 [.41]	333.0 [223.1]
35.0	-35	12.30 [.48]	448.0 [300.2]	-35	11.7 [.46]	452.0 [302.8]
50.0	-50	14.70 [.58]	631.0 [422.8]	-50	13.7 [.54]	634.0 [424.8]
70.0	-70	16.80 [.66]	852.0 [570.8]	-70	16.0 [.63]	885.0 [593.0]
95.0	-95	19.10 [.75]	1108.0 [742.4]	-95	18.5 [.73]	1165.0 [780.6]
120.0	-120	21.00 [.83]	1438.0 [963.5]	-120	20.4 [.80]	1480.0 [991.6]
150.0	-150	23.00 [.91]	1748.0 [1171.2]	-150	22.6 [.89]	1825.0 [1222.8]
185.0	-185	25.60 [1.01]	2088.0 [1399.0]	-185	24.8 [.98]	2215.0 [1484.1]
240.0	-240	28.60 [1.13]	2705.0 [1812.4]	-240	27.8 [1.1]	2875.0 [1926.3]
300.0	-300	32.00 [1.26]	3363.0 [2253.2]	-300	32.0 [1.2]	3645.0 [2442.2]
400.0	-400	36.40 [1.43]	4396.0 [2945.3]	-400	36.0 [1.4]	4730.0 [3169.1]

Table 3. Nominal Diameters and Maximum Weights

Part Numbering System

