

In This Section...

Dragon Tooth Insulation **Piercing Connectors**

Overview	K-2–K-3
Insulating Piercing Connectors	
Splices	K-4–K-5
Ring Terminals	K-6
Fork Terminals	K-7
Disconnects	K-7
Taps	K-8
Washers	K-8
Magnet Wire Ordering Information	K-8
Manual Installation Tools	K-9
Battery-Powered Crimping Tool	K-10
Air Hydraulic Tools	K-11–K-13
Cross Reference	K-14

Thomas@Betts

United States

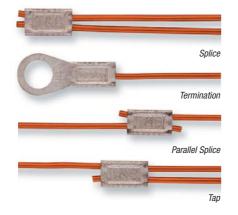
Tel: 901.252.8000 800.816.7809 Fax: 901.252.1354 Technical Services
Tel: 888.862.3289

Overview

Splice, tap and terminate magnet wire quickly and easily!

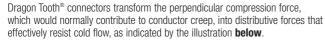
The tough, high-temperature insulation on magnet wire used by electrical motor and transformer manufacturers creates problems in splicing and terminating. The durability of magnet wire insulation has made dipsoldering or brazing extremely difficult without stripping the insulation.

Another splicing and terminating challenge involves the use of aluminum for magnet applications. A manufacturer connecting aluminum magnet wire to copper is faced with the problem of the different coefficients of thermal expansion of the two metals, galvanic corrosion, cold flow, and the rapid formation of oxide film on the wire surface.


T&B offers a solution for a highly reliable connection method for magnet wire. It eliminates welding, no longer requires removal of insulation, and it can be installed in seconds. No special operator skills are needed. The connector and matching tooling do the entire job. To meet the essential requirements of magnet wire connections, T&B offers the insulation piercing Dragon Tooth® compression connector.

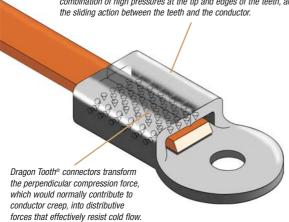
Transformer manufacturers depend on Dragon Tooth® connectors for reliable magnet wire applications.

Typical Applications



Dragon Tooth® Magnet Wire Connectors

Thomas & Betts Dragon Tooth® connectors and installing tools are designed to splice, tap, and terminate magnet wire from 32 AWG to 460,000 CMA copper and from 20 AWG to 460,000 CMA aluminum conductors in motor and transformer applications. Dragon Tooth® Magnet Wire Connectors penetrate the insulation and oxide layers to make electrical contact on magnet wiring. The result is permanent, low-resistance electrical connections, capable of maintaining contact integrity throughout the life of the connection.


- Designed to penetrate magnet wire insulation during application, eliminating the need for stripping, brazing, welding, or other methods of joining magnet wire
- Can be installed in seconds
- Requires minimal training for installation
- Made of copper alloy, tin plated, with teeth on the inner surface
- Splices and taps have an open side enabling easy access to wire and making internal coil tapping possible
- For aluminum to copper, aluminum to aluminum, or copper to copper magnet wire connections
- Supplied with bolt holes to accommodate No. 6 through ½" studs and includes male and female .250 x .032" disconnects
- Splices and fork terminals accommodate wire sizes 24 AWG to 12 AWG in a variety of combinations, including combining magnet wire with stripped wire lead. For solid or stranded wire #20 to #4/0 AWG
- Larger connectors accommodate circular mil range from 50,000 to 460,000 cm
- · Connector and matching tooling do the entire job

Overview

These connectors are made of copper alloy, tin plated, with a number of teeth on the inner surface. When compressed onto an insulated magnet wire, the sharp, hardened teeth penetrate both the insulation and oxide and bite into the conductor. An electrically sound, low-resistance connection is established as a result of the combination of high pressures at the edges of the teeth, and the sliding action between the teeth and the conductor. The open barrel design permits midspan splicing and tapping.

These connectors are made of copper alloy, tin plated, with a number of teeth on the inner surface. When the connector is compressed onto an insulated magnet wire, the sharp, hardened teeth penetrate the insulation and the oxide and bite into the conductor. An electrically sound, low-resistance connection is established as a result of the combination of high pressures at the tip and edges of the teeth, and the sliding action between the teeth and the conductor.

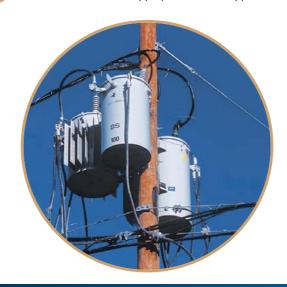
For wire sizes and combinations other than shown, contact Thomas & Betts Technical Services at 800-888-0211, ext. 8324.

