WILMAR ${ }^{\text {TM }}$ Protective Relays - 25-000 Series

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm .

PRODUCT SPECIFICATIONS

Part Number	25-000 Series
Input Voltage ($\pm 10 \%$) \qquad Frequency Range (adjustable) \qquad Trip Points \qquad Temperature Range \qquad Temperature Drift. \qquad Voltage Drift \qquad Contact Ratings \qquad Output Contacts \qquad	120 VAC See Part Number Selection Screwdriver adjustable $-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ $\pm 1 \%$ frequency error over temperature range $\pm 1 \%$ frequency error input voltage variation of $\pm 10 \%$ 5 Amp resistive at 120 VAC or 28VDC One set N.O., One set N.C.

Function: 81 O/U

- ANSI/IEEE C37.90-1978

The output contacts of frequency relays are energized when the frequency exceeds the adjustable set point. Overfrequency and underfrequency relays are available in 50,60 and 400 Hz . Combination over/ underfrequency "band pass" relays are also available. These are energized at rated frequency and deenergized during overfrequency or underfrequency conditions. Frequency Differential relays are energized above the preset frequency. The pick-up and drop-out frequency settings are independently adjustable.

Operation:

The normally open contacts close, and the normally closed contacts open, at nominal frequency. The contacts are de-energize at underfrequency, overfrequency or no input voltage.

PART NUMBER SELECTION

Sample Part No. 25-050X
Type:
25-Over/Underfrequency

Frequency Range	Under	Over
$050=$	$40-50 \mathrm{~Hz}$	$50-60 \mathrm{~Hz}$
$060=$	$50-60 \mathrm{~Hz}$	$60-70 \mathrm{~Hz}$
$400=$	$350-400 \mathrm{~Hz}$	$400-450 \mathrm{~Hz}$

Mounting Options
$X=$ Flange
blank = Stud

Consult factory for additional models.

Notes:

1. The contacts are shown in the de-energized position.
2. Remove screws for access to the underfrequency and overfrequency trip adjustments.
3. Clockwise rotation of the adjustment potentiometer will raise the frequency trip points.
