ROHS HF 466 Series Fuse

Agency Approvals				
AGENCY	AGENCY FILE NUMBER	AMPERE RANGE		
91	E10480	125MA - 5A		
(Sft)	LR29862	125MA - 5A		

Electrical Characteristics for Series

% of Ampere Rating	OpeningTime at 25°C
100%	4 hours, Minimum
200%	5 sec., Maximum
300%	0.2 sec., Maximum

Description

The 466 Series Fast-Acting Surface Mount Fuse (SMF) is a small (1206 size) thin-film device designed for secondary protection of circuits used in space constrained applications such as hand-held portable electronic devices.

This series is 100% lead-free and meets the requirements of the RoHS directive. New Halogen-Free 466 Series fuses are available-to order use the "HF" suffix. See Part Numbering section for additional information.

Features

- Product is compatible with lead-free solders and higher temperature profiles.
- Product is marked on top surface with code to allow amperage rating identification without testing.
- Low profile for height sensitive applications.
- Flat top surface for pickand-place operations.

- Element covering material is resistant to industry standard cleaning operations.
- ٠ Mounting pad and electrical performance is identical to Littelfuse 429 and 433 Series products.

FL ()

466 Series

Alloy based element construction provides superior inrush withstand characteristics (I²t) over ceramic or glass based 1206 chip fuse products.

Applications

•

Secondary protection for space constrained applications:

- **DVD** players
- Battery packs Digital cameras

Cell phones

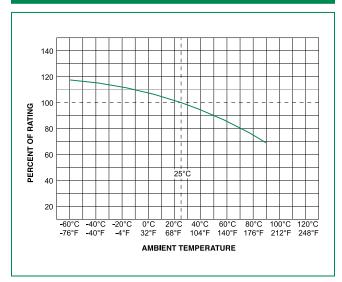
Hard disk drives.

Electrical Specifications by Item

Ampere	A	Max	lato muntin a	Nominal Cold	Nominal	Nom	Nom Power	Agency A	Approvals
Rating (A)	Amp Code	Voltage Rating (V)	Interrupting Rating	Resistance (Ohms)	Melting I²t (A²sec)	Voltage Drop (mV)	Dissipation (W)	71	()
0.125	.125	125		4.000	0.00040	552.66	0.0691	Х	Х
0.200	.200	125	50A @125 V AC/	1.160	0.00055	254.28	0.0509	Х	х
0.250	.250	125	DC	0.710	0.0010	207.01	0.0518	Х	Х
0.375	.375	125		0.350	0.0028	169.18	0.0634	Х	Х
0.500	.500	63		0.248	0.0060	158.47	0.0792	Х	Х
0.750	.750	63		0.111	0.0276	98.65	0.0740	Х	х
1.00	001.	63		0.076	0.0423	89.94	0.0899	Х	х
1.25	1.25	63	50A @63 V AC/DC	0.059	0.0640	85.71	0.1071	Х	х
1.50	01.5	63		0.048	0.1103	82.97	0.1244	Х	Х
1.75	1.75	63		0.039	0.1323	80.73	0.1413	Х	х
2.00	002.	63		0.031	0.2326	78.73	0.1575	Х	Х
2.50	02.5	32	50A @32 V AC/DC	0.024	0.3516	76.99	0.1925	Х	х
3.00	003.	32		0.020	0.5760	75.99	0.2280	Х	Х
4.00	004.	32		0.014	1.024	74.50	0.2980	Х	х
5.00	005.	32		0.011	1.600	73.75	0.3688	х	х

1 Measured at 10% of rated current 25°C

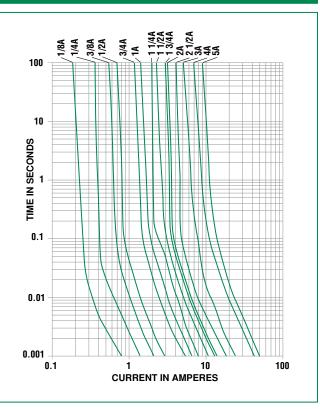
2. Measured at rated voltage


© 2009 Littelfuse, Inc.

Specifications are subject to change without notice. Please refer to www.littelfuse.com/series/466.html for current information.

Temperature Rerating Curve

Average Time Current Curves

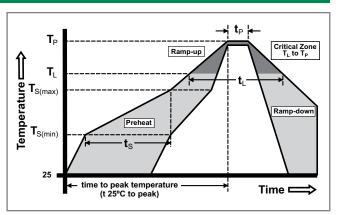

Note:

1. Derating depicted in this curve is in addition to the standard derating of 25% for continuous operation.

Example:

For continuous operation at 70 degrees celsius, the fuse should be derated as follows:

 $I = (0.75)(0.80)I_{RAT} = (0.60)I_{RAT}$

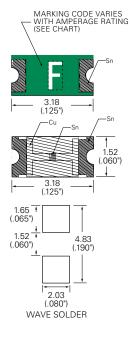


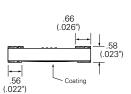
Soldering Parameters

Reflow Condition		Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (Min to Max) (t _s)	60 – 180 secs	
Average ramp up rate (Liquidus Temp (T_L) to peak		5°C/second max	
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
	-Temperature (t _L)	60 – 150 seconds	
PeakTemperature (T _P)		250 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exceed		260°C	

Wave Soldering

260°C, 10 seconds max.





Product Characteristics


Body: Advanced High Temperature Substrate Terminations: 100% Tin over Nickel over Copper Element Cover Coat: Conformal Coating	
Licification of the observe of the o	
-55° C to 90°C	
Consult temperature rerating curve chart.	
Withstands 5 cycles of –55°C to 125°C	
MIL-STD-202F, Method 103B, Condition D	

Dimensions

Vibration	Per MIL-STD-202F, Method 201A	
Insulation Resistance (After Opening)	Greater than 10,000 ohms	
Resistance to Soldering Heat	MIL-STD-202G, Method 210F, Condition D	

Part Marking System

Amp Code	Marking Code
.125	В
.200	C
.250	D
.375	E
.500	F
.750	G
001.	н
1.25	J
01.5	К
1.75	L
002.	N
02.5	0
003.	Р
004.	S
005.	Т

Part Numbering System

Packaging

Packaging Option	Packaging Specification	Quantity	Quantity & Packaging Code
8mm Tape and Reel	EIA RS-481-2 (IEC 286, part 3)	5000	NR