Formula for Calculating Circular Mil Area (CMA)

For square or rectangular wire:

Thickness x Width x $1.273 \times 10^6 = CMA$

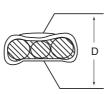
For round wire:

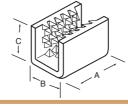

Diameter² x 10⁶ = CMA

(or see chart on p. K-8)

How to Select a Connector

- Determine total circular mil area (CMA). All wires to be installed in a connector barrel including stripped, stranded wire. For example, two #6 AWG = 52480CMA.
- Refer to Circular Mil column of chart and find the connector series corresponding to the total CMA. For example, 204XXX.
- Next, refer to either Round Wire column or Rectangular Wire column, depending on the type you are using, and check for any limitations, (such as max. wire width/height). If there are limitations, you may have to make a selection from the next larger size.
- Select the tool and die appropriate for the application.


Insulating Piercing Connectors


Splices for copper and aluminum magnet wire!

- Penetrate all standard copper and aluminum magnet wire insulations
- Perfect for heavy Formvar, poly-thermaleze, polyester, and polyurethane insulations

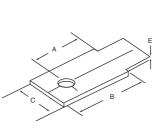
For special insulations, consult Technical Services.

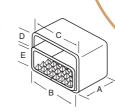
	//	
	411	
3		
		0
4		2
A		3
5		0
	(F)	4
	The state of the s	4 5 6
6		6
		7
	THE STATE OF THE S	8
		9
7		0
8		
		<i>a</i>
		/
9		

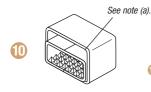
		DIMENSIONS (IN.) A B C D*				CIRCULAR	ROUND WIRE RANGE (AWG)	RECTANGL WIRE RANG		PKG.
	CAT NO.	Α	В	C	D*	MIL AREA	MIN. MAX.	THICKNESS	WIDTH	QTY.
0	214420	.43	.25	.22	.135	-	21 (4) - 13 (2)	-	-	1000
	220004	.17	.11	.08	.03	468 - 1,724	32 - 24**	-	-	†8400†
	220001	.34	.17	.14	.09	1,277 - 4,205	26 - 17**	.0204	.0209	†3000†
2	220002-TB	.34	.25	.18	.09	2,985 - 6,687	24 - 14**	.0205	.0210	†3000†
	220006	.47	.25	.19	.09	5,162 - 12,330	16 - 12	.0508	.0516	†2500†
	22L004	.15	.11	.09	.03	128 - 2,028	32 - 24**	-	-	1000
	22L001	.32	.16	.16	.10	808 - 5,162	26 - 17**	.0204	.0210	1000
	22L002	.32	.25	.19	.10	2,048 - 9,110	24 - 15**	.0205	.0211	1000
3	22L006	.44	.25	.22	.13	2,580 - 12,330	16 - 12	.0508	.0516	1000
	22L008	.70	.50	.35	.13	12,960 - 30,550	18 - 14	.0406	.0638	100
	22L009	.70	.55	.46	.20	36,120 - 86,000	16 - 5	.0818	.0838	100
	22L010	.70	.78	.71	.22	69,750 - 173,090 (f)	_	.1023 (GU) .1018 (AL)	.3063	
4	210214S	.63	.38	.37	.17	4,110 - 20,760	14(a) - 10	.0809	.0818	250
4	204210S	.69	.53	.53	.25	10,380 - 52,480	12(b) - 4(e)	.1016	.1026	100
5	204210SH	.69	.53	1.05	.48	20,760 - 104,960	12(c) - 2(d)	.1016	.1026	100
6	22L009H	.70	.55	.93	.37	72,000 - 132,000	16 - 5	.0818	.0838	100
	220015	1.50	.88	.77	(e)	50,000 - 115,000	10 - 6	.100175	.300625	50
7	220019	1.50	.88	.85	(e)	110,000 - 175,000	6 - 2	.175250	.300625	25
	220023	1.75	.88	.93	(e)	165,000 - 230,000	2 - 1/0	.250325	.300625	25
8	314118S	.63	.38	.30	.14	3,260 - 12,330	15 - 13	.0506	.0518	250
	220016	3.13	.88	.77	(e)	50,000 - 115,000	10 - 6	.100175	.300625	25
9	220020	3.13	.88	.85	(e)	110,000 - 175,000	6 - 2	.175250	.300625	25
	220024	3.63	.88	.93	(e)	165,000 - 230,000	2 - 1/0	.250325	.300625	25

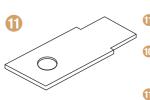
*Reference dimension. See installing die illustration for gauging.

† On a ree

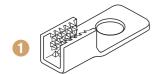

(a) This space may be used for terminal tongue insert, stripped stranded copper wire, stripped copper magnet wire, or left empty.


NOTE: Wire sizes and combinations shown have been tested to and meet or exceed Thomas & Betts specifications. Connectors may be suitable for other wire sizes or combinations. Thomas & Betts sells these connectors with the understanding that the user will perform necessary tests to determine their suitability for the intended purpose.

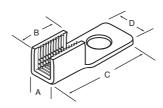

^{**} Not recommended for aluminum magnet wire finer than 21 gauge. (a) Four wires max. (b) Six wires max. (c) Six wires max. each barrel (d) Conductors heavier than 6 AWG require special dies. Contact Thomas & Betts for assistance. (e) Crimping dies may not bottom. Connector height will depend on number and size of wires in barrel. Pump must deliver 9800 psi minimum. (f) Copper CMA, aluminum CMA=52,136–124,561.


Insulating Piercing Connectors

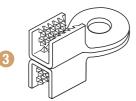
		STUD		DIME	NSIONS (IN.)		CIRCULAR	ROUND WIRE RANGE	WIRE RANG		PKG.	
	CAT. NO.	SIZE A B		C	D	E MIL AREA		(AWG)	THICKNESS	WIDTH	QTY.		
10	210214MT	-	.63	.63	.75	.25	.19	20,000 – 105,000	5 - 13	Lower .0815 Upper .25 max	.0849	250	
1	210MT14 210MT38	1/4 3/8	1.00 1.00	1.44 1.44	.81 .81	_	.08 .80.		5 - 13 5 - 13	For 0 2102		25 25	
10	204210MT	-	.69	.94	1.03	.25	.25	90,000 – 215,000	3 - 10	Lower .1025 Upper .25 max	.1092	100	
Ð	204MT14 204MT38	1/4 3/8	1.00 1.00	1.44 1.44	.91 .91	-	.10 .10		3 - 10 3 - 10	For 0 2042		25 25	_

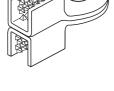

(a) This space may be used for terminal tongue insert, stripped stranded copper wire, stripped copper magnet wire, or left empty.

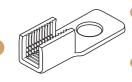
NOTE: Wire sizes and combinations shown have been tested to and meet or exceed Thomas & Betts specifications. Connectors may be suitable for other wire sizes or combinations. Thomas & Betts sells these connectors with the understanding that the user will perform necessary tests to determine their suitability for the intended purpose.

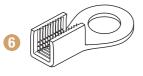


Insulating Piercing Connectors



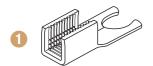




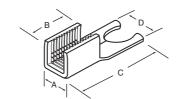


		STUD		DIME	NSIONS	(IN.)		CIRCULAR	ROUND WIRE RANGE	RECTAN Wire Ran	IGULAR NGE (IN.)	PKG.
	CAT. NO.	SIZE	Α	В	С	D	E*	MIL AREA	(AWG)	THICKNESS	WIDTH	QTY.
0	314125	10	.38	.56	1.22	.41	.14	3,260 - 12,330	15 - 13	.0506	.0518	250
U	314123	1/4"	.38	.56	1.41	.41	.14	3,260 - 12,330	15 - 13	.0506	.0518	250
	210219	8	.38	.56	1.22	.41	.17	4,110 - 20,760	14(a) - 10	.0809	.0818	250
1	210217	10	.38	.56	1.22	.41	.17	4,110 - 20,760	14(a) - 10	.0809	.0818	250
	210216	1/4"	.38	.56	1.41	.41	.17	4,110 - 20,760	14(a) - 10	.0809	.0818	250
0	204217	10	.53	.61	1.58	.50	.25	10,380 - 52,480	12(b) - 4(c)	.1016	.1026	100
0	204212	1/4"	.53	.61	1.58	.50	.25	10,380 - 52,480	12(b) - 4(c)	.1016	.1026	100
	210214-1	1/4"	.38	.56	1.41	.69	.17	4,110 - 20,760	14(a) - 10	.0809	.0818	250
2	210214-2	5/16"	.38	.56	1.41	.69	.17	4,110 - 20,760	14(a) - 10	.0809	.0818	250
	210214-3	3/II	.38	.56	1.41	.69	.17	4,110 - 20,760	14(a) - 10	.0809	.0818	250
	204210-1	1/4"	.53	.61	1.58	.81	.25	10,380 - 52,480	12(b) - 4(c)	.1016	.1026	100
•	204210-2	5/16"	.53	.61	1.58	.81	.25	10,380 - 52,480	12(b) - 4(c)	.1016	.1026	100
2	204210-3	3/"	.53	.61	1.58	.81	.25	10,380 - 52,480	12(b) - 4(c)	.1016	.1026	100
	204210-5	1/2"	.53	.61	1.58	.81	.25	10,380 - 52,480	12(b) - 4(c)	.1016	.1026	100
	204210-1H	1/4"	.53	.61	1.58	.81	.47	20,760 - 104,960	12(b) - 4(c)	.1016	.1026	100
3	204210-3H	%"	.53	.61	1.58	.81	.47	20,760 - 104,960	12(b) - 4(c)	.1016	.1026	100
	220017	¾"	.88	1.50	2.76	1.06	(d)	50,000 - 115,000	.100175	-	.300625	25
	220018	1/2"	.88	1.50	2.76	1.06	(d)	50,000 - 115,000	.100175	-	.300625	25
4	220021	3/s''	.88	1.50	2.76	1.06	(d)	110,000 - 175,000		.175250	.300625	25
4	220022	1/2"	.88	1.50	2.76	1.06	(d)	110,000 - 175,000	_	.175250	.300625	25
	220025	3/s''	.88	1.50	2.76	1.06	(d)	110,000 - 230,000	-	.175325	.300625	25
	220026	1/2"	.88	1.50	2.76	1.06	(d)	110,000 - 230,000	-	.175325	.300625	25
	22R061**	6	.16	.32	.78	.30	.10	404 - 4100	15 - 24	.0205	.0210	1000
5	22R081**	8	.16	.32	.78	.30	.10	404 - 4100	15 - 24	.0205	.0210	1000
	22R101**	10	.16	.32	.78	.30	.10	404 - 4100	15 - 24	.0205	.0210	1000
5	22R086	8	.25	.45	.91	.30	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000
U	22R106	10	.25	.45	.91	.30	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000
6	22R146	1/4"	.25	.45	.95	.42	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000
U	22L010*											

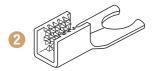
*Reference dimension. See installing die illustration for gauging. (a) Four wires max. (b) Six wires max. (c) Conductors heavier than 6 AWG require special dies. Contact Thomas & Betts for assistance. (d) Crimping dies may not bottom. Connector height will depend on number and size of wires in barrel. Pump must deliver 9800 psi minimum.

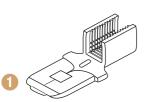

NOTE: Wire sizes and combinations shown have been tested to and meet or exceed Thomas & Betts specifications. Connectors may be suitable for other wire sizes or combinations. Thomas & Betts sells these connectors with the understanding that the user will perform necessary tests to determine their suitability for the intended purpose.

**22-24 AWG and equivalent rectangular c.m.a., copper only.

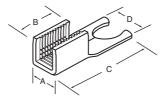

Insulating Piercing Connectors

Connectors for every application!

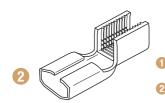

Fork Terminals



		STUD		DIMEN	SIONS (IN.)		CIRCULAR	ROUND WIRE RANGE	RECTANGULAR WIRE RANGE (IN.)		PKG.
	CAT. NO.	SIZE	Α	В	C	D	E*	MIL AREA	(AWG)	THICKNESS	WIDTH	QTY.
	22F061**	6	.16	.32	.78	.30	.10	404 - 4100	15 - 24	.0205	.0210	1000
	22F081**	8	.16	.32	.78	.30	.10	404 - 4100	15 - 24	.0205	.0210	1000
	22F101**	10	.16	.32	.78	.30	.10	404 - 4100	15 - 24	.0205	.0210	1000
	22F066	6	.25	.45	.91	.30	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000
)	22F086	8	.25	.45	.91	.30	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000
	22F106	10	.25	.45	.91	.30	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000
	210219F	6	.25	.45	.91	.30	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000
)	210217F	8	.25	.45	.91	.30	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000
	210216F	10	.25	.45	.91	.30	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000

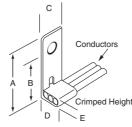

Durable and convenient!

2


Disconnects

		TAB		DIMEN	SIONS (IN.)		CIRCULAR	ROUND WIRE	RECTANGULAR WIRE RANGE (IN.)		PKG.	
	CAT. NO.	SIZE	Α	В	C	D	E*	MIL AREA	(AWG)	THICKNESS	WIDTH	QTY.	
2	22LM01**	.250 x .032	.16	.32	.76	.25	.10	404 - 4100	15 - 24	.0205	.0210	1000	
U	22LM06	.250 x .032	.25	.45	.91	.25	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000	
2	22LF01**	.250 x .032	.16	.32	.79	.25	.10	404 - 4100	15 - 24	.0205	.0210	1000	
4	22LF06	.250 x .032	.25	.45	.91	.25	.13	2,580 - 12,330	12 - 16	.0508	.0516	1000	

*Reference dimension. See installing die illustration for gauging. (a) Four wires max. (b) Six wires max. (c) Conductors heavier than 6 AWG require special dies. Contact Thomas & Betts for assistance. (d) Crimping dies may not bottom. Connector height will depend on number and size of wires in barrel.

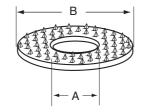

NOTE: Wire sizes and combinations shown have been tested to and meet or exceed Thomas & Betts specifications. Connectors may be suitable for other wire sizes or combinations. Thomas & Betts sells these connectors with the understanding that the user will perform necessary tests to determine their suitability for the intended purpose.

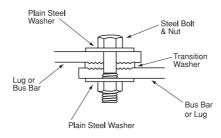
**22-24 AWG and equivalent rectangular c.m.a., copper only.

Insulating Piercing Connectors

Quick and easy connections!

	STUD		DIMEN	SIONS (CIRCULAR	WIRE RAN		PKG.	
CAT. NO.	SIZE (IN.)	Α	В	С	D	E*	MIL AREA	THICKNESS	WIDTH	QTY.
204T14	1/4	1.62	1.22	.70	.50	.22	10,310 - 52,480	.090114	.090320	100
204T38	¾	1.62	1.22	.70	.50	.22	10,310 - 52,480	.090114	.090320	100


*Reference dimension. See installing die illustration for gauging


Copper to aluminum connections!

- Teeth on the transition washers penetrate aluminum and copper oxides
- Enables copper to aluminum connections to be made in a bolted joint without the use of inhibiting compounds
- Accommodates the difference in thermal expansion between copper and aluminum, and enhances the efficiency of bolted grounding connections

	BOLT SIZE,	DIMENSI	ONS (IN.)	RECOMMENDED INSTALLING	PKG.	
CAT. NO.	(IN.)	Α	В	TORQUE IN-LBS.	QTY.	
FPW14	1/4	.27	.68	50 - 80	250	
FPW516	5∕16	.34	1.00	125 - 160	250	
FPW38	3∕8	.43	1.00	160 - 240	250	
FPW12	1/2	.56	1.25	390 - 540	250	
FPW58	5/8	.68	1.40	540 - 730	250	

NOTE: Wire sizes and combinations shown have been tested to and meet or exceed Thomas & Betts specifications. Connectors may be suitable for other wire sizes or combinations. Thomas & Betts sells these connectors with the understanding that the user will perform necessary tests to determine their suitability for the intended purpose.

Additional Magnet Wire Ordering Information

- 1. For wire sizes and combinations other than shown, consult factory.
- 2. Maximum of two layers of conductors in each connector.
- 3. Consult factory for gauging other than shown.
- When terminating wires with an AWG size difference of four or more, samples should be tested in completed connections before using.

Conversion of AWG to Circular Mils

WIRE SIZE AWG	NOM. DIA	AMETER MM	CIRCULAR MILS
4/0	.4600	11.68	211600
3/0	.4096	11.40	167800
2/0	.3648	9.266	133100
1/0	.3249	8.52	105600
1	.2893	7.348	83690
2	.2576	6.543	66360
3	.2294	5.827	52620
4	.2043	5.189	41740
5	.1819	4.620	33090
6	.1620	4.115	26240
7	.1443	3.665	20820
8	.1285	3.264	16510
9	.1144	2.906	13090
10	.1019	2.588	10380
11	.0907	2.30	8230
12	.0808	2.05	6530
13	.0720	1.83	5180
14	.0641	1.63	4110
15	.0571	1.45	3260
16	.0508	1.29	2580
17	.0453	1.15	2050
18	.0403	1.02	1620
19	.0359	0.912	1290
20	.032	.813	1020
21	.0285	.724	812
22	.0253	.643	640
23	.0226	.574	511
24	0201	511	404

Decimal Equivalents

WIRE SIZE AWG	NOM. DIA	AMETER MM	CIRCULAR MILS
1/64	.0156	3/16	.1875
1/32	.0312	13/64	.2031
3/64	.0469	7/32	.2188
1/16	.0625	15/64	.2344
5/64	.0784	1/4	.25
3/32	.0938	-	-
7/64	.1094	17/64	.2656
1/8	.125	9/32	.2812
9/64	.1406	19/64	.2969
5/32	.1562	5/16	.3125
11/64	.1719	211/64	.3281
11/32	.3438	33/64	.5156
23/64	.3594	17/32	.5312
3/8	.375	35/64	.5469
25/64	.3906	9/16	.5625
13/32	.4062	37/64	.5781
27/64	.4219	19/32	.5938
7/16	.4375	39/64	.6094
29/64	.4531	5/8	.625
15.32	.4688	41/64	.6406
31/64	.4844	21/32	.6562
1/2	.5	43/64	.6719

NOTE: Multiply inches x 25.4 to get millimeters. *Example:* $0.5'' \times 25.4 = 12.7 \text{ mm}$.

STUD SIZE	#6	#8	#10	1/4"	5/16"	3/8"	1/2"
Hole Dia.	.143	.169	.196	.260	.323	.386	.516

Manual Installation Tools

Crimp with comfort!

Ergonomic Manual Installation Tools

- Fixed die tool
- Incorporates the ergonomically designed Comfort Crimp® tool handles, which distribute the force more evenly across the hand
- Shure-Stake® mechanism ensures a complete crimp cycle before the tool releases
- Rubberised thermoplastic handles combine maximum friction with a soft, comfortable feel that reduces muscle tension
- Two-piece movable die nest provides easy connector removal (ERG811 has single die nest)

T&B TOOL WARRANTY

You can choose Thomas & Betts tools with confidence, because we stand behind them with our warranty.

See page **B-101** for additional warranty information.

CAT. NO.	TOOL GAUGING	CONNECTOR	PKG. QTY.
ERG1801	.069 max.	22F, L, R-1 Series	1
ERG1802	.076 max.	22L002	1
ERG1804	.034 max.	22L004	1
ERG1806	.095 max.	22F, L, R-6 Series	1
ERG811	.103 max.	214420	1

Contact Customer Services for availability and most recent additions to the ergonomic tool series.

1 Year

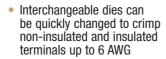
- Cable Tie Installation Tools
- Printers
- Cable Cutters & Strippers
- Dies

2 Years

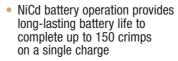
- · Mechanical Hand Tools with Shure-Stake® Mechanism
- Pneumatic Tools
- Hydraulic Pumps
- Battery-Operated Tools

5 Years

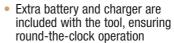
- · Mechanical Hand Tools without Shure-Stake® Mechanism
- Hydraulic Tools (self-contained) and remote heads)


Battery-Powered Crimping Tools

1½ tons of grip that weighs less than three pounds!


Battery-Powered Crimping Tool — **BAT22-6**

T&B's newest battery-powered tool is fast and portable for making high-volume and difficult-to-reach terminal installations in a snap. The BAT22-6 delivers 1.5 tons of crimping force with an easy, pushbutton trigger. The lightweight, ergonomic design minimizes the risk of repetitive motion injuries that can occur with traditional hand crimping tools. And at less than three pounds, one-hand operation is easy while still packing enough power to crimp up to 6 AWG terminals in seconds.


- Dies are the same as our hand tools—crimps will be exactly the same between Sta-Kon® hand tools such as our ERG-2001 and the new BAT22-6
- 360° rotating head gives the user the added flexibility when crimping hard-to-reach connections
- Short cycle time equates to crimping times of less than two seconds

Easy to rotate with your wrist-delivers fast and

effective crimping power.

- Battery charger provides full battery life in under an hour
- Linear crimping motion gives a symmetric, high-quality crimp every time

Uses the exact dies of the Comfort Crimp line of ergonomic tools for Sta-Kon, Spec-Kon, and Dragon Tooth.

Crimping Force — 2,900 lbs. max.

Wire Crimping Range -Up to 6 AWG

Crimp Cycle Time — 2 seconds

Power Supply — 9.6V NiCd battery

Recharging Time — 1 hour

Crimps per Charge — 150

Dimensions -

25.4" (645 mm) Length 3.1" (79 mm) Width 2.1" (53 mm) Height

Tool Weight (With Battery) -2¾ lbs.

Included Accessories

- Sturdy, plastic carrying case for portability
- Two 9.6V NiCd batteries and battery charger
- Sturdy tray for convenient storage of crimp dies

CAT. NO.	DESCRIPTION	PKG. QTY.
BAT22-6	Battery Crimping Tool 1.5 Ton with 120 VAC Charger	1
Crimp Dies*		
DIE1801	22 F,L,R-1 Series	1
DIE1802	22L002	1
DIE1804	22L004	1
DIE1806	22 F,L,R-6 Series	1

Tool purchase includes crimping tool, two 9V batteries, charger, and case.

*Dies sold senarately

Air Hydraulic Tools

Perfect for high-speed installation!

BAIR22-6 — Heavy-Duty Bench-Top Air Crimp Tool

- Bench mounted for stability and operator control
- · Compact size, all-metallic construction
- Delivers 1.8 tons of crimping force at 100 psi
- Heavy-duty and installs wide range of Dragon Tooth connectors

	Specifications .	
--	------------------	--

Height — 12"

Operating Pressure — 85-100 psi

Base - 8" Square

Weight - 17 lbs.

CAT. NO.	DESCRIPTION
BAIR22-6	Equipped with Shure-Stake® Mechanism, Ensuring Full Crimp Cycle Before Release

Pneumatic power!

PAIR22-6 — Heavy-Duty Portable Air Crimp Tool

- Installs Dragon Tooth® terminals
- Hand actuated
- Delivers 1.25 tons of crimping force at 100 psi
- 3 interchangeable dies can crimp the 22xxx1, 22xxx2, and 22xxx6 series terminals

Installing Dies for BAIR22-6 and PAIR22-6

OAT NO	DECODIDETION	DIVO OTIV
CAT. NO.	DESCRIPTION	PKG. QTY.
Crimp Dies*		
DIE1801	22 F,L,R-1 Series	1
DIE1802	22L002	1
DIE1804	22L004	1
DIE1806	22 F,L,R-6 Series	1

..... Specifications

Overall Length — 14"

Diameter — 21/4"

Operating Pressure — 90–100 psi

00 100 pc

Weight — 2.5 lbs.

CAT. NO.	DESCRIPTION
PAIR22-6	Open "C" Yoke; Hand Actuated

Continuous reel crimping!

Auto-Feed Tool for Magnet Wire Connectors on Strip

- Foot pedal contains T&B Shure-Stake® control mechanism, which ensures a full compression each time
- Insulation piercing connectors are fed on a continuous reel-mounted strip
- Dies are self-contained
- Includes foot valve, hoses, and air treatment system
- Pneumatic bench-mounted foot-operated tool for crimping copper or aluminum magnet wire and copper lead wire, not solder dipped or bonded

CAT. NO.	CONNECTOR	QUANTITY PER REEL	WEIGHT	WIDTH	DEPTH	HEIGHT
13676A	220004	9,000	19 lbs.	5"	14"	11"
13678	220001	3,000	28 lbs.	6"	18"	14"
13679	220002	3,000	28 lbs.	6"	18"	14"
13696	220006	2,500	32 lbs.	6"	18"	16"

Air Hydraulic Tools

Rugged and portable!

6-Ton Hydraulic Head

- · Lightweight design—weighs less than 7 lbs. including dies
- · Includes steel carrying case

..... Specifications .

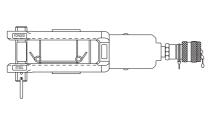
Output Force — 6 tons nominal

Operating Pressure — 10,000 psi nominal (safety bypass on pump set at 9800 psi)

Tool Weight — 6½ lbs. (without dies)

Tool Dimensions — 13½" long, 3½" wide

- · Tool carrying case included
- · Dies are ordered as a set (2 pieces)
- Upper and lower dies are identical


CAT. NO.	DESCRIPTION
ТВМ6Н	The TBM6H Remote Hydraulic Crimping Head is a lightweight
	but powerful compression tool. The TBM6H operates from any
	10,000 psi hydraulic pump.

See die chart on page K-14 for complete listing of dies and connectors used with TBM6H.

Powerful and reliable!

12-Ton Hydraulic Head

- 12 tons output (nominal)
- 10,000 psi max. hydraulic operating pressure
- · Weighs 15 lbs.

. Specifications

Output — 12 tons (nominal)

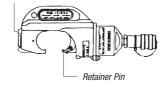
Hydraulic Operating Pressure — 10,000 psi (max.)

Length (with coupling) — 14½"

Width — 31/4"

Weight (without dies) - 15 lbs.

CAT. NO.	DESCRIPTION	PKG. QTY.
13400	12-Ton Hydraulic Head (Dies Ordered Separately)	1
C!!h	V 44 for complete lieting of disc and competence	


See die chart on page K-14 for complete listing of dies and connectors used with 13400.

Lightweight design!

14-Ton Hydraulic Head

- 14 tons output (nominal)
- 10,000 psi max. hydraulic operating pressure
- · Weighs 10 lbs.

Die Release Knob

. Specifications

Output — 14 tons (nominal)

Hydraulic Operating Pressure — 10,000 psi (max.)

Length (With Coupling) — 11½ in.

Width — 2½"

Height — 41/4"

Piston Diameter — 1.812"

Piston Stroke — 1.5" max.

Weight (Without Dies) - 10 lbs.

CAT. NO.	DESCRIPTION	PKG. QTY
13100A	Remote 14-Ton Hydraulic Head (Dies Ordered Separately	/) 1

See die chart on page K-14 for complete listing of dies and connectors used with 13100A.

Air Hydraulic Tools

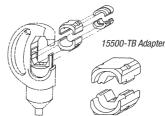
Crimp larger connectors easily!

15-Ton Hydraulic Head

- Longer, slimmer profile enables easier access into tight spaces
- Wider jaw opening eases crimping of larger connectors
- Head made of forged steel and insulated with rubber boot
- Steel carrying case is included
- Longer, slimmer profile enables easier access into tight spaces

..... Specifications

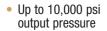
Output Force — 15 tons nominal


Operating Pressure — 10,000 psi nominal

Cylinder — 2" dia.

Tool Weight — 16½ lbs. (without dies)

Installs — 8 AWG - 1500 MCM Copper; 10 AWG - 1000 MCM Aluminum



CAT. NO.	DESCRIPTION	PKG. QTY	
TBM15I	Insulated 15-Ton Hydraulic Tool; (Carrying Case Included 1	

See die chart on page K-14 for complete listing of dies and connectors used with TBM151.

Electric Hydraulic Pump

Durable construction

 Hand or foot actuated

13610A

CAT. NO.	DESCRIPTION
13810	Electric hydraulic pump, 10000 psi with Shure-Stake mechanism
	feature; this is a heavy-duty OEM pump with high flow rate; 115V,
	60Hz, 1½ HP, 23A; requires hand or foot control.

You may also need...

,	
13611	Hand Switch for 13810
13612	Foot Switch for 13810
13613	High Pressure, Steel Reinforced Hydraulic Hose; 6 ft.
13614	High Pressure, Steel Reinforced Hydraulic Hose; 10 ft.
13619	High Pressure, Plastic Hydraulic Hose; 10 ft.
13600	This electric hydraulic pump is for use with all T&B hydraulic
	heads—consists of pump with pressure gauge and Pioneer type
	male coupler; add suffix WG to eliminate gauge; output pressure
	9800 psi; order switch and hose separately.

You may also need...

13620	Hand Switch—10 ft.
13589A	Foot Switch—10 ft.
13619	10-ft. Non-Metallic Hose
13618	20-ft. Non-Metallic Hose

A remote control switch is required. Order Cat. No. 13620 for hand operation or Cat. No. 13589A for foot operation.

All pumps are supplied with a metal carrying case.

13610A	Shure-Stake® electric hydraulic pump has same features as 13600,
	but includes the Shure-Stake® control mechanism; prevents under
	crimping; (pump pressure must reach 9,800 psi before recycling);
	requires hand or foot control; order switch and hose separately.

You may also need...

13611	Hand Switch—10 ft.
13612	Foot Switch—10 ft.
13797	In-line hydraulic pressure inspection gauge with male and female

pioneer-type coupler.

A remote control switch is required to operate this unit. Use either a #13611 (hand) or #13612 (foot) switch.

Cross Reference

An easy-to-use reference guide for tools and connectors!

			AUTOFEED TOOL				
	MANUAL	BATT 22-6. BAIR 22-6, PAIR 22-6	FOR STRIP	ТВМ6Н	13100A	13400	TBM15I
CONNECTOR			DIES				
204210MT	-	-	-	-	-	13682	-
204210S	-	_	-	-	13671B	13671A	13671B with 15500TB
204210SH	-	_	-	-	13673B	13673 13671A	13673B with 15500TB
204210-1 204210-1H	-	_	-	-	13671B 13673B	13671A 13673	13671B with 15500TB
204210-1H 204210-2	_		_	_	13671B	13673 13671A	13673B with 15500TB 13671B with 15500TB
204210-2	_	_	_	_	13671B	13671A	13671B with 15500TB
204210-3H	_	_	_	_	13673B	13673	13673B with 15500TB
204210-5	_	_	_	_	13671B	13671A	13671B with 15500TB
204212	_	_	_	_	13671B	13671	13671B with 15500TB
204217	-	-	-	-	13671B	13671A	13671B with 15500TB
204MT14	-	_	-	-	-	-	-
204MT38	-	_	-	-	-	-	-
204T14	-	_	-	-	13689B	-	13689B with 15500TB
204T38	-	_	-	-	13689B	-	13689B with 15500TB
210214MT	-	_	-	-	13681B	13681	13681B with 15500TB
2102148	-	-	-	-	13670B	13670A	13670B with 15500TB
210214-2	_	_	_	-	13670B	13670A	13670B with 15500TB
210214-3	-	_	_	_	13670B	13670A	13670B with 15500TB
210216, 210216F	_		_	_	13670B 13670B	13670A 13670A	13670B with 15500TB
210217, 210217F 210219, 210219F	_		_	_	13670B	13670A 13670A	13670B with 15500TB 13670B with 15500TB
210MT14	_	_	_	_	-	13070A	- 13070D WILLI 133001D
210MT38	_	_	_	_	_	_	_
214420	ERG811/WT811	DIE 811	_	_	_	-	_
220001	-	-	13678	-	_	-	-
220002-TB	-	-	13679	-	_	-	-
220004	-	_	13676A	_	-	_	-
220005	-	_	13690	-	-	-	-
220006	-	_	13696	-	-	-	-
220015	-	-	-	-	13713	-	13713
220016	_	_	-	-	13713	-	13713
220017 220018	-	_	_	_	13713 13713	-	13713 13713
220018	_	_	_	_	13713	_	13713
220019	_	_	_	_	13713	_	13713
220020	_	_	_	_	13713	_	13713
220022	_	_	_	_	13713	_	13713
220023	-	-	-	-	13713	-	13713
220024	-	_	-	-	13713	-	13713
220025	_	_	-	-	13713	-	13713
220026			-	-	13713	-	13713
22F061	ERG1801	DIE1801	-	-	-	-	-
22F066	ERG1806	DIE1806	-	-	-	-	-
22F081	ERG1801	DIE1801	-	-	-	-	-
22F086 22F101	ERG1806 ERG1801	DIE1806 DIE1801	_	_	_	_	_
22F101 22F106	ERG1806	DIE1806	_	_	_	_	_
22L001	ERG1801	DIE1801		_	_	_	_
22L001	ERG1802	DIE1802	_	_	_	_	_
22L002	ERG1804	DIE1804	_	_	_	-	_
22L006	ERG1806	DIE1806	-	-	-	-	-
22L008	-	_	-	6TON-MW-08	13683B	13683	13683B with 15500TB
22L009	-	_	-	6TON-MW-09	13684B	13684	13684B with 15500TB
22L009H		_	-	-	13686B	13686	13686B with 15500TB
22LF01	ERG1801	DIE1801	-	-	-	-	-
22LF06	ERG1806	DIE1806	-	-	-	-	-
22LM01	ERG1801	DIE1801	_	-	-	-	_
22LM06	ERG1806	DIE1806	-	-	-	-	-
22R061 22R106	ERG1801 ERG1806	DIE1801 DIE1806	_	_	-	-	-
22R106 22R146	ERG1806	DIE1806	_	_	<u> </u>	_	_ _
314118S	LING 1 0 U U	DIE 1000	_	_	13685B	13685	13685B with 15500TB
314123	_	_	_	_	13685B	13685	13685B with 15500TB
314125	_	_	_	_	13685B	13685	13685B with 15500TB
22L010	_	_	_	-	13690B	10000	.50005 11111 1000015
	1	1			.00000	l	

NOTE: Dies that fit 13100A also work in TBM15 with use of adapter 15500TB.

